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Abstract
Our aim was to assess structural and functional networks in schizophrenia patients; and the possi-

ble prediction of the latter based on the former. The possible dependence of functional network

properties on structural alterations has not been analyzed in schizophrenia. We applied averaged

path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion mag-

netic resonance and electroencephalography in 39 schizophrenia patients and 79 controls.

Functional data were collected for the global and theta frequency bands during an odd-ball task,

prior to stimulus delivery and at the corresponding processing window. Connectivity matrices

were constructed from tractography and registered cortical segmentations (structural) and phase-

locking values (functional). Both groups showed a significant electroencephalographic task-related

modulation (change between prestimulus and response windows) in the global and theta bands.

Patients showed larger structural PL and prestimulus density in the global and theta bands, and

lower PL task-related modulation in the theta band. Structural network values predicted prestimu-

lus global band values in controls and global band task-related modulation in patients. Abnormal

functional values found in patients (prestimulus density in the global and theta bands and task-

related modulation in the theta band) were not predicted by structural data in this group. Structural

and functional network abnormalities respectively predicted cognitive performance and positive

symptoms in patients. Taken together, the alterations in the structural and functional theta net-

works in the patients and the lack of significant relations between these alterations, suggest that

these types of network abnormalities exist in different groups of schizophrenia patients.

K E YWORD S

brain network, diffusion magnetic resonance, dysconnectivity, electroencefalography, graph-

theory, schizophrenia

1 | INTRODUCTION

Mental functions depend on global dynamics of cerebral networks

(Dehaene & Changeux, 2011; Varela, Lachaux, Rodriguez, & Martinerie,

2001), whose functional and structural characteristics can be assessed

in vivo using methods derived from graph-theory (Bullmore & Sporns,

2009). In this context, underpinnings of syndromes like schizophrenia

likely involve distributed networks rather than regional alterations, as

supported by studies using functional magnetic resonance imaging

(fMRI) that revealed network alterations in the resting state (Lo et al.,
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2015; Yu et al., 2011) and during task performance (Ma, Calhoun,

Eichele, Du, & Adalı, 2012; Shim, Kim, Lee, & Im, 2014) in this syn-

drome. However, considering the rapid and transient change of func-

tional integration of diverse cerebral regions in cognition in humans

(Varela et al., 2001) and animals (Bressler, Coppola, & Nakamura,

1993), assessing fast change of cerebral networks in schizophrenia

holds a great interest. Techniques with high temporal resolution are

useful to this purpose: change of network properties using electroen-

cephalographic (EEG) during a cognitive task was significantly

decreased in schizophrenia patients (Gomez-Pilar et al., 2017). Using

relative power analyses, we also reported lower EEG task-related

change in theta but not in faster bands during an odd-ball task in schiz-

ophrenia (Bachiller et al., 2014).

As mentioned, methods derived from graph-theory are useful to

assess the properties of cerebral networks, which can be summarized

in parameters such as clustering coefficient (CLC) and characteristic

path length (PL). In a binary network, local CLC is the ratio between

the number of triangles in which a given node participates and the

maximum possible number of triangles including that node. When CLC

is averaged across the nodes of a network, it quantifies network segre-

gation and local efficiency of information transfer. In turn, PL is the

average of shortest distances for all possible pairs of nodes; it is likely

related to information integration across areas. These network parame-

ters provide complementary information about the properties of the

whole brain network. Therefore, the use of these parameters instead

of their corresponding nodal versions, allows to characterize the global

and predominant changes of the network. A recent meta-analysis of

functional graph-analytical studies in schizophrenia revealed significant

decreases in measures of local organization (CLC) with preservation in

short communication paths (PL) (Kambeitz et al., 2016).

Abnormalities in structural connectivity are also prevalent in schiz-

ophrenia (Ellison-Wright & Bullmore, 2009). These abnormalities are

likely reflected in structural network properties, since longer structural

PL values were found in schizophrenia at frontal and temporal regions

using dMRI (van den Heuvel, Mandl, Stam, Kahn, & Hulshoff Pol, 2010)

and may be associated to genetic liability to this disorder (Bohlken

et al., 2016). Thus, the possibility exists that functional network altera-

tions might be secondary to structural abnormalities in schizophrenia.

Indeed, in this syndrome, a relationship has been reported between a

reduction in “rich-club density” (i.e., connections among high-degree

hub nodes) and global efficiency of functional connectivity in the rest-

ing state using fMRI (van den Heuvel et al., 2013). Similarly, connectiv-

ity deficits in rich-club hubs have been described in young offspring of

schizophrenia patients associated to disruption of the functional con-

nectome (Collin, Scholtens, Kahn, Hillegers, & van den Heuvel, 2017).

However, functional connectivity alterations in schizophrenia are not

necessarily determined by structural connectivity, since functional con-

nections in the resting state can be found between regions without

direct anatomical connections (Honey et al., 2009).

The application of graph-theory parameters to functional and

structural measurements can yield complementary information and

help uncovering hidden relationships (Sui, Yu, He, Pearlson, & Calhoun,

2012). Using diffusion MRI (dMRI), graph-theory parameters may

inform about structural connectivity differences between anatomical

structures, revealing highly connected hubs (Honey, Thivierge, &

Sporns, 2010). Graph-theory parameters applied to functional analysis

may reveal baseline network characteristics and its dynamic modulation

during cognition of signals such as synchrony of the bold-oxygen level

dependent signal between regions, or magneto-electrical signals

between sensors. Considering the millisecond-scale of modulation of

cortical activity during cognition (Bressler et al., 1993; Dehaene &

Changeux, 2011), the combination of network analyses with temporal

resolution of EEG recordings can be useful to assess this task-related

modulation. Indeed, using EEG in healthy subjects, we reported a sig-

nificant task-related modulation of network parameters from prestimu-

lus (from 2300 to 0 ms prior to stimulus onset) to response (from 150

to 450 ms poststimulus) windows (Martin-Santiago et al., 2016) during

an odd-ball task.

To our knowledge, no previous study has assessed the relationship

between structural and EEG networks in schizophrenia. Such investiga-

tion may help identifying the substrate of the cortical dysfunction in

schizophrenia. Therefore, this study was aimed at characterizing the

properties of structural and EEG-based functional networks in schizo-

phrenia and assessing the relationships between properties of those

networks in this syndrome, particularly between structural connectivity

and EEG modulation.

2 | SUBJECTS AND METHODS

2.1 | Subjects

A total of 39 schizophrenia (19 stable chronic and 20 first-episode, FE)

patients and 78 healthy controls with normal hearing were included.

Demographic, clinical, cognitive and EEG data were collected for each

participant (Table 1). In addition, dMRI data were also available in 33

patients (16 FE) and 27 controls (Table 1). One of the psychiatrists in

the group (VM) diagnosed the patients according to the Diagnostic and

Statistical Manual of Mental Disorders, 5th edition. Chronic patients

received atypical antipsychotics, 30 of them in monotherapy (12

received antidepressants and 7 benzodiazepines). FE patients were

receiving stable doses of antipsychotics for <15 days, with a wash-out

period of 24 hr prior to EEG acquisition. This was so done to minimize

the possible effects of treatment in this group, given their relatively

short exposure to antipsychotics. Symptoms were scored using the

Positive and Negative Syndrome Scale (PANSS) (Kay, Fiszbein, & Opler,

1987). Exclusion criteria were: (a) any neurological illness; (b) history of

cranial trauma with loss of consciousness longer than 1 min; (c) past or

present substance abuse, except nicotine or caffeine; (d) total intelli-

gence quotient (IQ) smaller than 70; (e) for patients, any other psychiat-

ric process; and (f) for controls, any current psychiatric or neurological

diagnosis or treatment.

The population here included overlaps in part with that of previous

reports of our group in schizophrenia on functional networks based on

evoked response (Gomez-Pilar et al., 2017), graph complexity (Gomez-

Pilar et al., 2018) and structural connectivity of specific tracts of the

prefrontal region (Molina et al., 2017)
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We obtained written informed consent from all participants after

full printed information. The ethical committee of the University Hospi-

tal of Valladolid approved the study.

2.2 | Cognitive assessment

Cognitive data from patients and controls were collected using: the

Wechsler Adult Intelligence Scale, WAIS-III (IQ); the Wisconsin Card

Sorting Test (WCST; completed categories and percentage of persever-

ative errors); and the Spanish version of the Brief Assessment in Cogni-

tion in Schizophrenia Scale (BACS) (Segarra et al., 2011).

2.3 | MRI acquisition and processing

Acquisitions were carried out using a Philips Achieva 3 Tesla MRI unit

(Philips Healthcare, Best, The Netherlands) at the MRI facility at Valla-

dolid University, including anatomical T1-weighted and diffusion-

weighted images. For the T1-weighted images, acquisition parameters

were: turbo field echo sequence, 256 3 256 matrix size, 1 3 1 3

1 mm3 of spatial resolution and 160 slices covering the whole brain.

About the diffusion-weighted images (DWIs), the acquisition protocol

parameters were: 61 gradient directions and one baseline volume, b-

value51,000 s/mm2, 2 3 2 3 2 mm3 of voxel size, 128 3 128 matrix

and 66 slices covering the entire brain. Total acquisition time was

18 min.

The processing pipeline of the acquired MRI volumes is designed

to obtain structural connectivity matrices by using both the anatomical

(T1-weighted) and diffusion images (Figure 1).

First, nonbrain structures were removed from the T1 images, using

BET, the brain extraction tool from the FSL software suite (http://fsl.

fmrib.ox.ac.uk) (Smith, 2002). After that, the segmentation of 84 corti-

cal structures was performed employing Freesurfer (https://surfer.nmr.

mgh.harvard.edu) (Desikan et al., 2006; Fischl et al., 2004). From the

same T1 images, gray matter, white matter, and cerebrospinal

fluid were also segmented, and subcortical gray matter structures

were obtained using FMRIB’s Automated Segmentation Tool (FAST)

and FMRIB’s Integrated Registration and Segmentation Tool (FIRST)

utilities from FSL, respectively (Patenaude, Smith, Kennedy, & Jenkin-

son, 2011; Zhang, Brady, & Smith, 2001), and combined into a volume

called 5tt (5-tissue-type) image.

In parallel, the brain was extracted from the DWIs using DWI2-

MASK tool from MRtrix (www.mrtrix.org) (Dhollaner & Connelly,

2016). Also employing MRtrix, orientation distribution functions were

estimated from the diffusion data using spherical deconvolution (Tour-

nier, Calamante, & Connelly, 2007), which were later employed to gen-

erate anatomically constrained tractography using both the diffusion

data and the 5tt image (after registration). Two million streamlines

were generated for each subject.

In order to characterize diffusion at each voxel, diffusion tensors

were estimated using a least squares method (Salvador et al., 2005),

TABLE 1 Demographic, clinical and cognitive data in patients and controls

Schizophrenia Controls

Schizophrenia
(EEG, n5 39)

Schizophrenia
(EEG1 dMR; n5 33)

Controls
(EEG; n578)

Controls
(dMR1EEG; n527)

Age 33.053 (8.801) 33.059 (8.951) 30.948 (10.839) 34.668 (11.150)

Sex (M:F) 23:16 19:14 46:32 18:9

CPZ equivalents (mg/d) 377.901 (196.934) 374.802 (193.419) NA

Duration(months) 95.169 (117.388) 83.86 (117.456) NA

Education years 14.191 (3.600) 14.882 (3.051) 16.561 (2.254) 17.427 (2.866)

PANSS positive symptoms 11.702 (3.427) 11.388 (3.457) NA

PANSS negative symptoms 17.571 (7.309) 15.450 (5.057) NA

Total symptoms 53.810 (18.892) 53.313 (18.913) NA

Total IQ 91.061 (14.528)*** 94.701 (11.789)*** 113.209 (11.088) 109.458 (12.165)

Verbal memory 34.262 (12.889)*** 35.315 (12.345)*** 51.115 (8.194) 53.000 (7.274)

Working memory 16.151 (5.010)*** 17.074 (4.148)*** 21.626 (3.621) 23.140 (2.723)

Motor speed 58.879 (13.781)*** 62.538 (12.041)*** 72.610 (16.583) 85.503 (8.154)

Verbal fluency 18.352 (5.730)*** 19.613 (4.799)*** 27.856 (5.155) 28.827 (5.177)

Processing speed 43.700(15.360)*** 45.641 (14.672)*** 69.588 (14.378) 69.251 (14.841)

Problem solving 15.253 (4.622) 16.317 (3.418) 17.524 (2.571) 17.042 (2.641)

WCST perseverative errors (%) 17.921 (10.123)*** 21.152 (17.077)*** 9.801 (5.141) 8.221 (3.573)

WCST completed categories 4.419 (1.878)*** 4.812 (1.711)** 5.847 (0.610) 5.879 (0.478)

Significant differences with respect to controls are shown for patients *p< .05; **p< .001; ***p< .001

GOMEZ-PILAR ET AL. | 3

http://fsl.fmrib.ox.ac.uk
http://fsl.fmrib.ox.ac.uk
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
http://www.mrtrix.org


and scalar fractional anisotropy (FA) volumes were computed from the

diffusion tensors. FA quantifies the amount of anisotropy in the diffu-

sion tensor, that is, how much it deviates from a totally isotropic diffu-

sion. FA is usually interpreted as a descriptor of white matter integrity,

and decreases in FA have been related to alterations in the white mat-

ter due to several factors (demyelination and axonal destruction, among

others).

Finally, connectivity matrices were constructed from the tractogra-

phy results and the (registered) cortical segmentations. When a stream-

line between two cortical segmentations was found, the averaged FA

was computed. Thus, 84 3 84 connectivity matrices were obtained

using FA as connectome metrics (Figure 2). A threshold was not applied

to the obtained matrices; however, some matrix coefficients were

equal to zero when a streamline was not found.

Similar connectomics analyses have been reported in schizophrenia

(Di Biase et al., 2017) and other neurocognitive conditions (Jones et al.,

2015)

2.4 | EEG recordings and processing

2.4.1 | EEG acquisition and preprocessing

EEG recordings were obtained following MRI scans, after a resting

period of 30 min. Participants performed a 13 min three-tone P300

oddball task (for a detailed description see (Gomez-Pilar et al., 2017).

FIGURE 1 Processing pipeline yielding FA values to be used in graph-theory calculations

FIGURE 2 (a) The 29 EEG channel labels superposed on the structural ROIs. EEG nodes (filled in white) were used to generate functional
connectivity matrices from PLV values between each pair of electrodes. The figure illustrates the approximate placement of the EEG electrodes
over the ROIs. The list of the 29 electrodes used in the study according to international 10-10 system is: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1,
FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz and O2. (b) Schematic depiction (axial and sagittal views) of
the relevant tracts (streamlines) from which FA was calculated to generate structural connectivity matrices. Streamlines were calculated between
each pair of the 84 nodes corresponding to the cortical segmentation are shown as spheres (their sizes are proportional to the actual size of the
corresponding ROI). For the sake of clarity, only tracts linking PFC with anterior cingulate, superior temporal, insular, and superior parietal cortices
and hippocampus and caudate are drawn [Color figure can be viewed at wileyonlinelibrary.com]
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Electrode impedance was always kept under 5 kX. Ground was placed

at Fpz electrode and each channel was referenced over Cz electrode

and re-referenced to the average activity of all active sensors (Bledow-

ski et al., 2004; Gomez-Pilar et al., 2018), yielding a total of 29

channels.

The P300 task has several advantages for assessing functional net-

work modulation in schizophrenia. In addition to its widespread previ-

ous use in the field: (a) it is easy to perform, thus decreasing bias

related to lack of subject’s cooperation; (b) its performance activates a

large cerebral network (Bledowski et al., 2004; Linden et al., 1999); and

(c) differences in EEG global activation patterns have been reported in

schizophrenia using this paradigm (Gomez-Pilar et al., 2017).

Signals were band pass filtered between 1 and 70 Hz. In addition,

a zero-phase 50 Hz notch filter was used to remove the power line

artifact. A three-step artifact rejection algorithm was applied to mini-

mize electroculographic and electromiographic contamination (Bachiller

et al., 2015a): (a) an independent component analysis (ICA) was carried

out to discard noisy ICA components; (b) after ICA reconstruction, EEG

signals were divided into trials of 1 s length (ranging from 300 before

to 700 ms after stimulus onset); and (c) an automatic method was

applied to reject trials whose amplitude exceeded an adaptive

statistical-based threshold, which consists of two stages. First, the

mean and standard deviation of each channel was computed. Then, tri-

als that exceeded mean64 3 SD in at least two channels were dis-

carded (Nunez et al., 2017). After this adaptive artifact rejection,

91.21611.28 trials for controls—with a median (interquartile range) of

91 (85 97) trials—and 86.33614.13 – with a median (interquartile

range) of 86 (76.75 94)—were left for further analyses (p5 .051, Mann-

Whitney U-test).

In order to describe the event-related potential (ERP) waveforms,

Supporting Information Figure S1 has been include in the Supplemen-

tary material. ERPs in the midline electrodes are shown in Supporting

Information Figure S1A. Supporting Information Figure S1B shows the

channel grand average waveforms. Finally, Supporting Information Fig-

ure S1C depicts scalps maps with the P300 peak amplitude for both

groups.

2.4.2 | EEG brain graphs

The functional brain network was characterized using EEG graphs.

Electrodes were used to represent network nodes, whereas network

edges were set by computing the neural coupling between pairs of

electrodes. Specifically, neural coupling was established using the

phase-locking value (PLV) across successive trials (Lachaux, Rodriguez,

Martinerie, & Varela, 1999). PLV in sensible to small oscillations of the

EEG (Spencer et al., 2003) and takes into account nonlinearities (van

Diessen et al., 2015), which is an intrinsic feature of EEG recordings.

PLV can be computed using different approaches. In this study, the

continuous wavelet transform (CWT) was used to extract the phase

information from each trial (Bob, Palus, Susta, & Glaslova, 2008). Edge

effects in CWT were considered by computing the cone of influence

(COI) for prestimulus and response time windows. Only wavelet coeffi-

cients inside the respective COI were considered for the analyses to

avoid edge effects. We refer to our previous studies (Gomez-Pilar

et al., 2018) for detailed explanations about how wavelet coefficient

were computed, the wavelet parameters were configured and the COIs

were applied to the CWT decomposition in order to minimize edge

effects. After using CWT approach to perform filtering and phase

extraction in one operation (Bob et al., 2008), the PLV between two

signals x(t) and y(t) can be obtained evaluating the variability of the

phase difference across successive trials:

PLVxy k; sð Þ5 1
Nt

j
XN

n51

eDuxy k;s;nð Þj; (1)

where Nt is the number of trials, Duxy is the instantaneous phase dif-

ference between x and y signals, k is the time interval, and s the scal-

ing factor of the mother wavelet (see Bachiller et al., 2015a,b for

details).

Thus, functional connectivity matrices based on PLV ranged

between 0 and 1, where a value of 1 is obtained with completely

synchronized signals and a value of 0 implies an absence of synchroni-

zation. Following the same methodology as in the structural data, func-

tional connectivity matrices were not thresholded.

2.4.3 | Segmentation of the EEG response

In order to assess the task-related modulation of the graph parameters

along the odd-ball task, two-time windows were considered for com-

parison. On the one hand, the prestimulus window (i.e., a period of

expectation before the stimulus onset) ranges from 2300 ms to the

stimulus onset. On the other hand, the response window was selected

to capture the P3b response. In order to take into account, the inter-

individual variability of the P3b response, the response window was

adaptively set for each participant. First, the event-related wave was

computed for each subject by the synchronized averaging of all the tri-

als corresponding to attended target tones. Second, a low-pass finite

impulse response filter with cut-off frequency of 8 Hz was applied to

the evoked wave in order to obtain only the components related to

delta and theta frequency bands. It is noteworthy that this filter was

only applied to estimate the time window related to the EEG response.

Thirdly, the maximum amplitude of the low-pass filtered evoked wave

in the Pz channel was located into a window ranging from 250 to 550

ms from the stimulus onset (Bachiller et al., 2015b). The corresponding

sample to the maximum amplitude was used as a central time sample

of the response window. Finally, the response window was set on

6150 ms around the central time sample.

2.5 | Graph-theory parameters

From both the structural and functional connectivity matrices, we cal-

culated three graph-theory parameters to characterize global properties

of the brain network: (a) connectivity strength (i.e., mean network

degree) by means of network density (D), also named network strength

(b) network segregation using CLC, and (c) network integration by

means of PL (Rubinov & Sporns, 2010). For the sake of comparability

and to obtain results independent of network size and network

strength, CLC and PL were computed over an ensemble of 50
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surrogate random networks, which were used to normalize CLC and PL

values obtained from the original networks (Stam et al., 2009).

Therefore, normalized CLC and PL can be defined:

CLC5
C

Crandom
; (2)

PL5
L

Lrandom
; (3)

where C and L can be defined as follows:

C5
1
N

XN

i51

P
i 6¼j

P
i 6¼ l

j 6¼ l

wijwilwjl

P
i6¼j

P
i 6¼ l

j 6¼ l

wijwil
; (4)

L5
N N21ð Þ

PN
i51

PN
j 6¼i

1
Lij

; (5)

In Equation 4, wij can be referred to PLV between nodes i and j

(for functional analyses) or the structural connectivity between two

regions using the streamlines from MRI. N is the total number of nodes

of the network (29 in EEG analyses, 84 in MRI). Finally, Lij is defined as

the inverse of the edge weight (Stam et al., 2009).

With regard to the EEG functional network, parameters were com-

puted into two frequency ranges. They were selected based on their

relevance for the task-related modulation of the EEG during P300 tasks

shown in schizophrenia in previous studies: the global band (from 1 to

70 Hz) (Gomez-Pilar et al., 2017) and the theta band (from 4 to 8 Hz)

(Bachiller et al., 2014; Doege et al., 2009). A diminished task-related

modulation of theta activity during an oddball task was found in schizo-

phrenia, but not in faster frequency bands (Bachiller et al., 2014). In

addition, the assessment of the theta band showed abnormalities in

the brain network reconfiguration in the secondary functional path-

ways in schizophrenia (Gomez-Pilar et al., 2018). On the other hand,

the global band could be also useful to assess the specificity of the

theta band.

Functional network parameters during prestimulus and its corre-

sponding task-related modulation (i.e., difference between the

response and the prestimulus windows) were used for statistics.

Structural connectivity network parameters will be referred to as

dMRI-PL, dMRI-D, and dMRI-CC, and functional network parameters

as EEG-PL, EEG-D, and EEG-CLC.

2.6 | Statistics

We compared socio-demographic data (age, sex, education years, and

parental education) between patients and controls (t or v2 tests when

appropriate). Each subgroup of patients (i.e., those with only EEG and

those with EEG plus dMRI data) was compared with the corresponding

controls.

2.6.1 | Comparisons of graph-theory parameters

After testing normality and homoscedasticity of data distribution using

Kolmogorov-Smirnov and Levene tests, we compared functional (EEG-

based) and structural (dMRI-based) graph-theory parameters between

patients and controls using Student’s t-tests. Within-group changes in

functional network parameters were assessed using t-tests for related

samples. After Bonferroni adjustment, p level was set to .05/155 .003.

For the sake of interpretability, we studied the relationship

between structural connectivity parameters (dMRI-PL, dMRI-D, and

dMRI-CLC) and the average FA values in identifiable relevant white

matter tracts. With this analysis, it could be easier to interpret the

results of graph-theory data in terms of integrity of white matter tracts.

To do this, we used the methodology employed in a previous study

(Molina et al., 2017), in which FA was assessed in tracts connecting

prefrontal cortex (PFC) with other relevant regions. Correlation coeffi-

cients between structural connectivity network parameters and FA val-

ues in these tracts were computed, with Bonferroni adjustment with p

set to .001.

When statistically significant differences in network parameters

were found between patients and controls, we compared the corre-

sponding values between FE and stable chronic patients using Mann-

Whitney U-tests for independent samples, to discard a major effect of

chronicity in those differences.

2.6.2 | Association between structural and functional

networks

The main hypothesis of the study was that the structural connectivity

of the brain network would determine the prestimulus functional net-

work properties and/or its task-related modulation. This was studied

using stepwise multivariate regression models. Since significant correla-

tions between different structural variables were found, to avoid colli-

nearity effects we performed principal component analyses (PCAs)

separately with structural (dMRI) and functional (EEG) variables for

global and theta bands. This allowed a priori reducing the number of

comparisons for further analyses, thus reducing the Type I errors risk.

Individual structural and functional network factor scores were intro-

duced respectively as independent and dependent variables in the

regression model aimed to predict functional properties from structural

network data.

2.6.3 | Clinical and cognitive correlates

Next, we studied the cognitive and clinical correlates of graph-theory

parameters for the patients using stepwise multivariate regression

models (for structural and functional data). To calculate a global score

summarizing cognition, individual cognitive scores were introduced in a

PCA. The resulting individual scores were saved and introduced as

dependent variables in the model. Possible associations between

graph-theory parameters and symptoms were similarly assessed.

To discard major confounders, correlation coefficients were calcu-

lated between graph-theory parameters and both illness duration and

current treatment doses.

3 | RESULTS

There were no statistically significant differences between patients and

controls in age and sex distribution in the whole sample, nor between

6 | GOMEZ-PILAR ET AL.



patients and controls with dMRI data. Patients had fewer study years

and a generalized cognitive deficit (Table 1).

3.1 | Comparison of graph-theory parameters

3.1.1 | Structural parameters

Patients showed statistically significant longer mean dMRI-PL values

than controls (t52.20, df558, unadjusted p5 .03; Figure 3).

Values of dMRI-PL were inversely associated to FA values in rele-

vant tracts linking PFC with anterior cingulate, superior temporal, insu-

lar and superior parietal cortices and hippocampus and caudate.

Moreover, dMRI-CLC and dMRI-D values were directly associated to

FA values in these tracts (see Section 3.2.3).

3.1.2 | Functional parameters

Both EEG-PL and EEG-CLC in the global band and EEG-D in the theta

band showed a significant increase from prestimulus to response within

patients and control groups, which remained significant only in the con-

trols after Bonferroni adjustment (Table 2). Controls, but not patients,

showed a significant increase in EEG-CLC and EEG-PL values in the

theta band from prestimulus to response (Table 2). Therefore, a

significant positive task-related modulation of EEG-CLC and EEG-PL

values was found in this band only in controls.

In the global band, prestimulus window EEG-D was significantly

higher for patients (t52.52, df5115, unadjusted p5 .03; Figure 3;

Table 2), without significant differences in the corresponding task-

related modulation.

In the theta band, prestimulus EEG-D was higher (t52.637,

df5115, p5 .010), and EEG-PL task-related modulation was

lower (t522.128, df5115, p5 .035) for patients (Figure 3;

Table 2)

Between-group differences in functional and structural graph-

theory parameters had medium effect sizes (Cohen’s d; Table 2),

although these differences would not survive after Bonferroni

adjustment.

3.1.3 | Comparison between FE and chronic patients

As compared with the FE subgroup, we found larger structural PL

in the chronic patients, while no differences were obtained

between patient subgroups in global and theta band prestimulus

density nor in theta band modulation (Supporting Information

Table S3).

FIGURE 3 Error bars corresponding to the graph-theory parameters with statistically significant differences between patients and controls
(from left to right, structural PL, functional prestimulus D at the global and at the theta bands, and functional PL task-related modulation at
the theta band). Circles represent the mean value, while bars indicate the interval of confidence (95%)
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3.2 | Association between structural and functional

networks

3.2.1 | Correlations among graph-theory parameters: PCA

Correlations were high among graph-theory parameters based on

structural (dMRI-CLC vs. dMRI-D r5 .802, p< .001; dMRI-CLC vs.

dMRI-PL r5–.515, p< .001) and functional data in the global (EEG-

CLC vs. EEG-PL r5 .791, EEG-CLC vs. EEG-D r5 .512, p< .001) and in

the theta bands (EEG-CLC vs. EEG-PL r5 .919, p< .001; EEG-CLC vs.

EEG-D r5 .631, p< .001). Therefore, independent variables for the

regression models were calculated from PCAs. Eigenvalues higher than

the unit and scree-plots were used to select the number of factors, sav-

ing individual factor scores. PCA results are summarized in Supporting

Information Table S2.

The PCA for structural parameters yielded one factor explaining

73.07% of variance (eigenvalue 2.192), with positive coefficients for

dMRI-CLC and dMRI-D and negative for dMRI-PL. Factor scores were

statistically significant lower for patients (mean 20.235, SD 1.125) than

for controls (mean 0.294, SD 0.769; df554, t52.01, p5 .049).

PCA of EEG graph-theory parameters in the global band yielded a

three factors solution explaining 88.49% of variance, respectively con-

tributed by EEG-CLC, EEG-PL, and EEG-D task-related modulation

(42.40% variance, eigenvalue 2.544), prestimulus EEG-PL and EEG-CLC

(25.39% variance, eigenvalue 1.52) and both prestimulus and task-

related modulation of EEG-D (20.70% variance, eigenvalue 1.242).

Scores for the third factor were significantly larger for patients (mean

0.300, SD 1.138) than for controls (mean 20.134, SD 0.893, t52.26,

df5115, p5 .026).

In the theta band, a two-factor solution was found. The first was

positively related to task-related modulation of EEG-CLC, EEG-PL and

EEG-D (53.07% variance, eigenvalue 3.18), whereas the second factor

was positively related to prestimulus EEG-CLC, EEG-PL, and EEG-D

(23.55% variance, eigenvalue 1.41). Scores for the first factor were

smaller at trend level for patients (mean 20.294, SD 0.759) than for

controls (mean 0.119, SD 1.090, t521.86, df5115, p5 .065).

3.2.2 | Prediction of functional scores based on structural

scores

For the healthy controls, structural factor scores predicted functional

global band prestimulus (EEG-PL and EEG-CLC) scores (R250.222,

df51,24, F56.86, b520.472, p5 .015). This relation was not signifi-

cant for patients (R25 .008, df51,29, F50.23, b520.090, p5 .606).

In the patients, structural factor scores inversely predicted values

of the first factor in the global band (task-related modulation of EEG-

PL and EEG-CLC) (R25 .172, df51,29, F56.03, b520.415, p5 .02;

Figure 4a). Therefore, in the patients, larger dMRI-CLC and dMRI-D

values were associated to smaller task-related modulation of EEG-PL

and EEG-CLC. Since dMRI-PL contributed negatively to the structural

factor, that negative association between structural and functional fac-

tors implies that shorter dMRI-PL will predict larger EEG-PL and EEG-

CLC task-related modulation.

In the patients structural factor scores did not predict functional
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related modulation in the theta band (R250.001, df51,29, F50.006,

b50.015, p5 .93), prestimulus EEG-D in the global band (R250.024,

df51,29, F5 .075, b520.15, p5 .42) and prestimulus (EEG-CLC,

EEG-PL, and EEG-D) in the theta band (R250.008, df51,29,

F50.244, b50.091, p5 .34).

For the sake of interpretability, we calculated Pearson�s correlations

between individual d-MRI and EEG graph parameters. dMRI-CLC was

negatively associated in the patients to task-related modulation of

EEG-PL (r5–.383, p5 .03) and EEG-PL (r5–.495, p 5.005) in the

global band. There were no significant correlations between task-

related modulation in theta band parameters and individual dMRI-

based graph parameters (–.28> r> .166).

3.2.3 | Structural networks and specific tracts

Structural PL was inversely associated to FA (n555) in the tracts link-

ing homolaterally dorsolateral PFC with right cingulate (r5–.299,

p5 .028), left cingulate (r5–.357, p5 .008), right hippocampus

(r5–.499, p< .001), left caudate (r5–.446, p5 .001), left parietal

(r5–.394, p5 .003), left superior temporal (r5–.359, p5 .007), right

superior temporal (r5-0.478, p<0.001), left insula (r5–.322, p5 .016)

and right insula (r5–.359, p5 .007). No positive correlations were

found between structural PL and FA values.

Structural CLC was directly related to FA in the tracts linking

homolaterally dorsolateral PFC with right hippocampus (r5 .508,

p< .001), left parietal (r5 .392, p5 .003) and right parietal (r5 .273,

p5 .044). Similarly, structural density was directly related to FA in the

tracts linking homolaterally dorsolateral PFC with left hippocampus

(r5 .328, p5 .016), right hippocampus (r5 .404, p5 .002), left thala-

mus (r5 .337, p5 .013), left caudate (r5 .268, p5 .050), left parietal

(r5 .542, p< .001), right parietal (r5 .435, p5 .001), left superior tem-

poral (r5 .331, p5 .014), right superior temporal (r5 .475, p< .001),

left insula (r50.316, p50.019) and right insula (r5 .424, p5 .001).

FIGURE 4 Scatterplots showing the association between (a) factor scores resulting from the PCA of structural graph-theory parameters (X axis)
and scores of the second factor resulting from the PCA of functional graph-theory parameters in the global band (modulation; Y axis); (b) factor
scores for the first factor from the PCA of functional graph-theory parameters at the theta band (modulation) and factor scores from the PCA
summarizing cognitive scores; (c) positive PANSS scores and global band PL and CLC task-related modulation and (d) structural network (right)
Solid dots represent chronic patients, open dots represent FE patients [Color figure can be viewed at wileyonlinelibrary.com]
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Only associations at p� .001 were significant after Bonferroni

adjustment.

3.3 | Cognitive and clinical correlates

The factor analysis of cognitive scores yielded a single factor (eigen-

value 3.449), with positive coefficients for all but percent of persevera-

tive errors, explaining 54.11% of the total variance.

Scores of the first factor in the theta band (modulation) directly

predicted cognitive performance in the patients (R250.312, df51,28,

b50.558, F512.22, p5 .002; Figure 4b). Structural values were not

associated to cognition in patients.

Positive symptoms were inversely associated to structural network

factor scores (R250.329, df51,29, F513.21, b520.573, p5 .001;

Figure 4c), therefore positively associated to dMRI-CLC and dMRI-D

and inversely to dMRI-PL. The first factor in the global band (task-

related modulation of EEG-PL and EEG-CLC) positively predicted posi-

tive symptoms (R250.235, df51,35, F510.74, b521.274, p5 .002;

Figure 4d). To further clarify this point, we calculated the partial corre-

lation coefficients between positive symptoms and structural factor

scores controlling for global band task-related modulation (r5–.459,

p5 .006) and between positive symptoms and global band task-related

modulation controlling for structural network values (r5 .432, p5 .01),

supporting the independence of the associations.

3.4 | Confounding factors

Duration of illness was inversely associated to structural factor scores

(r5–.599, p5 .001). Thus, larger duration would imply smaller dMRI-

CLC and dMRI-D as well as longer dMRI-PL. Current antipsychotic

dose was not significantly related to structural (–.069< r< .148, p5 n.

s.) nor functional (–.040< r< .183, p5 n.s.) graph-theory parameters.

4 | DISCUSSION

Global band network characteristics a baseline in control and its task-

related modulation in patients were predicted by structural network

parameters. EEG-PL and EEG-CLC in the global band and EEG-D in the

theta band showed a significant task-related modulation only in con-

trols after adjustment for multiple comparisons. Although unadjusted,

patients showed larger dMRI-PL, higher prestimulus EEG-D at both

global and theta bands and reduced functional task-related modulation

of EEG-PL at the theta band, without any significant association

between these structural and functional alterations. In patients, struc-

tural connectivity and theta task-related modulation respectively pre-

dicted positive symptoms and cognition.

Network parameters have been calculated from scalp sensors in

this work. Therefore, the connectivity estimates are not derived from

true sources of the corresponding activity involved in task processing.

Volume conduction effects imply that signals from different sources

arrive to different sensors, hampering the estimation of the connectiv-

ity among the original activity sources (Brunner, Billinger, Seeber,

Mullen, & Makeig, 2016; Van de Steen et al., 2016). Our functional

estimates are therefore to be considered just a global outline of the

functional network characteristics and their modulation with cognitive

activity. However, this outline may contain useful information regard-

ing characteristics such as local clustering, mean PL and density of

functional connections. They can be relevant to understand differences

between patients and controls in terms of prestimulus network organi-

zation and their change with cognition. Source estimates using proce-

dures such as low-resolution tomography might allow identifying

activity sources from which PLV values could be calculated and among

which structural connectivity could be assessed. This approach would

be useful to describe effective connectivity relations among these sour-

ces, which can be of interest for the pathophysiology of psychosis.

Those procedures, however, are not completely reliable, and the

inverse solution problem remains unsolved. Therefore, the functional

global outline here describe can hold a significant value, in particular its

fast modulation with cognition; although only indirectly reflecting the

characteristics of the underlying sources.

We calculated structural connectivity parameters using FA values

from white matter tracts linking anatomical regions and functional con-

nectivity using phase similarity of EEG signals between sensors. Both

measurements summarized the same properties of the respective net-

works, and the prediction of global band prestimulus (controls) and

task-related modulation (patients) functional values from structural

scores supports the relation of both kinds of networks. Caution is nec-

essary when considering these relations, given the above mentioned

possible influence of volume conduction effects. Remarkably, abnor-

malities in structural and functional networks were unrelated in the

patients.

The lower factor scores in the patients for structural connectivity

(positively loaded for dMRI-CLC and dMRI-D and inversely related to

dMRI-PL), suggest a reduced integrity of white matter connectivity in

schizophrenia among nearby (reflected in lower CLC) and distant (lon-

ger PL) regions. The larger dMRI-PL in our patients is coherent with

reports of reduction of global communication paths (Griffa et al., 2015;

van den Heuvel et al., 2013) and lower FA in schizophrenia, likely

reflecting alterations of long-range tracts (Ellison-Wright & Bullmore,

2009; Patel et al., 2011).

To our notice, no previous study has explored the structural under-

pinnings of alterations of fast task-related modulation in functional net-

works in schizophrenia. Odd-ball task performance involves the

coordination of different brain regions (Linden et al., 1999). For both

groups, EEG-PL and EEG-CLC in the global band increased from presti-

mulus to response windows, which imply that widespread local task-

related activations elongate mean EEG-PL and increase EEG-CLC. In

our cases, factor scores summarizing structural network (positively

associated to dMRI-CLC and dMRI-D, and negatively to dMRI-PL)

inversely predicted EEG-PL and EEG-CLC task-related modulation in

the global band in patients. Thus, patients with smaller dMRI-CLC and

dMRI-D, and larger dMRI-PL, would show a smaller global band EEG-

CLC and EEG-PL modulation. However, as compared with controls,

patients did not show a deficit of functional EEG-PL task-related modu-

lation in the global band, raising doubts about the significance for
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schizophrenia of that association between structural connectivity and

global band modulation.

Instead, we found task-related modulation deficits in patients in

the theta band. However, modulation in the global band was not

decreased in patients, which may relate to the relatively larger involve-

ment of theta oscillations in P300 performance as shown by relative

power and median frequency analysis during this task (Bachiller et al.,

2014). Using different methodologies, smaller increases of theta power

have been found for schizophrenia patients during P300 tasks (Bachil-

ler et al., 2014; Doege et al., 2009). Taken together, this suggests a

higher impact on theta than global band connectivity in schizophrenia.

Since theta oscillations have a role in synchronization between distant

regions (von Stein, Chiang, & Konig, 2000), the task-related modulation

deficit in theta suggests a decreased capacity for integrating activity

across cortical regions in schizophrenia, which would be not closely

associated to anatomical connectivity deficits according to our results.

Such relative independence of structural and functional connectiv-

ity alterations surprised us, but could be explained by data showing

that functional connectivity exists between regions without direct ana-

tomical connection (Adachi et al., 2012; Honey et al., 2009). Thus, defi-

cits of functional integration (in the theta band) would not require

altered structural substrates. Coordination of activity between distant

regions may be established indirectly, since functional connectivity is

high among regions with common efferences to third regions, which

may convey information to higher regions and may also receive similar

afferences (Adachi et al., 2012). Therefore, the alteration in relevant

cortical hubs reported in schizophrenia (van den Heuvel et al., 2013)

may hamper the synchronization of regions not directly linked via with

matter tracts. Although other data using anatomical and functional MRI

show a substantial correspondence between the corresponding net-

works (Hagmann et al., 2008), this relation had not been assessed yet

with EEG data. Considering all this, we must underline that structural

deficits were found in our patients (larger dMRI-PL and lower factor

scores) and were predictive of positive symptoms. This suggests the

coexistence of alterations in both structural and functional networks (in

the theta band) within schizophrenia, but not necessarily in the same

cases. In other words, either both unrelated functional and structural

networks alterations are found in schizophrenia or they are characteris-

tics of different schizophrenia subgroups. The latter possibility seems

favored by recent reports supporting that structural connectivity values

can segregate biologically valid clusters within schizophrenia (Lubeiro

et al., 2016; Sun et al., 2015; Wheeler et al., 2015). Using EEG, both no

difference (Jhung et al., 2013; Rubinov et al., 2009) and a decrease

(Micheloyannis et al., 2006) of CLC at rest were reported in schizophre-

nia, which may be coherent with that possibility.

Remarkably, prestimulus EEG-D is higher in the patients. The den-

sity is the mean network degree (i.e., a measure of the network

strength), implying a functional over-connectivity at rest in schizophre-

nia. This result is in agreement with the increased prefrontal functional

connectivity reported in schizophrenia (Anticevic et al., 2015). The dif-

ferent patterns of dMRI-D and EEG-D in patients, and the lack of a sig-

nificant relation between them, support the independence of the

alterations in both networks. Speculatively, the increased EEG-D might

relate to the deficit in GABA function observed in schizophrenia (Gon-

zalez-Burgos, Fish, & Lewis, 2011; Thakkar et al., 2017), which could

lead to hyper-synchronization. In our study, functional connectivity is

based on PLV values; thus, larger prestimulus theta EEG-D values sug-

gest and excess of synchronization in the patients in this band,

which could have a ceiling effect on task-related synchronization and

might hamper theta EEG-D modulation. Therefore, an inhibitory trans-

mission deficit could justify both the increased baseline D values and

the lower modulation in the theta band, given its large implication in

P300 task performance (Bachiller et al., 2014; Doege et al., 2009). This

possible dependence on inhibitory function might also justify the

lack of a significant prediction of theta modulation by structural

connectivity.

The increase in theta task-related modulation values (i.e., larger

functional density, CLC and PL in this band) predicted better cognition

in the patients. There was only one cognitive factor, which is not sur-

prising since the assessment instrument (BACS) included the dimen-

sions where performance was previously found decreased in

schizophrenia. That predictive relationship suggests that cognitive defi-

cit is secondary to the decreased capacity of modulating the functional

network in the theta band, perhaps indicating a lesser capacity to inte-

grate the activity of different areas in a task.

Our study is limited by the sample size of patients with both struc-

tural and functional network data available. A larger sample would be

needed to test the hypothesis of distinct schizophrenia clusters based

on structural connectivity. In addition, the assessment of nodal parame-

ters could be of interest. However, connectivity analysis at the sensor

level is very problematic due to effects of field spread (Schoffelen &

Gross, 2009). Therefore, future studies should also be focused on

increasing the number of EEG electrodes to provide more accurate

results. Moreover, we cannot rule out an effect of treatment, although

antipsychotic doses were unrelated to structural and functional graph

parameters. It must be also noted that all EEG measures are influenced

by volume conduction. In order to minimize this effect, a well-known

strategy is based on the assumption that volume conduction

affects the connectivity estimates in a similar way in two different

experimental contrasts, such as prestimulus and response conditions

(Bastos & Schoffelen, 2016). With regard to the use of dMRI-based

connectivity, the accuracy of the cortical segmentation and the choice

of the tractography method influence the obtained connectivity matri-

ces. Although FA is the most usual dMRI descriptor for white matter

integrity, it cannot identify the ultimate origin of connectivity

alterations.

We may conclude that task-related modulation deficit in the

theta band in schizophrenia is independent from deviation from

normal structural network properties. This, considered together with

the different correlates of functional and structural connectivity altera-

tions, might support different clusters within the schizophrenia

syndrome.
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