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1Departamento de Fı́sica Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton,
New Jersey 08544-5263, USA
3Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
4School of Engineering and Applied Science, Princeton University, Princeton,
New Jersey 08544-5263, USA

(Received 19 May 2018; accepted 19 July 2018; published online 6 September 2018)

The appearance of a second excitation mode in the longitudinal and transverse collective dynamics
of a series of liquid metals has been observed recently, either by inelastic X-ray scattering (IXS) or
by first-principles molecular dynamics (FPMD). The phenomenon’s origin is still uncertain, although
some theories have been used with relative success to reproduce the FPMD results as a means to
find an explanation for it (e.g., mode-coupling (MC) theory in liquid zinc [B. G. del Rio and L. E.
González, Phys. Rev. B 95, 224201 (2017)]). For liquid tin (l-Sn), the second excitation mode in the
dynamic structure factor and longitudinal current spectrum was observed by IXS [S. Hosokawa et al.,
J. Phys.: Condens. Matter 25, 112101 (2013)]. By performing orbital-free density functional theory
MD simulations of l-Sn, we confirm the existence of a second excitation mode in the longitudinal and
transverse collective dynamics and provide a theoretical explanation based on MC theory. Moreover,
we introduce a new binary term in MC theory to better capture the negative minima present in the
memory functions of the collective dynamics. These results confirm that the origin of the second
excitation mode exhibited by the longitudinal and transverse collective dynamics in some liquid
metals involves an indirect coupling of the longitudinal and transverse modes. Published by AIP
Publishing. https://doi.org/10.1063/1.5040697

I. INTRODUCTION

One of the main research areas in liquid theory is the
collective-dynamics behavior of non-simple liquid metals.
Two different limits of such behavior are well understood:
the hydrodynamic regime and free-particle regime.1,2 In the
hydrodynamic regime [wave vectors (q)→ 0, time (t)→ ∞],
the liquid behaves like a continuum and is characterized by
the macroscopic conservation laws of mass, momentum, and
energy. As a result, the main mechanisms governing longitu-
dinal dynamics behavior are thermal relaxation and the propa-
gation of collective waves, also known as propagating modes.
However, the propagation of collective waves does not occur
for transverse dynamics; they instead decay in time due to the
presence of shear viscosity. By contrast, in the free particle
regime (q → ∞, t → 0), both the longitudinal and transverse
dynamics are dominated by the thermal velocity of the parti-
cles, and the propagation of collective waves is not supported
in either direction.

Intermediate between the hydrodynamic and free-
particle regimes is the kinetic regime, which is the
least understood and therefore has attracted most of the
recent research in liquid metals.3–9 The kinetic regime is

a)Author to whom correspondence should be addressed: eac@princeton.edu

controlled by additional mechanisms that increase the com-
plexity of both the longitudinal and transverse dynamics. For
example, viscoelasticity appears in the transverse dynamics,
causing the propagation of shear waves, while it leads to
the phenomenon of “positive dispersion” in the longitudi-
nal dynamics, which increases the phase velocity at small
wave vectors with respect to the hydrodynamic speed of
sound.10

Many theoretical models have been developed or extended
from the hydrodynamic regime to the kinetic regime, in order
to provide insight into the governing mechanisms underlying
the complex collective dynamics of non-simple liquid metals.
For example, the generalized hydrodynamic model extends
the hydrodynamic regime model by allowing the variables to
depend on the wave vector.11 Mode-coupling (MC) theories,
originally developed to study the relaxation behavior of the
liquid-glass transition, also have been modified to consider
liquid metals.12

Third-generation synchrotron facilities, along with the
ability to energetically discriminate X-rays with high res-
olution, have made inelastic X-ray scattering (IXS) a reli-
able method to study collective dynamics in disordered sys-
tems.13–16 Experiments have uncovered complex collective-
dynamics behavior as a result. One such complex behavior
observed in IXS experiments is the appearance of a sec-
ond mode in the longitudinal collective dynamics in several
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non-simple liquid metals. The first experiments demonstrating
the existence of this second mode at small frequencies were
carried out by Hosokawa et al.17 on liquid gallium (l-Ga).
Since then, measurements on other liquid metals, such as tin
(Sn), iron (Fe), zinc (Zn), and copper (Cu),18,19 exhibited this
feature, as well. In all of these experiments, only wave vectors
lower than half of the position of the main peak, qp, in the static
structure factor, S(q), were sampled. Hosokawa et al. related
the appearance of the second mode to a direct coupling of the
transverse collective dynamics with the longitudinal collective
dynamics.

Subsequent first-principles molecular dynamics (MD)
calculations performed on l-lithium (Li),20 l-Fe,21 and l-
sodium (Na)22 at high pressures also revealed the existence of
a second mode in the transverse dynamics. This second mode
was visible in the wave-vector region around qp at frequen-
cies higher than the main transverse mode and was thought to
be unique to high-pressure dynamics. However, recent sim-
ulations observed the presence of this second mode in the
transverse dynamics of l-Ni23 and l-Zn,24 both at zero pressure.
All of these results point to a complex feature for which a full
understanding is lacking. For example, Kohn-Sham density
functional theory molecular dynamics (KSDFT-MD) simula-
tions by Bryk et al.20 of l-Li at 1000 K and pressures ranging
from 1 atm up to 186 GPa found a second mode in both the
longitudinal and transverse dynamics emerged at 125 GPa
and became more pronounced as pressure increased. Bryk
et al. applied a thermo-viscoelastic model to the longitudinal
dynamics and an extended viscoelastic model to the transverse
dynamics; both are five-variable-based models, although each
of them used different dynamical variables. Bryk et al. were
able to explain the appearance of this second mode in both
the longitudinal and the transverse dynamics using these mod-
els. However, the models failed to provide an explanation for
possible cross-correlations between the longitudinal and trans-
verse modes. Employing a different theoretical formalism, two
of us recently applied MC theory to study l-Zn at 0 GPa with
KSDFT-MD.24 The MC approach also reproduces the sec-
ond mode in both the longitudinal and transverse dynamics;
however, we attributed the existence of the second mode to
a coupling between the longitudinal and transverse collective
dynamics. In addition, we related the frequency of the sec-
ond mode in the transverse dynamics to the frequencies of the
longitudinal dynamics.

In the present work, we provide a theoretical explana-
tion for the existence of and connection between modes in
the collective dynamics of l-Sn. Notably, the atomic struc-
ture of l-Sn differs greatly from l-Zn: l-Sn is an open system
where most atoms have four nearest neighbors, whereas l-Zn
is closest-packed where atoms are surrounded by 12 nearest
neighbors. By comparing the dynamics of l-Sn to those of l-Zn,
we test further the hypothesis that MC is responsible for the
second mode in the collective dynamics. A previous KSDFT-
MD simulation of 205 atoms of l-Sn by Calderı́n et al.6 did not
observe a second mode in the collective dynamics, although
other calculated properties compared well with experiment. A
plausible reason could be the need to model a larger number of
atoms to correctly represent this phenomenon in l-Sn. There-
fore, in this study, we performed orbital-free density functional

theory molecular dynamics (OFDFT-MD)25–28 simulations,
which enable investigation of systems containing thousands of
atoms and facilitate a detailed study of the collective dynamics
with high accuracy due to much better statistics. The OFDFT-
MD simulations were conducted at 0 GPa and 573 K, near the
melting point. We observe a second mode in the longitudinal
collective dynamics from the simulation results, at either lower
or higher frequencies than the main mode. Moreover, a high-
frequency second mode in the transverse collective dynamics
also appears. To provide theoretical insight into these fea-
tures, we use the same theoretical approach applied in our
previous study of l-Zn,24 based on MC theory.2,29–32 Over-
all, the theory correctly reproduces both the longitudinal and
transverse collective dynamics of l-Sn. MC also explains the
appearance of this second mode as a consequence of indirect
coupling between the longitudinal and transverse collective
dynamics.

The layout of the paper is as follows. In Sec. II, we describe
the details of the OFDFT-MD simulations of l-Sn and give
the theoretical expressions and formulations used to evaluate
physical properties. In Sec. III, we first compare the accu-
racy of our simulation results with previous computational
and experimental data. We next evaluate the collective dynam-
ics of l-Sn directly from OFDFT-MD and identify the second
mode present in both the longitudinal and transverse collective
dynamics. We then provide an explanation for the appearance
and behavior of the second mode in the collective dynam-
ics by using different formulations of MC theory. Finally, an
assessment of the overall success of MC theory, along with
guidelines for future theoretical improvements, is presented in
Sec. IV.

II. METHODOLOGY
A. Computational details

The total energy of N classical ions each with charge Z,

located at positions
⇀

Ri in a volume V and interacting with
Ne = NZ valence electrons, may be written within the Born-
Oppenheimer approximation as the sum of the ion kinetic
energy, the direct Coulomb interaction energy between the
ions, and the ground-state energy of the electrons in the
presence of the ions. The last term can be evaluated accu-
rately within DFT. In general, the orbital-based KSDFT33

can be used to perform calculations for up to hundreds of
atoms. However, with a computational cost increasing cubi-
cally with the system size for conventional implementations,
KSDFT is an expensive tool for systems with thousands
of atoms. A better choice for these large systems is the
density-based OFDFT,25–28 which easily treats thousands of
atoms due to its quasi-linear scaling, O(N log N). However,
state-of-the-art implementations of OFDFT tend to fail for
systems with strongly varying electron densities, and addi-
tional efforts therefore are required to validate its accuracy
first.

The OFDFT energy functional is expressed as

E[n(
⇀
r )] = Ts[n(

⇀
r )] + Eext[n(

⇀
r )] + EH[n(

⇀
r )] + Exc[n(

⇀
r )], (1)



094504-3 del Rio et al. J. Chem. Phys. 149, 094504 (2018)

where Ts represents the kinetic energy of a non-interacting

electronic system with electron density n(
⇀
r ),26 Eext typically is

the electron-ion interaction energy due to the potential created
by the ions,

Eext[n(
⇀
r )] =

∫
n(

⇀
r )Vext(

⇀
r )d

⇀
r . (2)

EH is the Hartree term due to the electrostatic repulsion
between the electrons,

EH[n(
⇀
r )] =

1
2

∫ ∫
n(

⇀
r )n(

⇀
s )

|
⇀
r −

⇀
s |

d
⇀
r d

⇀
s , (3)

and Exc is the electron exchange-correlation (XC) energy.
In our simulations, the Eext term is modelled using a

local pseudopotential (LPS), which represents the effect of
the screened ion (nucleus plus core electrons) on the valence

electron density, n(
⇀
r ). Here, the bulk-derived local pseu-

dopotential (BLPS) algorithm was used to construct it.34,35

This method emphasizes reproducing the crystalline proper-
ties obtained from KSDFT results and does not guarantee a
correct representation of the liquid state. Although l-Li was
studied with OFDFT using a BLPS, providing an accurate
melting point and diffusion coefficients,36 such calculations
on l-Sn using a BLPS were found to be insufficiently accurate
(see Sec. S1 of the supplementary material). These shortcom-
ings arising from the BLPS can be overcome by a recently
developed force-matching (FM) method.9 The main idea of
the FM method is to add functional flexibility to a cho-
sen LPS so as to minimize the differences between KSDFT
and OFDFT forces on atoms in a given liquid configuration.
Details of the BLPS algorithm, KSDFT benchmark calcu-
lations, BLPS construction, and final LPS obtained through
the FM method are provided in Sec. S1 of the supplementary
material.

Periodic OFDFT calculations were performed with the
PROFESS (PRinceton Orbital-Free Electronic Structure Soft-
ware) code developed by the Carter group.37–39 We found a rea-
sonable performance of the LPS for a variety of physical prop-
erties of l-Sn when paired with the Smargiassi-Madden (SM)
kinetic energy density functional (KEDF)40 and the local den-
sity approximation (LDA) XC functional,41 as parametrized
by Perdew and Zunger (vide infra and Sec. S2 of the sup-
plementary material).42 The kinetic energy cutoff was set to
1200 eV to ensure that the accuracy of the total energy is
converged to within 1.0 meV/atom. The atomic densities of
l-Sn at different temperatures were obtained by performing
MD simulations with the isothermal-isobaric (NPT) ensem-
ble and the Parrinello-Rahman barostat43 on systems of 512
atoms for a total time of 30 ps with a time step of 0.5 fs.
A thermostat mass of 5 × 104 a.u. was used along with a
barostat mass of 109 a.u. in order to minimize the oscilla-
tions and drift in the temperature and pressure of the system.
Once the atomic densities were determined (Table S.I in the
supplementary material), we studied l-Sn at each tempera-
ture by first thermalizing a system of 1000 atoms for a total
of 6 ps, using a time step of 4 fs within the NVT ensemble
with a Nosé-Hoover thermostat mass of 105 a.u.44,45 After the
systems reached the energy equilibrium, we performed NVE

simulations at each temperature using 1000 atoms with a time
step of 4 fs (sufficiently short to conserve energy) for a total
time of 80 ps to gather final statistics for the properties reported
herein.

B. Liquid metal theory

One basic dynamical variable used to characterize the
thermal movement of atoms in a liquid is the q-dependent

atomic density defined as ρ(
⇀
q, t) =

∑N
i=1 exp(−i

⇀
q ·

⇀
r i(t)),

where
⇀
r i(t) is the position of the i-th atom at time t.1,2

The intermediate scattering function F(q, t) is defined as the
time-autocorrelation function of this quantity,

F(q, t) =
1
N
〈ρ(

⇀
q, t + t0)ρ(−

⇀
q, t0)〉, (4)

where averages are taken over wave vectors and time origins.
Details on the time origins and the number of time steps used
in the correlations for every wave-vector region are given in
Sec. S3 of the supplementary material.

Some of the most interesting phenomena to study in
liquid-state dynamics are the existence of propagating modes
in the system. These propagating modes represent collective
density fluctuations traveling in a manner that is analogous
to a phonon in a solid. The Fourier Transform (FT) of F(q, t)
into the frequency domain yields the dynamic structure fac-
tor S(q,ω); a maximum in S(q,ω) at ω , 0 is proof of
the existence of propagating modes in the liquid. However,
these maxima are difficult to observe experimentally, and
their calculation from MD trajectories can also be challeng-
ing. In fact, there is not yet a theory for correctly describ-
ing the behavior of these modes outside the hydrodynamic
regime (q → 0). It therefore is impossible to know before-
hand whether or not a system can support these propagat-
ing modes and, if so, in which wavelength and frequency
range.

The scattered intensity obtained in an IXS experiment
is directly related to S(q,ω); however, a proper comparison
of the OFDFT-MD results and IXS data must account for
the difference between the simulations and actual phonon
scattering, as the former treats the ions classically while
the latter is a quantum process.46 Therefore, to properly
compare to the IXS measurements, the S(q,ω) obtained
from OFDFT-MD is corrected to fulfill the detailed balance
condition,3,47

SQ(q,ω) =
~βω

1 − e−~βω
S(q,ω), (5)

where β = 1
kBT with the Boltzmann constant kB and the tem-

perature T. Moreover, the experimental setup is characterized
by an energy resolution, which is accounted for in our sim-
ulation results through the convolution of SQ(q,ω) with the
experimental resolution function R(ω),

I(q,ω) = E(q)
∫

dω′SQ(q,ω′)R(ω − ω′), (6)

where E(q) is a normalization factor including the effect of
the scattering geometries and the experimental setup. In the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
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IXS experiments performed by Hosokawa et al.18 for l-Sn, the
experimental resolution factor takes the following form:

R(ω) =
c

π(ω2 + c2)
, (7)

with c = ∆E
2 , where ∆E = 2.28 ps−1 is the energy resolution in

the experiment. The normalization factor E(q) is introduced to
rescale the experimental data (reported in arbitrary units) for
the final comparison between the OFDFT-MD and IXS data.
The rescaling is chosen such that the height of the side peaks
in both cases is similar.

Another important dynamical variable is the atom veloc-
ity. The correlation function of the atom velocity, known as the
velocity autocorrelation function (VACF), Z(t), provides atom
diffusion information and is defined as

Z(t) =
〈
⇀
v i(t + t0) ·

⇀
v i(t0)〉

〈
⇀
v i(t0) ·

⇀
v i(t0)〉

, (8)

where
⇀
v i(t) is the velocity of the i-th atom. Z(t) is a measure

of the projection of the atom velocity at time t onto its initial
value at time t0, averaged over all initial values. In this study,
correlations were performed over sets of 500 time steps by tak-
ing time origins at each time step. The FT of Z(t) is the power
spectrum, Z(ω), providing information about the main char-
acteristic frequencies of the system, e.g., the main vibrational
modes or possible coupling between the atoms’ velocities and
currents, as defined next.

The collective motion of the atoms in a liquid metal is

studied via the atom current,
⇀

J (
⇀
r , t),

⇀

J (
⇀
r , t) =

∑N

i=1

⇀
v i(t)δ(

⇀
r −

⇀

Ri(t)), (9)

where
⇀
v i is the velocity of the i-th atom. By performing a FT

of
⇀

J (
⇀
r , t), we obtain

⇀

J (
⇀
q, t) =

∑N

j=1

⇀
v j(t)e

−i
⇀
q ·

⇀
R j(t), (10)

which can be split into the longitudinal and transverse compo-

nents of the wave vector
⇀
q,

⇀

J T(
⇀
q, t) and

⇀

J L(
⇀
q, t), respectively.

The longitudinal and transverse autocorrelation functions are
defined as the autocorrelation functions of the respective
components of the current,

CL(q, t) =
1
N
〈
⇀

J L(
⇀
q, t) ·

⇀

J L(−
⇀
q, 0)〉, (11)

CT(q, t) =
1

2N
〈
⇀

J T(
⇀
q, t) ·

⇀

J T(−
⇀
q, 0)〉. (12)

Details on the time origins and the number of time steps
used in the correlations for every wave-vector region are given
in Sec. S3 of the supplementary material. The longitudinal cur-
rent correlation function is directly related to the intermediate
scattering function via

CL(q, t) = −
1

q2

∂2F(q, t)

∂t2
. (13)

From this relation, it can be deduced that both correlation
functions, CL(q, t) and F(q, t), in essence contain the same
information.

The FTs of CL(q, t) and CT(q, t) into the frequency
domain are defined as CL(q,ω) and CT(q,ω), respectively.
Both CL(q,ω) and CT(q,ω) can exhibit propagating modes;
however, while CL(q,ω) supports propagating modes in the
hydrodynamic regime, CT(q,ω) does not. It is well estab-
lished that liquids, from a microscopic point of view, cannot
support shear waves as solids do.2 Accordingly, transverse cur-
rent fluctuations in the hydrodynamic regime decay through
diffusive modes. However, in the kinetic regime, where defor-
mations in the wavelength and frequencies at the micro-
scopic scale are considered, CT(q,ω) can exhibit maxima at
ω , 0.

C. Fitting model

Propagating modes in S(q,ω), CL(q,ω), and CT(q,ω) do
not always appear as peaks. Sometimes, these modes appear
as shoulders, making the study of the complete dispersion
relation a challenging process where it is necessary to fit the
functions to a model. When Hosokawa et al.17 first observed
the second propagating mode in CL(q, t), they fit both CL(q, t)
and CT(q, t) to a model composed of two Gaussians. How-
ever, this fitting model had at least two shortcomings: no
diffusive mode contribution was included and the expressions
violated the basic physical properties of the collective dynamic
functions.

We instead employ a fitting model previously introduced
in the study of l-Zn.24 This model is composed of a hyperbolic
secant for the diffusive term and a modified damped harmonic
oscillator (MDHO) for the propagating mode,

fdiff(t) = αsech(βt), (14)

fMDHO(t) = A

(
cos(Ωt)
cosh(γt)

+
γ

Ω

sin(Ωt)
sinh(γt)

)
. (15)

Within this model, both F(q, t) and CT(q, t) are directly fit-
ted to one diffusive term [Eq. (14)] and one or two MDHOs
[Eq. (15)]. Given the relationship between CL(q, t) and F(q, t)
[Eq. (13)], the longitudinal current correlation functions were
fitted to the second derivative of the model used for F(q, t).
Both F(q, t) and CL(q, t) were fitted jointly using the same val-
ues for all of the parameters. In contrast with Hosokawa et al.’s
model, this model complies with the conditions of exponen-
tial decay at long times and time-reversal symmetry, leading
to free-particle-like behavior for short times.

The dispersion relation for each mode is obtained from
the position in frequency of the maximum of each MDHO,
which we denote asΩL andΩT. The longitudinal mode natural
frequencies, ΩL, are given by the maxima in ω2S(q,ω). The
position in the frequency of the maximum of each mode from
MD will be represented by ωm for S(q,ω), ωL for CL(q,ω),
and ωT for CT(q,ω).

D. Mode coupling

The behavior of the memory functions (see the Appendix
for further details) of a given dynamical variable is ruled by

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
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several rates of decay, but only the slowest of them survives
for long times. The main idea behind MC is to consider this
long-lasting term as a coupling of the studied variable with
other slowly decaying variables, known as modes.2 Since the
1970s, different MC formalisms have been developed to study
the correlation functions of several variables and functions,
such as the particle velocity (i.e., VACF),48,49 particle density
(F(q, t)),50,51 and transverse current (CT(q, t)).48,49 The slowly
decaying modes considered in different theories include the
density, the time derivative of the density, and the longitudinal
and transverse currents.

MC has been applied successfully to the study of super-
cooled liquids and glasses, as well as dense gases and high
temperature liquids.12 However, applications of MC to liq-
uids near their melting point are still limited. MC formalisms
were modified subsequently to include the short-time behav-
ior of liquids.29,32,52 This behavior is governed mainly by
binary collisions, although it can also include couplings with
fast-decaying modes.

1. Single-particle dynamics

Pioneering work by Levesque and Verlet on dense
Lennard-Jones (LJ) fluids with classical MD simulations53

concluded that the memory function of the VACF, K(t), is
described well by the expression

K(t) = A · exp
(
−at2

)
+ Bt4 · exp(−bt), (16)

where the left and right terms represent the decaying at short
and long times, respectively.

Later work by Sjögren, Sjölander, and Wahnström,29,32,52

based on kinetic and MC theories, generalized Eq. (16) into a
binary collision term and an MC term. The coupling term was
modified to consider coupling with different density and cur-
rent modes, while the binary term maintained the expression of
a Gaussian function recovering the full value and decay at the
time origin of K(t). This decomposition by Sjögren, Sjölander,
and Wahnström stimulated applications of MC to liquids such
as other LJ fluids, alkalis, l-Pb, l-Sn, and l-Ge.29,31,52,54–63

However, although the formulation worked successfully for LJ
fluids and alkalis, it generally failed for non-simple fluids such
as l-Pb, l-Sn, and l-Ge. A different approach to obtain the decay
modes of Z(t) was developed by Gaskell and Miller,64,65 who
considered a “velocity field” of the system and analyzed how
it was influenced by both CL(q, t) and CT(q, t) using MC con-
cepts. Gaskell and Miller’s process led to an integral formula
for Z(t),

ZGM(t) =
1

24π3

∫
f(q)Fs(q, t)

[
CL(q, t) + 2CT(q, t)

]
, (17)

where f(q) is the FT of a normalized function describing the
localization of a typical particle, usually taken as the Wigner-
Seitz sphere, and Fs(q, t) is the self-intermediate scattering
function. The expression for f(q) is

f(q) =

(
3
ρ

)
j1(aq)

aq
, (18)

where (4/3)πa3 = 1/ρ and j1(x) is the first-order spherical
Bessel function. Fs(q, t) probes single-particle dynamics over

different length scales,

Fs(q, t) =
1
N

〈∑N

j=1
e−i

⇀
q
⇀
R j(t+t0)ei

⇀
q
⇀
R j(t0)

〉
. (19)

We therefore have applied Gaskell and Miller’s formu-
lation to evaluate the decay modes in Z(t). We evaluated the
correlations in Eq. (19) for sets of 1000 time steps, taking
origins every five time steps.

2. Collective dynamics

The only application of the MC formalism to collective
dynamics is based on the Sjögren-Sjölander formalism, where
the memory functions of the collective correlation functions
are decomposed into slow and fast terms.29–31 For the lon-
gitudinal (transverse) collective dynamics, the decomposition
occurs at the level of the second- (first-) order memory func-
tion of F(q, t) (CT(q, t)), namely, N(q, t) (MT(q, t)). The final
expressions for each term are

N(q, t) = Nf(q, t) + NMC(q, t), (20)

MT(q, t) = Mf
T(q, t) + MMC

T (q, t). (21)

As previously mentioned, there is no specific expression
for the binary terms. The only condition is that the short-time
characteristics of the memory functions (initial value and first
three derivatives) are accounted for. The expression commonly
used is a Gaussian ansatz,

Nf(q, t) = N(q, 0)exp


−

���N̈(q, 0)���t
2

2N(q, 0)


, (22)

where N̈ is the second time derivative of N. An equivalent
expression is used for Mf

T(q, t).
The expressions for the MC terms are2,24,30

NMC(q, t) =
ρkBT

8π2m

1
q

∫ ∞
0

dk
∫ |q+k|

|q−k|
dp · α(q, k, p)

· Fn(k, t)Fn(p, t)

[
1 −

F0(k, t)F0(p, t)
Fs(k, t)Fs(p, t)

]
, (23)

MMC
T (q, t) =

ρkBT

16π2m

1
q

∫ ∞
0

dk
∫ q+k

|q−k|
dp · γ(q, k, p)

· Fn(k, t)Fn(p, t)

[
1 −

F0(k, t)F0(p, t)
Fs(k, t)Fs(p, t)

]
, (24)

where m is the atomic mass and α and γ are the weight
functions,

α(q, k, p) = k · p · S(k)S(p) ·

[
q2 + p2 − k2

2q

(
S(k) − 1

S(k)

)
+

q2 + k2 − p2

2q

(
S(p) − 1

S(p)

)]2

, (25)

γ(q, k, p) = −
k · p ·

[
S(k) − S(p)

]2

S(p)S(q)

·
(q − k − p)(q − k + p)(q + k − p)(q + k + p)

4q2
.

(26)
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Here, k, q, and p denote the wave vectors; S(k) is the static
structure factor; and Fn and F0 are the normalized intermediate
scattering function and the binary part of the self-intermediate
scattering function, respectively. F0 is approximated by the
free-particle expression

F0(q, t) ≡ exp

(
−

1
2mβ

q2t2
)
. (27)

More details on the formalism can be found in Refs. 2 and 24.
Note that the short time behavior of the MC integrals starts
as t4 and consequently the initial value and curvature of the
memory functions are determined by the binary terms. These
values then are chosen so as to fulfill the exact sum rules up to
the sixth moment in the case of F(q, t) and to the fourth moment
in CT(q, t). The next level of sum rules is not imposed, although
the results below show that they are satisfied to overall good
accuracy.

III. RESULTS AND DISCUSSION

Several properties of l-Sn at eight different temperatures
were evaluated to test the accuracy of the resulting BLPS,
modified with the FM method along with the SM KEDF and
the LDA XC functional. At each temperature, we compared
the predicted static structure factor S(q), diffusion coeffi-
cient, adiabatic sound velocity, and shear viscosity to avail-
able experimental and other computational data in Sec. S2
of the supplementary material. Based on this comparison,
the overall agreement is reasonable for all of the properties
mentioned.

In Subsection III A, we present the collective dynamics of
l-Sn at 573 K obtained from the OFDFT simulations. In Sub-
section III B, we apply the MC theory expressions introduced
in Sec. II. These results from MC theory then are compared to
the OFDFT-MD predictions.

A. Collective dynamics from OFDFT-MD

As mentioned in the Introduction of this paper,
Hosokawa et al.18 observed a second mode in the longitu-
dinal dynamics of l-Sn in the IXS experiments. Figure 1 dis-
plays the comparison of the scattered intensity obtained from
OFDFT-MD [Eq. (6)] at 573 K, with the IXS data gathered
from Hosokawa et al. OFDFT-MD successfully reproduces

the collective-dynamics behavior of l-Sn when compared to
the most recent IXS data.18 OFDFT-MD correctly recovers
the frequencies of the side peaks at both the lowest wave vec-
tor [Fig. 1(a)] and highest wave vector [Fig. 1(b)] studied in
these IXS experiments. The discrepancy in the region around
ω = 0 should not be ascribed directly to a poor representation
by OFDFT-MD, because it is a region where the experiment
is more sensitive to impurities in the sample. These satisfac-
tory results for I(q,ω), along with those presented in Sec. S2
of the supplementary material, indicate that OFDFT along
with the FM-modified BLPS represent correctly the dynamical
behavior of l-Sn.

The longitudinal and transverse current correlation func-
tions, CL(q,ω) and CT(q,ω), respectively, are displayed in
Fig. 2. Note that all CL(q,ω) displayed in Fig. 2 are calcu-
lated as the numerical Fourier transform of Eq. (11), not by
using the relationship in Eq. (13). Both CL(q,ω) and CT(q,ω)
at large wave vectors exhibit two modes [Figs. 2(b) and 2(d)].
For CL(q,ω), the second mode always appears as a shoulder
[Figs. 2(a) and 2(b)], whereas for CT(q,ω), there is a wave-
vector region where a two-peak shape exists [Figs. 2(c) and
2(d)]. This wave-vector region, where CT(q,ω) contains two
peaks, is located around the position of the main peak in S(q),
qp = 2.38 Å−1 (Fig. S2 in the supplementary material). As in
previous studies,20,24 the high frequency mode in CT(q,ω) is
considered as the second mode due to its abnormal behavior,
different from the main transverse mode in one-component
liquid metals.

The shape of S(q,ω) also suggests the existence of a
second mode, which is difficult to discern in Fig. 1 due to
the convolution with the experimental resolution function.
Previous studies comparing the different collective dynam-
ics functions in l-Ga17 and l-Sn18 concluded that the second
mode present in S(q,ω) was caused by a coupling between
S(q,ω) and CT(q,ω). This assumption emerged from com-
paring the location of the second mode in S(q,ω) to the
position of the main peak in CT(q,ω); both were located at
very similar frequencies for the same wave vectors. How-
ever, this assumption violates the condition of orthogonality
between the longitudinal and transverse dynamics by assum-
ing a direct coupling between them. A comparison between
S(q,ω) and CT(q,ω) at two different wave vectors is displayed
in Fig. 3. The main peak of CT(q,ω) clearly does not coincide
with the second mode in S(q,ω). Therefore, our results do

FIG. 1. Scattered intensity I(q,ω) at
wave vectors 0.65 Å−1 and 1.06 Å−1 for
l-Sn at T = 573 K. Full line: OFDFT-MD
results after convolution with the exper-
imental resolution function [Eq. (6)].
Open circles: IXS measurements of
Hosokawa et al.18 for wave vectors
0.66 Å−1 and 1.06 Å−1.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019830
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FIG. 2. CL(q,ω) and CT(q,ω) for sev-
eral wave vectors. [(a) and (c)] Below
qp = 2.38 Å−1. [(b) and (d)] Above qp.
Arrows qualitatively indicate the loca-
tion of the second mode in each case,
either as a shoulder or as a peak.

not support the idea of direct coupling between S(q,ω) and
CT(q,ω) as the origin of the second mode in the longitudinal
dynamics.

For different wave-vector regions, S(q,ω), CL(q,ω), and
CT(q,ω) each exhibit a peak at a characteristic frequency,
denoted as ωm, ωL, and ωT, respectively. For example, in
Fig. 1, ωm appears at a frequency of 15.1 ps−1 at q = 0.65 Å−1

and increases with the wave vector to 19.56 ps−1 at
q = 1.06 Å−1. The dispersion relation of ωm with q is dis-
played in Fig. 4, along with the dispersion relations of ωL and
ωT. The dispersion relation of S(q,ω) follows a very similar
shape as that of CL(q,ω) at small wave vectors (q < 0.8 Å−1).
However, as the wave vectors increase, so does the differ-
ence between both sets of dispersion relations. This dif-
ference between the dispersion relations of S(q,ω) and
CL(q,ω) is due to their relationship as implied by Eq. (13).
This relationship in reciprocal space translates into CL(q,ω)
= (ω/q)2S(q,ω). As the wave vector increases, the peak
frequency in S(q,ω) increases in a way that (ω/q) always
increases, causing a shift to higher frequencies for the maxima
of CL(q,ω) with respect to those of S(q,ω). The most impor-
tant result displayed in Fig. 4 is the existence of two branches
in the dispersion relation of CT(q,ω) for wave vectors around
qp ( = 2.38 Å−1). These two frequency branches, due to the
existence of two peaks in CT(q,ω), represent the two modes

present in transverse dynamics. The lower frequency branch
represents the main propagating mode in CT(q,ω) due to
shear wave propagation, while the high-frequency mode still
has an unknown origin. In addition, as in previous stud-
ies of this second mode in different systems,20,23,24 the fre-
quency value where the second mode of CT(q,ω) appears
is close to the highest frequency value of CL(q,ω)’s main
mode.

As noted in Sec. II C, the propagating modes in S(q,ω),
CL(q,ω), and CT(q,ω) do not always appear as maxima; for
most wave vectors, their appearance takes the form of a shoul-
der. We therefore use the fitting model composed of Eqs. (14)
and (15) in order to study the dispersion relation of each
propagating mode in each direction. The resulting disper-
sion relations (vide infra) show that while the main mode in
CT(q,ω) always corresponds to the low-frequency branch, in
CL(q,ω) the main mode oscillates between the high-frequency
branch (specifically for q < 2.0 Å−1 and q > 3.0 Å−1) and
low-frequency branch (for 2.0 Å−1 < q < 3.0 Å−1).

B. MC theory
1. Single-particle dynamics

We use the MC approximation of Gaskell and Miller64,65

to study the VACF and its decomposition into the longitudinal

FIG. 3. S(q,ω) (full line) and CT(q,ω)
(dash-dotted line) for two wave vectors.
S(q,ω) is scaled so as to fit in the same
graph. The vertical lines with arrows
denote the position of the maximum of
CT(q,ω) and where its effect on the
shape of S(q,ω) should be located in the
case of direct coupling.
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FIG. 4. Dispersion relations for l-Sn at T = 573 K obtained directly from
OFDFT-MD simulations. S(q,ω) (black circles) displays the same initial dis-
persion relation as CL(q,ω) (red circles). S(q,ω) displays side peaks (ωm) up
to wave vectors ∼1.4 Å−1. Above that limit, the diffusive component com-
pletely covers the dispersive component. CT(q,ω) (blue squares) exhibits two
dispersion branches. The second mode in CT(q,ω) (ωT,2), only visible in a
small wave-vector range, is displayed as filled squares.

and transverse components, as described by Eq. (17). The
resulting VACFs from OFDFT-MD data and the MC expres-
sions are plotted in Fig. 5. The shape of the VACF (ZOFDFT−MD)
from OFDFT-MD exhibits the typical behavior for liquid met-
als. For long times compared to the microscopic relaxation
times, the initial and final velocities are completely uncor-
related, with Z(t→ ∞) = 0. For short times, the decaying
of Z(t) depends on the density and temperature. In a high-
density liquid such as l-Sn, Z(t) exhibits a very fast decay
with damped oscillations. This phenomenon, called the “cage
effect,” occurs because each Sn atom is surrounded by neigh-
bors, and its movement consists of collisions with them inside

FIG. 5. Normalized VACF, Z(t), obtained from OFDFT-MD of l-Sn at
T = 573 K (circles). The inset shows the power spectrum Z(ω). Dashed and
dash-dotted curves represent the longitudinal ZL

GM and transverse ZT
GM compo-

nents, respectively, of the total ZGM(t) and ZGM(ω) (continuous line). Arrows
indicate the two peaks in the power spectrum, each attributable to a differ-
ent type of the collective dynamics via Gaskell and Miller’s MC formulation
[Eq. (17)].

this cage.1,2 ZOFDFT−MD and the MC-calculated VACF (ZGM)
agree very well overall. Very short-time values differ some-
what due to the limited integration range available from the
OFDFT-MD simulations, but the recovery of the negative min-
imum and subsequent damped oscillations is excellent. The
inset of Fig. 5 depicts the power spectrum obtained from the
OFDFT-MD data and from Gaskell and Miller’s MC formal-
ism. Both power spectra have two peaks, although Gaskell
and Miller’s is shifted slightly downwards. Decomposition of
the power spectrum via Eq. (17) allows us to interpret each
of the two peaks as originating from longitudinal (ZL

GM) and
transverse (ZT

GM) contributions.
The shape of the power spectrum is closely related to

the extent to which a second mode is observed in a sys-
tem’s collective dynamics. The power spectrum decomposi-
tion using Gaskell and Miller’s approach was also utilized by
Marqués et al.22 They performed OFDFT-MD simulations of
l-Na in a similar way, although in their case they considered
pressures ranging from 0 to 100 GPa. They found no evidence
of a second mode at zero pressure. However, when the pres-
sure was increased to 45 GPa, a second mode emerged in both
CL(q,ω) and CT(q,ω) around wave vectors close to qp. The
wave-vector region where this second mode became visible
increased with pressure. Marqués et al. predicted the power
spectrum to have just one peak at zero pressure, with the
longitudinal component of Z(ω) completely covered by the
transverse component. Both components started to separate
as the pressure increased to 45 GPa and two distinguishable
peaks appeared. Therefore, the VACF and power spectrum of
l-Sn at zero pressure paint a similar picture to that of l-Na at
high pressures; this is in accordance with l-Sn presenting a
second mode at zero pressure, whereas l-Na only exhibits the
second mode at high pressures. In our previous work on MC in
l-Zn,24 the power spectrum was also evaluated directly from
the simulation data using Gaskell and Miller’s MC theory. The
results obtained for l-Zn closely resemble l-Sn’s; the two sepa-
rated peaks in the power spectrum, the higher-frequency peak
attributed to longitudinal dynamics, and the lower-frequency
peak ascribed to transverse dynamics (Fig. 5). This observed
trend in the power spectrum of l-Sn and l-Zn, together with that
of l-Na at high pressures, strongly suggests that the appearance
of a second mode in the collective dynamics is connected to
the separation of both longitudinal and transverse components
of the power spectrum.

An equivalent relationship can be extracted from the shape
of the power spectrum of l-Sn and the dispersion relations
of CL(q,ω) and CT(q,ω) (Fig. 4). The decomposition of the
power spectrum of l-Sn illustrates the main frequencies at
which Sn atoms oscillate in the liquid and separates them into
a longitudinal main mode around a frequency of 20 ps−1 and
a transverse main mode around a frequency of 5 ps−1. While
the frequency range for longitudinal and transverse disper-
sion relations spans a wide region, the maxima at each wave
vector tend to concentrate in certain frequency ranges. Con-
sequently, these frequency ranges appear as wide peaks in the
power spectrum. Figure 6 provides a comparison between the
range of frequencies of the wide peaks in the power spec-
trum’s decomposition and the frequencies in the dispersion
relations of both modes in CL(q,ω) and CT(q,ω), obtained
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FIG. 6. Relationship between the maxima and shoulders of the longitudinal
and transverse components of the power spectrum as computed by MC theory,
ZL

GM and ZT
GM, respectively (left panel), and the frequencies of the dispersion

curves of each mode in the longitudinal (ΩL,1 andΩL,2 as triangles) and trans-
verse (ΩT,1 and ΩT,2 as squares) directions, obtained using the fitting model
described in Eqs. (14) and (15). We distinguish here between the frequen-
cies of the maxima from the MDHO, ΩL and ΩT, and the frequencies of the
maxima of the collective dynamics obtained directly from the MD results,
ωL and ωT. The horizontal red shaded arrow encompasses the side peaks in
CL(q,ω) that contribute to the main peak in ZL

GM. Likewise, the two horizon-
tal blue shaded arrows encompass the side peaks in CT(q,ω) [Figs. 2(c) and
2(d)], each related to a different mode. The low-frequency arrow indicates
the contributions of the main transverse mode to the peak in ZT

GM. The high-
frequency arrow indicates the contributions of the second transverse mode to
the shoulder at high frequencies in ZT

GM.

with the fitting model of Sec. II C. The shaded arrows in Fig. 6
illustrate how the concentration of the main modes in each
frequency range account for both peaks in the power spectrum
of l-Sn. Moreover, the shoulder present in ZT

GM at frequencies
around 18.5 ps−1, close to the peak of ZL

GM, may stem from
the second mode in CT(q,ω) (high-frequency blue arrow). The
second mode in CL(q,ω) does not have such a clear impact on
the longitudinal component of the power spectrum of l-Sn; the
longitudinal component does not exhibit any visible shoul-
der. The reason for this lack of visible influence is probably

due to the proximity of the frequency of the second mode
to the main mode in longitudinal dynamics. This proximity
between modes results in the second mode always appearing
as a shoulder in CL(q,ω). Overall, the information extracted
from Gaskell and Miller’s decomposition of the power spec-
trum can help to determine whether to expect second peaks
and their frequency ranges.

2. Collective dynamics

We apply the Sjögren-Sjölander MC scheme [Eqs. (20)–
(27)] to verify whether MC theory is able to predict the second
mode obtained in the collective dynamics of l-Sn. Figure 7
shows S(q,ω) and CL(q,ω) at different wave vectors, obtained
from OFDFT-MD and from Sjögren and Sjölander’s MC for-
mulation. S(q,ω) is displayed at wave vectors smaller than
qp/2, where the second mode is observed clearly and not
covered by the diffusive component. Likewise, CL(q,ω) is dis-
played for wave vectors higher than qp/2, where the second
mode starts to be visible. Figure 8 displays analogous data
for the transverse component, CT(q,ω). Figures 7 and 8 illus-
trate that the MC theory does a fair job of reproducing the two
modes and their positions in both CL(q,ω) and CT(q,ω), as
obtained from OFDFT-MD.

MC theory also provides an explanation for the frequen-
cies of both modes of CT(q,ω) and its limited dispersion. In
Eq. (24), the weight of the coupling at each wave vector is
determined by the function γ(q, k, p), detailed in Eq. (26).
Because of the structural term

[
S(k) − S(p)

]2/
[
S(k)S(p)

]
in

Eq. (26), maxima will appear for those pairs of wave vectors
related to a small value of the structure factor and large dif-
ferences between S(k) and S(p). These pairs of wave vectors
correspond to cases where k → 0 and p is close to qp and
vice versa, with p → 0 and k close to qp, due to the sym-
metry of the function. Figure 9 displays the dependence of
γ(q, k, p) on the wave vectors k and p for four wave vectors:
the smallest attainable wave vector determined by the simula-
tion box size, around qp/2, around qp, and beyond qp. Recall

FIG. 7. [(a) and (b)] Dynamic struc-
ture factors at wave vectors below qp/2.
[(c) and (d)] Longitudinal current cor-
relation spectra at wave vectors above
qp/2. Circles: OFDFT-MD simulations.
Solid Curves: Sjögren and Sjölander’s
MC theory.
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FIG. 8. Predicted transverse current
correlation spectra at different wave
vectors. Circles: OFDFT-MD simu-
lations. Solid curves: Sjögren and
Sjölander’s MC theory.

that the second mode of CT(q,ω) was most visible in the inter-
mediate region between qp/2 and around qp. In this region,
γ(q, k, p) always exhibits maxima for approximately the same
wave vector, k = qp and p = qp/2 [Figs. 9(b) and 9(c)]. This
fixed position of the maxima explains the small dispersion in
both modes of CT(q,ω) in the region between qp/2 and around
qp (Figs. 4 and 6). Moreover, the frequencies of both modes
of CT(q,ω) in this intermediate region correspond to the fre-
quencies of the longitudinal modes in qp and qp/2, which are

the wave vectors for the maxima of γ(q,k,p). Hence, we not
only explain through MC the appearance of the second mode
in CT(q,ω), but also its small dispersion and magnitude of its
frequencies.

Next, we perform a test to assess if the existence of the
second mode is entirely due to MC. It can be argued that MC
reproduces the two-mode shape because both modes already
exist in the input functions used in the MC expressions. How-
ever, if a two-mode shape is obtained with MC, using as input

FIG. 9. Isolines for the weight func-
tion γ(q, k, p) at q = 0.21 (a), 1.06 (b),
2.38 (c), and 4.25 (d) Å−1. The contours
are plotted every 1.5 units for (a) and
every 25 units for (b)–(d). The clock-
wise ordering of the panels is deliberate,
to make it easier to see that the main con-
tribution at k∼ 2.3 does not change from
panels (b) to (c), which explains why the
second mode is not dispersive.
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one-mode functions, then one could conclude unequivocally
that the origin of the two-mode shape is MC. In both MC
expressions [Eqs. (23) and (24)], the input functions that effec-
tively introduce the two-mode shape are mainly the Fn(q, t) s.
The Fs(q, t) s all have diffusive character, and the F0(q, t) s
are all modelled with a Gaussian function [Eq. (27)]; nei-
ther main nor secondary modes are present in any of the
Fs(q, t) s or F0(q, t) s, or, if they are present, their amplitude
is very small compared to the diffusive mode and therefore
they have no meaningful contribution. To eliminate the second
mode in the Fn(q, t) s, we used the already fitted expressions
of both F(q, t) and CL(q, t) to Eqs. (14) and (15), but without
considering the term corresponding to the second mode. After-
wards, the new F(q, t) s obtained are normalized and used in
the calculation of the MC terms. Figure 10 shows the resulting
spectra for both the longitudinal and transverse directions at
two wave vectors where the two-mode shape was identified
clearly.

As can be observed in Fig. 10, MC still reproduces the
two-mode shape even when the functions used as input have
only one mode. We previously explained the existence of two
transverse modes and their frequencies by only appealing to
the frequency of the main modes in the input functions as
suggested by Fig. 9. However, this last test definitely proves
that the origin of the second mode in both the longitudinal and
transverse directions is due to an indirect coupling between
the main modes.

Nevertheless, limitations to MC theory still persist.
Specifically, when MC is applied to the longitudinal direction,
the results from the theory do not exhibit the characteristic
second mode as seen in the OFDFT-MD results for S(q,ω) at
small wave vectors, as shown in Fig. 7(a). In the transverse
direction, the results obtained from MC theory do not repro-
duce the amplitude of either mode from OFDFT-MD in the
wave-vector region close to qp = 2.38 Å−1 [Fig. 8(c)]. More-
over, there is a general overestimation of the main mode in the

transverse dynamics [Fig. 8]. An improvement in the applica-
bility of MC comes from a detailed study of the expressions
used by Sjögren and Sjölander in their formulation to repre-
sent the memory functions, N(q, t) and MT(q, t). Figures 11
and 12 illustrate N(q, t) and MT(q, t), respectively. Each mem-
ory function is depicted for two different wave vectors (below
and around qp), obtained directly from the simulation data
(OFDFT-MD) and from MC theory (Norig and MT,orig). Two
defects common to both MT(q, t) and N(q, t) are evident: (1)
failure of the MC theory to recover the negative minima present
at wave vectors close to qp and (2) overestimation of the
tail at long times [Figs. 11(d) and 12(d)]. Previous attempts
to apply the Sjögren-Sjölander MC theory to different liquid
metals encountered similar shortcomings. Gudowski et al.55

applied MC theory to analyze a classical MD-derived VACF
of l-Pb, using the Sjögren-Sjölander formulation based on
the Levesque-Verlet empirical form53 valid for a LJ system.
Gudowski et al. demonstrated the failure of MC to recover
the characteristic negative minimum of the VACF. They pro-
vided some explanations for this limitation, the most plau-
sible being an incorrect representation of the binary part.
Gudowski et al. proposed a modification to the theoretical
expression,55 namely, adding a negative term with coefficients
fitted to correctly recover such negative minima. In our study
of l-Sn, the negative minimum in the VACF is perfectly recov-
ered by using Gaskell and Miller’s MC formulation, as shown
in Fig. 5. However, Gaskell and Miller’s MC approach has only
been developed thus far for single-particle dynamics, not col-
lective dynamics. We therefore propose, as an improvement
to Sjögren-Sjölander’s MC theory, a new expression for the
binary term based on the VACF. Improvements in the long-
time tail may come by coupling with further modes such as
energy density, e.g., in Bryk et al.’s work on l-Li.20 However,
such a study is beyond the scope of this work, so here we
can only consider improvements to the representation of the
(short-time) binary term.

FIG. 10. OFDFT-MD-calculated CL
(q,ω) [(a) and (b)] and CT(q,ω) [(c)
and (d)] (circles), along with MC theory
results using the OFDFT-MD Fn(q, t)
(continuous line) and the one-mode
Fn(q, t) (dashed line) for wave vectors
2.38 Å−1 [(a) and (c)] and 4.25 Å−1

[(b) and (d)].
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FIG. 11. N(q, t) for two wave vectors:
below qp (0.21 Å−1) and around qp

(2.38 Å−1). Circles: OFDFT-MD. Dot-
ted curves: MC component [Eq. (23)].
Squares: Original binary term [Eq.
(22)]. Triangles: New binary term
[Eq. (29)]. Dashed curves: Total N(q, t)
with the original expressions. Continu-
ous curves: Total N(q, t) with the new
binary term.

An analysis of the OFDFT-MD-derived memory func-
tions reveals that for all wave vectors where the minimum
exists, it is located around the same value of t as the backscat-
tering minimum of Z(t). Moreover, this minimum becomes
shallower as the wave vector is decreased, eventually disap-
pearing. As mentioned earlier, there is no specific reason for
the choice of the binary term expression, and the only require-
ments consist of recovering correctly the t = 0 values of
both the N(q, t) and MT(q, t) functions and its second time-
derivatives.31 Because of the apparent relation between the
power spectrum and the current dispersion relations discussed
earlier, we modified the theoretical ansatz used for the fast
part of the memory functions so as to include the VACF. How-
ever, the VACF first had to be modified to correctly represent
the amplitude of the negative minima found in the simula-
tions. We constructed a “modified” VACF by smearing Z(t)
via a convolution with a q-dependent function whose width

increases for smaller wave vectors, leading to shallower (and
wider) minima as the wave vector decreases without changing
its position. The expression we have chosen is (in the frequency
domain)

Z∗(q,ω) = Z(ω) · exp

(
−
ω2

c2
s q2

)
, (28)

where cs is the velocity of sound in the system. This modifica-
tion does not imply any fitting of any kind and can, in principle,
be applied to any system. The corresponding Z∗(q, t) then is
inserted into the ansatz, taking care to recover the initial values
and decay rates of the total memory function as required by
the MC theory, namely,

Nf(q, t) =
N0

1 + 1
2

(
|N̈0 |
N0
− ω∗2E (q)

)
t2
· Z∗(q, t), (29)

FIG. 12. MT(q, t) for the same two
wave vectors as in Fig. 11. Circles:
OFDFT-MD. Dotted curves: MC com-
ponent [Eq. (24)]. Squares: Original
binary term [Eq. (22)]. Triangles: New
binary term [Eq. (29)]. Dashed curves:
Total MT(q, t) with the original expres-
sions. Continuous curves: Total MT(q, t)
with the new binary term.
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FIG. 13. S(q,ω) (left panel) and
CL(q,ω) (right panel) calculated
directly from OFDFT-MD (circles)
and from MC theory with the original
[Eqs. (22) and (23)] and new binary
[Eqs. (23) and (29)] terms, shown by
dashed and solid curves, respectively,
at two different wave vectors. Values
on the vertical axes are normalized to
the value at the sampling time origin.

FIG. 14. CT(q,ω) calculated directly
from OFDFT-MD (circles) and from
MC theory with the original [Eqs. (22)
and (24)] and new binary [Eqs. (24) and
(29)] terms, shown by dashed and solid
curves, respectively, at two different
wave vectors.

where ω∗E(q) is the “Einstein frequency” of Z∗(q, t), obtained
from its short-time expansion,

Z∗(q, t) = 1 − ω∗2E (q)t2/2 + · · · . (30)

Figures 11 and 12 compare the representations of N(q, t)
and MT(q, t), respectively, obtained by applying the Sjögren-
Sjölander MC approach with the Gaussian ansatz and our new
expression for the binary term [Eq. (29)]. On the whole, the
results are improved by using our proposed expression for
the binary term. For both N(q, t) and MT(q, t), at small wave
vectors [Figs. 11(a) and 12(a)], the new respective binary
expressions (Nf

new and Mf
T,new) have a decay rate more sim-

ilar to OFDFT-MD than the original Gaussian ansatz (Nf
orig

and Mf
T,orig). At large wave vectors [Figs. 11(b) and 12(b)],

the new binary expressions correctly introduce the negative
minima. However, while the position of the negative mini-
mum is correct with the new binary expression, the amplitude
is incorrect. Overall, the amplitudes of the minima obtained
with the new binary expression are underestimated, resulting
in an even greater underestimation of the minima once the
MC term is added. Yet, the sum of the new binary expres-
sion with the MC term improves the final representation in
most cases. For N(q, t) at a small wave vector [Fig. 11(c)],
the final expression overestimates the OFDFT-MD results in
the same magnitude as the original expression underestimates
them.

We further test the new binary expression by analyzing
CL(q,ω) and CT(q,ω). Figures 13 and 14 display CL(q,ω)
and CT(q,ω), respectively, obtained from OFDFT-MD, along
with MC theory using the Gaussian ansatz (MCorig) and our
new expression (MCnew) for the binary terms. In the lon-
gitudinal direction at the small wave vector [Fig. 13(a)],
our new binary term offers no improvement in S(q,ω). At
high wave vectors, the improvement in the recovery of the

minimum in Fig. 11(d) by using the new binary term trans-
lates into a minor improvement of CL(q,ω) [Fig. 13(b)]. In
the transverse direction, recovery of CT(q,ω) for the small
wave vector is exceptional [Fig. 14(a)]. However, at the high
wave vector [Fig. 14(b)], only a minor enhancement is seen
for the amplitude of the second mode located around 20 ps−1.
Overall, improvements in CL(q,ω) and CT(q,ω) using the new
binary expression are less significant than expected, which
indicates that further modifications to the theory are needed.
Nevertheless, the new binary expression does not modify qual-
itatively the two-mode shape obtained with MC theory; the
existence of the second mode thus is due entirely to the MC
term.

IV. CONCLUSIONS

OFDFT-MD simulations can offer insight into the com-
plex collective dynamics present in liquid metals. Complicated
longitudinal dynamics in l-Sn was observed previously by IXS
measurements. Here, we predicted that these complex dynam-
ics are present not only in the longitudinal direction but also in
the transverse direction at higher wave vectors, in the kinetic
regime. These complex transverse collective dynamics arise
as a second collective mode in the spectra of the transverse
currents, CT(q,ω).

Although the existence of the complex collective dynam-
ics had been observed experimentally and computationally in
a variety of liquid metals, a theoretical explanation remains
unclear. Previously, two of the authors proposed MC as the
origin of the complex collective dynamics present in l-Zn.24

Further applications of MC theory to more liquids with the
complex collective dynamics were needed to verify this pro-
posal. Here, we showed that MC can indeed help explain the
complex collective dynamics of l-Sn: the theory predicted
that a second mode is present in both the longitudinal and
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transverse collective dynamics and indicated that it arises via
indirect coupling of the transverse and longitudinal modes.
Thus, MC may be the best theoretical framework to explain
the complex collective dynamics observed in several liquid
metals.

Nevertheless, improvements in MC theory are needed to
reproduce simulation data. Similar differences between sim-
ulation and MC data arose in the earlier study of l-Zn and
therefore were probably a general limitation of the theory. As
a first modification toward a more general MC approach, we
proposed and tested a new expression for the binary term used
in the Sjögren-Sjölander MC formulation of the collective
dynamics. This new binary term offers some improvement,
especially for low wave vectors in the transverse collective
dynamics. Further improvements could be made by introduc-
ing transverse dynamics into the MC term of N(q, t) and con-
sidering couplings with other modes besides density modes,
such as energy density.

In closing, we provided a theoretical explanation for the
appearance and behavior of a second mode in the collective
dynamics of l-Sn. Along with the previous study of l-Zn,
MC theory proves to be a successful theoretical framework to
explain this new feature observed in the collective dynamics
of various liquid metals.

SUPPLEMENTARY MATERIAL

See supplementary material for details concerning the cre-
ation of the Sn LPS (Sec. S1) and the calculation of various
thermodynamic, structural, and transport properties of liquid
Sn in the range of temperatures from 573 K to 1873 K (Sec.
S2). Details on the sets of configurations and time origins used
for the evaluation of different collective dynamic functions are
provided in Sec. S3.
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APPENDIX: MEMORY FUNCTIONS

The study of the mechanisms determining the liquid
state’s collective dynamics requires a formalism that can be
applied correctly to any temporal and spatial regions. In the
hydrodynamic regime, the liquid state can be pictured as a
continuum where density fluctuations displace it away from

its equilibrium state. In this regime, the relaxation modes rul-
ing the decay of these density fluctuations can be analyzed
by using equations that govern the system at this scale and
by obtaining the corresponding correlation functions. How-
ever, when times are reduced (or frequencies increased), the
hydrodynamic approach starts to fail due to the presence of
dissipative terms in the basic hydrodynamic equations, which
are not invariant under time reversal. Therefore, instead of
discarding the equations directly, it was decided to generalize
them while still maintaining the basic ideas. This generaliza-
tion is based on making the response of the system sensitive
to perturbations in the temporal and spatial scales.

One of the most successful formalisms used is that of the
projection operators introduced by Zwanzig and Mori.66–68 It
poses an equation of motion for the correlation function,

Ċ(t) = −
∫ t

0
K(τ) C(t − τ) dτ, (A1)

where K(t) is the memory function of C(t). The solution of
Eq. (A1) in Laplace space is

C̃(z) =
C(0)

z + K̃(z)
, (A2)

where the tilde denotes the Laplace transform.
The memory function also obeys a Langevin equation with

a self-memory function, called K1(t), in such a way that

K̇(t) = −
∫ t

0
K1(τ) K(t − τ) dτ ⇒ K̃(z) =

K(0)

z + K̃1(z)
,

(A3)

where K1(t) is the second-order memory function of C(t).
The process can be iterated ad infinitum, with the correlation
function being expressed as a continuous fraction,

C̃(z) =
C(0)

z + K(0)

z+
K1(0)
z+···

. (A4)

We have employed this representation to study the theo-
retical models used by the MC theory for both the longitudinal
and transverse current correlation functions throughout the
paper.
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034501 (2017).
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