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Abstract This article is concerned with the problem of delay-dependent fi-
nite time stability (FTS) for delayed discrete-time systems with nonlinear per-
turbations. First, based on a Lyapunov-Krasovskii Functional (LKF), delay-
dependent FTS conditions are provided by introducing some free-weighting
matrices. Then, a new reduced free-matrix-based inequality (RFMBI) is estab-
lished to estimate the single summation term. The dimensions of these free
matrices integral in our results are less than those obtained in the literature.
This reduction in the number of variables does not mean that our method
is a particular case but simply that our approach is completely different from
the others and therefore our method is more effective. Thus, less conservative
design conditions are obtained in this paper in terms of linear matrix inequal-
ities (LMIs) and solved by the LMI Tools of MATLAB to achieve the desired
performances. Finally, numerical examples are examined to demonstrate the
advantage and effectiveness of the proposed results.
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Faculty of sciences and Technology,
LRDSI Laboratory, Al Hoceima, Morocco

2Sidi Mohammed Ben Abdellah University,
Faculty of Sciences Dhar El Mehraz,
Department of Physics,
LISAC Laboratory, Fez, Morocco

3University of Valladolid,
Industrial Engineering School,
Dr. Mergelina S/N, 47005, Valladolid, Spain

∗Corresponding authors: teresa.alvarez.alvarez@uva.es, nabil.elfezazi@gmail.com



2 1 INTRODUCTION

1 Introduction

Time-delay is known as natural phenomenon that is common in various prac-
tical situation such as biology, economy, engineering systems, and so on [8].
Then, the existence of time delay may lead to oscillations, bad performances
and even instability for dynamical systems [21]. For this reason, important
efforts are devoted to investigate its influence on systems performances [1].
Thus, the researchers have paid great attention to the problems of analysis
and synthesis of time-delay systems [10], which makes it possible to perfectly
study the stability conditions for these systems using LMIs [3]. The current
literary conditions for the stability analysis can be roughly divided into two
types : (i) delay-independent stability [23], and (ii) delay-dependent stabil-
ity [11]. The latter type, that takes into account time-delays and their effects
[12], is known to have less conservative results than delay-independent type
that is not affected by delay size [26]. In the daily life, the disturbances are
very common [7]. In many processes, not only the time-varying delays can
affect the systems stability [27], but also the nonlinear perturbations can re-
sult in negative influences on these systems [6]. The obtained approaches un-
til now require further development and improvement and therefore there is
still room for work and research to ensure the stability of systems taking into
account time-varying delays and perturbations and then to get less conserva-
tive results.

In order to address the problem of stability for discrete-time systems with
time-varying delays and reduce the results conservatism, many approaches
have been proposed in the literature such as the Jensen-based inequality (JBI)
[13], the Wirtinger-based inequalities (WBIs) [22], the abel-lemma based in-
equality (ABI) [31], the free-weighting matrix (FWM) approach [6], the aux-
iliary function-based inequality [19], and the FWM-based inequalities [29].
Thus, great efforts have been made and a lot of works have been published
to get a maximum allowable delay as large as possible for a given time-delay
system and then to improve the stability criteria over infinite-time interval.
On the other hand, the FTS problem is not addressed in these works, which
is an important topic of research and study, especially if we take into account
that it is highly required. Then, we are motivated by the above-mentioned
studies and by the ideas implemented in several works to further research on
time-delay systems considering the FTS problem.

To study stability of systems, there are some cases in which large state val-
ues are not acceptable and therefore this problem must be addressed. Then,
it becomes very important to define a stable system as one whose state, given
some initial conditions, remains within prescribed bounds in a short time.
For this, there is a need to study another type of stability, which is the sta-
bility previously mentioned FTS [14]. Then, a system is said to be finite time
stable if its state does not exceed some bounds during a time interval. Thus,
important results are obtained for various sort of systems such as linear time-
varying systems [24], linear systems with additive time-varying delay [16],
neural network systems [33], T-S Fuzzy systems [17], and impulsive systems
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[4]. Despite all that, the FTS is not fully covered and has yet to receive a lot of
attention especially since this type of stability is required significantly. Then,
a new analysis technique over finite-time interval is proposed in this paper
to achieve the desired performances and ensure the results conservatism re-
duction.

In this work, the problem of FTS for discrete-time systems with time-
varying delays and perturbations is investigated. To reach this goal in the best
possible way, we follow two steps. First, based on a LKF, delay-dependent
FTS conditions are provided by introducing some free-weighting matrices.
Then, a new RFMBI is established to estimate the single summation term
k−h(k)−1

∑
i=k−h2

ηT(i)Rn(i). The reduced order of free weighting matrices technique

is used to reduce the size of certain matrices to n instead of 3n as given in
[5]. Reducing the variables order is one of the main indices of the effective-
ness of our method, especially if we take into account that there is in this
article a different approach from those given in the literature. Then, the pro-
posed method offers less conservative results, good transient responses, and
feasible control signals. Finally, some examples are proposed to illustrate the
effectiveness of our approach.

Notation: Throughout this paper, ℜn denotes the n-dimensional Euclidean
vector space. The real matrix P > 0 or P < 0 respectively mean that P is pos-
itive or negative definite. The superscripts 1 and T stand for the inverse and
the transpose of a matrix, respectively. In addition, sym(A) indicates A + AT

for convenience, and ∗ is the symmetry term of symmetry matrix.

2 Problem statement and preliminaries

Consider the following discrete-time system :

x(k + 1) = Ax(k) + Bx(k − h(k)) + g1(k, x(k)) + g2(k, x(k − h(k)))
x(θ) = φ(θ), θ ∈ [−h2,−h2 + 1, . . . , 0] (1)

where x(t) ∈ ℜn is the state vector, φ(θ) is the initial condition, and A,
B are constant matrices with appropriate dimensions. The delay h(k) is as-
sumed to be time dependent and satisfies 0 < h1 ≤ h(k) ≤ h2, and g1(k, x(k)),
g2(k, x(k − h(k))) are nonlinear function and satisfy the following conditions
:

∥g1(k, x(k))∥ ≤ ρ1∥x(k)∥, ∥g2(k, x(k − h(k)))∥ ≤ ρ2∥x(k − h(k))∥ (2)

where ρ1 and ρ2 are known positive scalars.
Let

y(k) = x(k + 1)− x(k), yT(k)y(k) ≤ ε (3)

The purpose of this paper is to derive sufficient conditions that ensure
the finite-time stability of the discrete-time system (1). Then, the following
definitions and lemmas are useful for the derivation of the main results :
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Definition 1 ([32], [15]) The system (1) is finite-time stable with respect to
(c1, c2, R, N), where R > 0 and 0 ≤ c1 < c2, if

sup
θ∈[−h2,−h2+1,...,0]

φT(θ)φ(θ) ≤ c1 ⇒ xT(k)Rx(k) ≤ c2, k ∈ {1, ..., N} (4)

Lemma 1 [20] Let f1, f2, . . . , fn : ℜm → ℜ have positive values in an open subset
D and ℜm, then, the reciprocally convex combination of fi over D satisfies :

min
αi/αi>0 ∑i αi=1

n

∑
i

1
αi

fi(t) =
n

∑
i

fi(t) + max
gij(t)

n

∑
i ̸=j

gij(t) (5)

where {
gij : ℜm → ℜ, gij(t) = gji(t),

[
fi(t) gij(t)

gji(t) fi(t)

]
≥ 0

}
(6)

Lemma 2 [18] Let X and Y be real matrices of appropriate dimensions. For a given
scalar ε > 0 and vectors x, y ∈ ℜn, then

2xTXYy ≤ ε−1xTXTXx + εyTYTYy (7)

Remark 1 As given in [5], the RFMBI is introduced to reduce the size of the
matrices Zi (i = 1, 2, 3) to n instead of 3n.

3 Finite time stability

In this section, new FTS criteria are obtained by employing the reduced free-
matrix-based summation inequality. Then, the lemma below is given to set
the stage for the main findings. For simplicity, h(k) is denoted by hk.

Lemma 3 (RFMBI) For an n-dimensional real vector sequence {x(α2), . . . , x(α1)},
if there exist symmetric matrices Zi

i ∈ ℜn×n, i = 0, 1, 2, 3, matrices Zi
j ∈ ℜn×n,

i, j = 0, 1, 2, 3 (i < j), and scalars α1, α2 (α2 > α1), satisfying :
Z0

0 Z1
0 Z2

0 Z3
0

∗ Z1
1 Z2

1 Z3
1

∗ ∗ Z2
2 Z3

2
∗ ∗ ∗ Z3

3

 ≥ 0 (8)

then, the following inequalities hold :

−
α2−1

∑
i=α1

ηT(i)Z0
0η(i) ≤ −1

h

(
ξT

0

(
Z1

1 − sym(Z1
0)
)

ξ0 +
3(h + 1)
(h − 1)

ξT
1

(
Z2

2

−sym(Z2
0)
)

ξ1 +
5(h + 1)(h + 2)
(h − 1)(h − 2)

ξT
2

(
Z3

3

−sym(Z3
0)
)

ξ0

)
(9)
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where η(k) = x(k + 1)− x(k), h = α2 − α1, and

ξ0 = x(α2)− x(α1), ξ1 = x(α2) + x(α1)−
2

h + 1

α2

∑
i=α1

x(i),

ξ2 = ξ0 +
6

(h + 1)(h + 2)

α2

∑
i=α1

(α2 + α1 − 2i)x(i) (10)

Proof Using the constant scalars κ1 and κ2, let :

f1(i) = κ1(α2 + α1 − 1 − 2i), f2(i) = κ2( f 2
1 (i)−

1
3
(h − 1)(h + 1)) (11)

Then, it is easy to verify the following calculus :

α2−1

∑
i=α1

f1(i) =
α2−1

∑
i=α1

f2(i) =
α2−1

∑
i=α1

f1(i) f2(i) = 0

α2−1

∑
i=α1

f 2
1 (i) = κ2

1
h(h − 1)(h + 1)

3
,

α2−1

∑
i=α1

f 2
2 (i) = κ2

2
h(h2 − 1)(h2 − 4)

45

α2−1

∑
i=α1

f1(i)η(i) = −κ1(h + 1)ξ1,
α2−1

∑
i=α1

f2(i)η(i) = κ2
2(h + 1)(h + 2)

3
ξ2(12)

On the other hand, we have 0 ≤
α2−1

∑
i=α1

ϖTZϖ where

ϖ =

[
ηT(i)− 1

h

α2−1

∑
i=α1

− f1(i)χ1 − f2(i)χ2

]T

(13)

χ1 and χ2 are constants vectors to be determined.
Thus, we obtain :

−
α2−1

∑
i=α1

ηT(i)Z0
0η(i) ≤ −sym

(
1
h

(
α2−1

∑
i=α1

ηT(i)

)
Z1

0

(
α2−1

∑
i=α1

η(i)

)

−
(

α2−1

∑
i=α1

f1(i)ηT(i)

)
Z2

0χ1 −
(

α2−1

∑
i=α1

f2(i)ηT(i)

)
Z3

0χ2

)

+
1
h

(
α2−1

∑
i=α1

ηT(i)

)
Z1

1

(
α2−1

∑
i=α1

η(i)

)
+

α2−1

∑
i=α1

f 2
1 (i)χ

T
1 Z2

2χ1

+
α2−1

∑
i=α1

f 2
2 (i)χ

T
2 Z3

3χ2 (14)

Then, the inequality (9) can be determined easily taking κ1 = − 3
h(h−1) ,

κ2 = 15
2h(h−1)(h−2) , χ1 = ξ1, and χ2 = ξ2.
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Remark 2 Taking Zi
i = R > 0, i = 0, . . . , 3, the inequality (13) in [30] is ob-

tained, which means that our approach is more general than that given in
[30].

Remark 3 Taking Z3
i = 0, i = 0, 1, 2, 3, the variables order of our presented

free matrices is reduced to 4.5n2 + 1.5n compared with 24.5n2 + 3.5n that is
given in in [5]. On the other hand, reducing the order of the variables does not
mean that our approach is a particular case of [5], but rather that Lemma 3
has not been applied in this reference. In the literature, there is not an efficient
approach to reduce the order of the free matrices presented in [5] which al-
lows to estimate the unique summation in order to get more convexity, what
motivates our work.

Corollary 1 If there exist symmetric positive definite matrix R > 0, and appropri-
ately sized matrices Li ∈ ℜn×n, i = 1, 2, 3, the following inequality holds :

−
α2−1

∑
i=α1

ηT(i)Rη(i) ≥ −1
h

(
ξT

0

(
LT

1 R−1L1 − sym(L1)
)

ξ0

+
3(h + 1)
(h − 1)

ξT
1

(
LT

2 R−1L2 − sym(L2)
)

ξ1

+
5(h + 1)(h + 2)
(h − 1)(h − 2)

ξT
2

(
LT

3 R−1L3 − sym(L3)
)

ξ0

)
(15)

where η(k) = x(k + 1)− x(k), h = α2 − α1, and

ξ0 = x(α2)− x(α1), ξ1 = x(α2) + x(α1)−
2

h + 1

α2

∑
i=α1

x(i),

ξ2 = ξ0 +
6

(h + 1)(h + 2)

α2

∑
i=α1

(α2 − α1 − 2i)x(i) (16)

Proof Let the following change of variables :

Z0
0 = R, Z1

0 = LT
1 , Z2

0 = LT
2 , Z3

0 = LT
3 ,

Z1
1 = LT

1 R−1L1, Z2
1 = LT

1 R−1L2, Z3
1 = LT

1 R−1L3,

Z2
2 = LT

2 R−1L2, Z3
2 = LT

2 R−1L3, Z3
3 = LT

3 R−1L3 (17)

From the inequality (9), it is easy to see that the condition (15) is automat-
ically verified using the Schur complement [2].

Some results are now derived to ensure FTS for the studied system.

Theorem 1 The system (1) is finite time stable with respect to (c1, c2, R, N) if there
exist symmetric positive definite matrices P, Q1, Q2, Q3, R1, R2 ∈ ℜn×n, symmetric
matrices Zi

i , Yi
i ∈ ℜn×n, i = 0, . . . , 3, matrices Zj

i , Y j
i ∈ ℜn×n, i, j = 0, . . . , 3
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(i < j), Mi, Sij ∈ ℜn×n, i, j = 1, 2, 3, and scalars λi, i = 1, 2, . . . , 7, εi > 0,
i = 1, 2, . . . , 6, α > 1, such that :

0 < λ1 I < P̃ < λ2 I, (18)

0 < Q̃1 < λ3 I, 0 < Q̃2 < λ4 I, 0 < Q̃3 < λ5 I, (19)

0 < R̃1 < λ6 I, 0 < R̃2 < λ7 I, (20)

Zi
i ≤ sym(Z0

i ), Yi
i ≤ sym(Y0

i ), i = 2, 3, (21)


Z0

0 Z1
0 Z2

0 Z3
0

∗ Z1
1 Z2

1 Z3
1

∗ ∗ Z2
2 Z3

2
∗ ∗ ∗ Z3

3

 ≥ 0,


Y0

0 Y1
0 Y2

0 Y3
0

∗ Y1
1 Y2

1 Y3
1

∗ ∗ Y2
2 Y3

2
∗ ∗ ∗ Y3

3

 ≥ 0, (22)

(
Z S
∗ Z

)
> 0, (23)

(
Ω̃1 + Ω̃2 + Ω̃3 Ω̃4

∗ Ω̃5

)
< 0, (24)

σ1c1 + σ2c2 < α−Nc2λ1 (25)

where

Ω̃1 = Ω − Π1Υ1ΠT
1 − Π2Υ2ΠT

2 − (α − 1)

((
eT

1
eT

6

)T

((h1 + 1)Λ1)

(
eT

1
eT

6

)

+

(
eT

1
eT

7

)T

Λ2

(
eT

1
eT

7

)
+

(
eT

1
eT

8

)T

Λ3

(
eT

1
eT

8

)

−

 eT
1

eT
2

eT
3

T −P + Q1 + 2R2 −R2 −R2
∗ Q2 + R2 0
∗ ∗ Q3 + R2

 eT
1

eT
2

eT
3


 ,

Ω = e1Q1eT
1 + e2(−Q1 + Q2)eT

2 + e3(−Q2 + Q3)eT
3 − e4Q3eT

4

+e5(P + h2
1R1 + h2

12R2)eT
5 + sym(e1PeT

5 ),
Π1 = [e1 − e2, e1 + e2 − 2e6, e1 − e2 + 6e9] ,
Π2 = [e2 − e3, e2 + e3 − 2e7, e2 − e3 + 6ϑ10, e3 − e4, e3 + e4 − 2e8, ,

e3 − e4 + 6ϑ11] ,

Υ1 = −diag{Z1
1 − sym(Z1

0), 3(Z2
2 − sym(Z2

0)), 5(Z3
3 − sym(Z3

0))},

Z = −diag{Y1
1 − sym(Y1

0 ), 3(Y2
2 − sym(Y2

0 )), 5(Y3
3 − sym(Y3

0 ))},
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Υ2 =

(
Z S
∗ Z

)
, S =

 S11 S12 S13
S21 S22 S23
S31 S32 S33

 , Λ1 =

(
R1 −R1
∗ Q1 + R1

)
,

Λi =

(
R2 −R2
∗ Qi + R2

)
, i = 2, 3,

Ω̃2 = 2 [e1M1 + e3M2 + e5M3]
[
e1(A − I) + e3BT − e5

]T
,

Ω̃3 = (ε1 + ε3 + ε5)ρ
2
1e1eT

1 + (ε2 + ε4 + ε6)ρ
2
1e3eT

3 ,

Ω̃4 =
[
e1MT

1 , e1MT
1 , e3MT

2 , e3MT
2 , e5MT

3 , e5MT
3

]
,

Ω̃5 = diag{ε1, ε2, ε3, ε4, ε5, ε6},
σ1 = λ2 + h1λ3 + h12λ4 + h12λ5,

σ2 =
h2

1(h1 + 1)
2

λ6 +
h2

12(h2 + h1 + 1)
2

λ7, P̃ = R
−1
2 PR

−1
2 ,

Q̃i = R
−1
2 QiR

−1
2 , i = 1, 2, 3, R̃i = R

−1
2 RiR

−1
2 , i = 1, 2,

ei =
(

0n×(i−1)n, I, 0n×(8−i)n

)
, i = 1, . . . , 8. (26)

Proof Consider the following LKF :

V(k) = V1(k) + V2(k) + V3(k) (27)

where

V1(k) = xT(k)Px(k)

V2(k) =
k−1

∑
i=k−h1

xT(i)Q1x(i) +
k−h1−1

∑
i=k−hk

xT(i)Q2x(i) +
k−hk−1

∑
i=k−h2

xT(i)Q3x(i)

V3(k) = h1

−1

∑
i=−h1

k−1

∑
j=k+i

yT(j)R1y(j) + h12

−h1−1

∑
i=−h2

k−1

∑
j=k+i

yT(j)R2y(j) (28)

From this LKF, we obtain :

∆V1(k) = xT(k + 1)Px(k + 1)− xT(k)Px(k)
= (x(k) + y(k))T P(x(k) + y(k))− xT(k)Px(k)

∆V2(k) = xT(k)Q1x(k) + xT(k − h1)(−Q1 + Q2)x(k − h1)

+xT(k − h(k))(−Q2 + Q3)x(k − h(k))
+xT(k − h2)(−Q3)x(k − h2)

∆V3(k) = yT(k)(h2
1R1 + h2

12R2)y(k)− h1

k−1

∑
i=k−h1

yT(i)R1y(i)

−h12

k−h1−1

∑
i=k−h2

yT(i)R2y(i) (29)
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Let

ξT(k) =
[

xT(k), xT(k − h1), xT(k − hk), xT(k − h2), y(k), ϑT
1 (k), ϑT

2 (k), ϑT
3 (k),

ϑT
4 (k), ϑT

5 (k), ϑT
6 (k)

]T
, ϑT

1 (k) =
1

h1 + 1

k

∑
i=k−h1

xT(i),

ϑT
2 (k) =

1
hk1 + 1

k−h1

∑
i=k−hk−h1

xT(i), ϑT
3 (k) =

1
hk2 + 1

k−hk

∑
i=k−h2−hk

xT(i),

ϑT
4 (k) =

1
(h + 1)(h + 2)

k

∑
i=k−h1

(2k − h1 − 2i)x(i),

ϑT
5 (k) =

1
(hk1 + 1)(hk1 + 2)

k−h1

∑
i=k−hk

(2k − h1 − hk − 2i)x(i),

ϑT
6 (k) =

1
(hk2 + 1)(hk2 + 2)

k−h1

∑
i=k−hk

(2k − hk − h2 − 2i)x(i) (30)

where hk1 = hk − h1, hk2 = h2 − hk.
Then, we have

∆V(k) ≤ ξT(k)Ωξ(k)− h1

k−1

∑
i=k−h1

yT(i)R1y(i)− h12

k−h1−1

∑
i=k−h2

yT(i)R2y(i) (31)

On the other hand, we have :

−V2(k) = ξT(k)
(

e1Q1eT
1 + e2Q2eT

2 + e3Q3eT
3

)
ξ(k) +

k

∑
i=k−h1

xT(i)Q1x(i)

+
−h1

∑
i=k−hk

xT(i)Q2x(i) +
k−hk

∑
i=k−h2

xT(i)Q3x(i)

−V3(k) ≤ −
0

∑
i=−h1

(x(k)− x(k + i))T R1(x(k)− x(k + i))

−
−h1

∑
i=−hk

(x(k)− x(k + i))T R2(x(k)− x(k + i))

+(x(k)− x(k + h1))
T R2(x(k)− x(k + h1))

−
−hk

∑
i=−h2

(x(k)− x(k + i))T R2(x(k)− x(k + i))

+(x(k)− x(k + hk))
T R2(x(k)− x(k + hk))
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=
0

∑
i=−h1

(x(k)− x(k + i))T R1(x(k)− x(k + i))

−
−h1

∑
i=−hk

(x(k)− x(k + i))T R2(x(k)− x(k + i))

+(x(k)−
−hk

∑
i=−h2

(x(k)− x(k + i))T R2(x(k)− x(k + i))

+ξT(k)
(

2e1R2eT
1 + e2R2eT

2 + e3R2eT
3 − 2e1R2eT

2 − 2e1R2eT
3

)
ξ(k) (32)

Thus, we obtain :

−(V2(k) + V3(k)) ≤ −
0

∑
i=−h1

(
x(k)

x(k + i)

)T
Λ1

(
x(k)

x(k + i)

)

−
−h1

∑
i=−hk

(
x(k)

x(k + i)

)T
Λ2

(
x(k)

x(k + i)

)

−
−hk

∑
i=−h2

(
x(k)

x(k + i)

)T
Λ3

(
x(k)

x(k + i)

)
+

 x(k)
x(k − h1)

x(k − h(k))

T

×

Q1 + 2R2 −R2 −R2
∗ Q2 + R2 0
∗ ∗ Q3 + R2

 x(k)
x(k − h1)

x(k − h(k))

 (33)

As given in Theorem 1, it is easy to see that Λj > 0, j = 1, 2, 3.
Using the Jensen inequality [9], we get :

−(V2(k) + V3(k)) ≤ −ξT(k)

((
eT

1
eT

6

)T

(h1 + 1)Λ1

(
eT

1
eT

6

)
+

(
eT

1
eT

7

)T

(hk1 + 1)

×Λ2

(
eT

1
eT

7

)
+

(
eT

1
eT

8

)T

(hk2 + 1)Λ3

(
eT

1
eT

8

)
−

 eT
1

eT
2

eT
3

T

×

Q1 + 2R2 −R2 −R2
∗ Q2 + R2 0
∗ ∗ Q3 + R2

 eT
1

eT
2

eT
3

 ξ(k)

≤ −ξT(k)

((
eT

1
eT

6

)T

(h1 + 1)Λ1

(
eT

1
eT

6

)
+

(
eT

1
eT

7

)T

Λ2

(
eT

1
eT

7

)

+

(
eT

1
eT

8

)T

Λ3

(
eT

1
eT

8

)
−

 eT
1

eT
2

eT
3

T Q1 + 2R2 −R2 −R2
∗ Q2 + R2 0
∗ ∗ Q3 + R2

 eT
1

eT
2

eT
3


 ξ(k)(34)
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Then, we conclude that

∆V(k)− (α − 1)V(k) ≤ ξT(k)Ω̃ξ(k)− h1

k−1

∑
i=k−h1

yT(i)R1y(i)

−h12

k−h1−1

∑
i=k−h2

yT(i)R2y(i) (35)

According to Lemma 3, we have :

−h1

k−1

∑
i=k−h1

yT(i)R1y(i) ≤ ξT(k)Π1Υ1ΠT
1 ξ(k) (36)

Now, it is easy to see that

−h12

k−h1−1

∑
i=k−h2

yT(i)R2y(i) ≤ −h12

k−h1−1

∑
i=k−hk

yT(i)R2y(i)− h12

k−hk−1

∑
i=k−hk

yT(i)R2y(i)

≤ h12

hk1
ηT

k1diag
{

Y1
1 − sym(Y1

0 ), 3
(

Y2
2 − sym(Y2

0 )
)

,

5
(

Y3
3 − sym(Y3

0 )
)}

ηk1 +
h12

hk2
ηT

k2diag
{

Y1
1 − sym(Y1

0 ),

3
(

Y2
2 − sym(Y2

0 )
)

, 5
(

Y3
3 − sym(Y3

0 )
)}

ηk2 (37)

Using
hk − h1

h12
+

h2 − hk
h12

= 1 and Lemma 2 with
(

Z S
∗ Z

)
> 0, it follows

that

−h12

k−h1−1

∑
i=k−h2

yT(i)R2y(i) ≤ −ξT(k)Π2Υ2ΠT
2 ξ(k) (38)

where

ηT
1k =

[
xT(k − h1)− xT(k − hk), xT(k − h1) + xT(k − hk)− 2ϑ2(k),

xT(k − h1)− xT(k − hk) + 6ϑ5(k)
]T

,

ηT
2k =

[
xT(k − hk)− xT(k − h2), xT(k − hk) + xT(k − h2)− 2ϑ3(k),

xT(k − hk)− xT(k − h2) + 6ϑ6(k)
]T

(39)

On the other hand, for any matrices M1, M2, M3 with appropriate dimen-
sions, we get :

2
[

xT(k)M1 + xT(k − hk)M2 + yT(k)M3

]
[(A − I)x(k) + Bx(k − hk)

−y(k)] + 2
[

xT(k)M1 + xT(k − hk)M2 + yT(k)M3 [g1(k, x(k))]

+g2(k, x(k − hk))] = 0 (40)
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Applying Lemma 2, we obtain :

2xT(k)M1 [g1(k, x(k)) + g2(k, x(k − hk))] ≤ (ε−1
1 + ε−1

2 )xT(k)MT
1 M1x(k)

+ε1ρ2
1∥x(k)∥2 + ε2ρ2

2∥x(k − hk)∥2

(41)

2xT(k − hk)M2 [g1(k, x(k)) + g2(k, x(k − hk))] ≤ (ε−1
3 + ε−1

4 )xT(k)MT
2 M2x(k)

+ε3ρ2
1∥x(k)∥2 + ε4ρ2

2∥x(k − hk)∥2

(42)

2yT(k)M3 [g1(k, x(k)) + g2(k, x(k − hk))] ≤ (ε−1
3 + ε−1

4 )xT(k)MT
2 M2x(k)

+ε5ρ2
1∥x(k)∥2 + ε6ρ2

2∥x(k − hk)∥2

(43)

Using the Schur complement, we can deduce that

∆V(k)− (α − 1)V(k) < ξT(k)

((
3

∑
i=1

Ω̃i

)
− Ω̃4Ω̃−1

5 Ω̃T
4

)
ξ(k) < 0 (44)

which implies V(k + 1) < αV(k). Therefore, it infers that

V(k) < αV(k − 1) < α2V(k − 2) < . . . < αkV(0) (45)

Furthermore, the initial value of LKF can be obtained as follows :

V(0) = xT(0)Px(0) +
−1

∑
i=−h1

xT(i)Q1x(i) +
−h1−1

∑
i=−hk

xT(i)Q2x(i)

+
−hk−1

∑
i=−h2

xT(i)Q3x(i) + h1

−1

∑
i=−h1

−1

∑
j=i

yT(j)R1y(j)

+h12

−h1−1

∑
i=−h2

−1

∑
j=i

yT(j)R2y(j)

< σ1c1 + σ2c2 (46)

On the other hand, we know that

V(k) ≥ xT(k)Px(k) ≥ λmin(P̃)xT(k)Rx(k) > λ1xT(k)Rx(k) (47)

Then, we have :

xT(k)Rx(k) <
αN

λ1
(σ1c1 + σ2c2) < c2 (48)

Consequently, the proof is completed.
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Remark 4 It should be pointed out that there is difference between finite-time
stability and finite-time attractiveness. The first one is about the bound of the
system states in a specific time interval, while the latter is about the system
state reaching the equilibrium point in a finite-time.

Remark 5 Based on a LKF, new FTS criteria are given in Theorem 1 using some
free-weighting matrices. Then, in Theorem 2, less conservative results are ob-
tained by employing the reduced free-matrix-based summation inequality
given in Corollary 1. Reducing the variables order is one of the main indices
of the effectiveness of our method, especially if we take into account that
there is in this article a different approach from those given in the literature.

Theorem 2 The system (1) is finite time stable with respect to (c1, c2, R, N) if there
exist symmetric positive definite matrices P, Qi, R1, R2 ∈ ℜn×n, matrices Ui, Vi,
Mi, Sij ∈ ℜn×n, i, j = 1, 2, 3, and scalars λi, i = 1, 2, . . . , 7, εi > 0, i = 1, 2, . . . , 6,
α > 1, such that :

0 < λ1 I < P̃ < λ2 I, (49)

0 < Q̃1 < λ3 I, 0 < Q̃2 < λ4 I, 0 < Q̃3 < λ5 I, (50)

0 < R̃1 < λ6 I, 0 < R̃2 < λ7 I, (51)

(
−Ui − UT

i UT
i

∗ −R1

)
≤ 0, i = 2, 3, (52)

(
−Vi − VT

i VT
i

∗ −R2

)
≤ 0, i = 2, 3, (53)

Ξ11 Ξ12 Ξ13
∗ Ξ22 Ξ23
∗ ∗ Ξ33

 > 0, (54)


Ω̃1 + Ω̃2 + Ω̃3 Ω̃4 Π1Υ3 Π2Υ4

∗ Ω̃5 0 0
∗ ∗ −R1 0
∗ ∗ ∗ −R2

 < 0, (55)

σ1c1 + σ2c2 < α−Nc2λ1 (56)
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where

Υ1 = sym(diag{U1, 3U2, 5U3}),
Υ2 = sym(diag{V1, 3V2, 5V3, V1, 3V2, 5V3}),
Υ3 = [U1,

√
3U2,

√
5U3]

T ,

Υ4 = [V1,
√

3V2,
√

5V3, V1,
√

3V2,
√

5V3]
T ,

Ξ11 = Ξ22 = sym(diag{V1, 3V2, 5V3}), Ξ12 = S,

Ξ13 = Ξ23 = [V1,
√

3V2,
√

5V3]
T , Ξ33 = R2. (57)

Proof We can prove Theorem 2 in the same way as Theorem 1 using the sum-
mation inequality given in Corollary 1.

Now, we consider the discrete-time system with time-varying delay given
by :

x(k + 1) = Ax(k) + Bx(k − h(k))
x(θ) = φ(θ), θ ∈ [−h2,−h2 + 1, . . . , 0] (58)

Based on Theorem 1 and Theorem 2. the following criteria can be easily
derived.

Theorem 3 The system (1) is finite time stable with respect to (c1, c2, R, N) if there
exist symmetric positive definite matrices P, Q1, Q2, Q3, R1, R2 ∈ ℜn×n, symmetric
matrices Zi

i , Yi
i ∈ ℜn×n, i = 0, . . . , 3, matrices Zj

i , Y j
i ∈ ℜn×n, i, j = 0, . . . , 3

(i < j), Mi, Sij ∈ ℜn×n, i, j = 1, 2, 3, and scalars λi, i = 1, 2, . . . , 7, εi > 0,
i = 1, 2, . . . , 6, α > 1, such that :

0 < λ1 I < P̃ < λ2 I, (59)

0 < Q̃1 < λ3 I, 0 < Q̃2 < λ4 I, 0 < Q̃3 < λ5 I, (60)

0 < R̃1 < λ6 I, 0 < R̃2 < λ7 I, (61)

Zi
i ≤ sym(Z0

i ), Yi
i ≤ sym(Y0

i ), i = 2, 3, (62)


Z0

0 Z1
0 Z2

0 Z3
0

∗ Z1
1 Z2

1 Z3
1

∗ ∗ Z2
2 Z3

2
∗ ∗ ∗ Z3

3

 ≥ 0,


Y0

0 Y1
0 Y2

0 Y3
0

∗ Y1
1 Y2

1 Y3
1

∗ ∗ Y2
2 Y3

2
∗ ∗ ∗ Y3

3

 ≥ 0, (63)

(
Z S
∗ Z

)
> 0, (64)

Ω̃1 + Ω̃2 + Ω̃3 < 0, (65)

σ1c1 + σ2c2 < α−Nc2λ1. (66)
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Proof The proof of Theorem 3 can be directly derived from Theorem 1.

Theorem 4 The system (1) is finite time stable with respect to (c1, c2, R, N) if there
exist symmetric positive definite matrices P, Qi, R1, R2 ∈ ℜn×n, matrices Ui, Vi,
Mi, Sij ∈ ℜn×n, i, j = 1, 2, 3, and scalars λi, i = 1, 2, . . . , 7, εi > 0, i = 1, 2, . . . , 6,
α > 1, such that :

0 < λ1 I < P̃ < λ2 I, (67)

0 < Q̃1 < λ3 I, 0 < Q̃2 < λ4 I, 0 < Q̃3 < λ5 I, (68)

0 < R̃1 < λ6 I, 0 < R̃2 < λ7 I, (69)

(
−Ui − UT

i UT
i

∗ −R1

)
≤ 0, i = 2, 3, (70)

(
−Vi − VT

i VT
i

∗ −R2

)
≤ 0, i = 2, 3, (71)

Ξ11 Ξ12 Ξ13
∗ Ξ22 Ξ23
∗ ∗ Ξ33

 > 0, (72)

 Ω̃1 + Ω̃2 + Ω̃3 Π1Υ3 Π2Υ4
∗ −R1 0
∗ ∗ −R2

 < 0, (73)

σ1c1 + σ2c2 < α−Nc2λ1 (74)

where

Υ1 = sym(diag{U1, 3U2, 5U3}),
Υ2 = sym(diag{V1, 3V2, 5V3, V1, 3V2, 5V3}),
Υ3 = [U1,

√
3U2,

√
5U3]

T ,

Υ4 = [V1,
√

3V2,
√

5V3, V1,
√

3V2,
√

5V3]
T ,

Ξ11 = Ξ22 = sym(diag{V1, 3V2, 5V3}), Ξ12 = S,

Ξ13 = Ξ23 = [V1,
√

3V2,
√

5V3]
T , Ξ33 = R2. (75)

Proof We can follow the same way to prove Theorem 4.
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Remark 6 In order to get less conservative results, delay-dependent exponen-
tial stability criteria for continuous-time neutral systems is considered in [18].
Then, Jensen inequality, free-weighing matrix, and two delay-partitioning
method are used to derive the upper bound of the derivative of LKF. How-
ever, these results have conservatism to some extent, which exist room for
further improvement. Then, this weakness is well overcome in this article
by explicitly taking into account the relaxed summation inequality and sys-
tem discretization inherent to periodic sampling of the problem. On the other
hand, the stability criteria for continuous-time systems given in [26] is delay-
independent. It is well known that the delay-dependent criteria are less con-
servative than delay-independent criteria. Then, Theorem 3 and Theorem 4
show different and good results compared to [18] and [26].

4 Numerical examples

Example 1 Consider the system (1) with the following matrices :

A =

[
0.8 0

0.05 0.9

]
, B =

[
−0.1 0
−0.2 −0.1

]
Let R = I, α = 1.001, ε = 1.1, h1 = 2, c1 = 4.1, c2 = 60, and N = 90.

Applying Theorem 1 and Theorem 2, the maximum upper bound h2 of time-
varying delay is presented in Table 1 for different values of ρ1 and ρ2.

Table 1. Comparison of the maximum allowable delay h2 for different values
of ρ1 and ρ2.

(ρ1, ρ2) (0, 0) (0.01, 0.01) (0.01, 0.02) (0.02, 0.02) (0.03, 0.03)
[15] 12 9 8 7 6
Theorem 1 16 12 11 10 8
Theorem 2 16 12 11 10 8

As it is indicated in Table 1, the obtained values of h2 in this paper is larger
than those obtained in [15], and then the results are significantly improved.
On the other hand, it can be clearly seen that the value of h2 increases when
the values of the perturbations bounds ρ1 and ρ2 become smaller. Then, it is
clear that our approach is less conservative than those given in the literature.

Example 2 Now, we consider the system (58) with the following matrices :

A =

[
0.6 0

0.35 0.7

]
, B =

[
0.1 0
0.2 0.1

]
Taking R = I, α = 1.001, ε = 1.1, c1 = 2.1, c2 = 80, N = 80 and applying

the FTS results presented in Theorem 3 and Theorem 4, the maximum upper
bound h2 of time-varying delay is given in Table 2 for different values of h1.
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Fig. 1 Comparison of the maximum allowable delay h2 for different values of h1

Table 2. Comparison of the maximum allowable delay h2 for different values
of h1.

h1 2 3 4 5 6
[24] 6 6 7 8 9
[34] 8 8 9 10 11
[32] 10 11 12 13 14
[15] 13 14 15 16 17
Theorem 3 14 15 16 17 18
Theorem 4 14 15 16 17 18

Then, it can be seen from Table 2 that an increase in the values of h1 cor-
responds to an increase in values of the maximum upper bound h2. Also, the
values of h2 obtained in this paper are better than those given in [24], [34],
[32], [15] and then our results are less conservative. Thus, we can say that the
use of our summation inequality can gives more interesting results compared
than those obtained in the literature. Finally, to further illustrate these results,
simulations are given in Figure 1.

5 Conclusion

In this paper, FTS criteria for the discrete-time systems with nonlinear func-
tion and interval time-varying delays is discussed. The approach developed
here generalizes some of the existing ones, presents less conservative con-
ditions, and sheds new light on this important type of system. Then, based
on a LKF and using RFMBI inequality, new approximation of single summa-
tion appearing in the derivative of LKF is investigated. The presented work
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has profound implications for future studies and my can solve the practical
control problem. Finally, numerical examples are presented to show the ad-
vantage and effectiveness of our approach.
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