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1 Introduction
As early as 1972, G. Scarpi [21], based on an earlier work of Smit and de Vries [22] concerning rheological mod-
els with fractional derivatives, proposed an evolutive rheological model with fractional derivative with order
varying in time as an ultime generalization. His de�nition seems to us appealing; we adopt it here. More than
forty years later, in the contributions to Round Table Discussion "Fractional Calculus: Quo Vadimus? (Where
arewegoing?) held at ICFDA2014Catania (Italy), 23-25 June 2014,M. Fabrizio commentedon fractional deriva-
tives of variable order in the following words: I believe that a promising �eld of application of the fractional
calculus is to study problems where the α-coe�cient (order) of the fractional derivative is varying with time. In
spite of several theoretical and numerical papers on this topic, it seems to me that applications are not yet all
investigated. In fact, if in continuum mechanics we consider a visco-elastic materials described by a fractional
derivative, its α-order is constant and assigns the constitutive law of viscoelasticity. In many problems we ob-
serve a change in the nature of the material due to the deformation or simply to the time. Such variation leads
to a change of the α-exponent, that can especially be considered as a new variable of the problem. This can be
an important step and a qualitative leap for the applications that the fractional derivatives can help to resolve.
Phenomenawith α-order variable are evident in fatigue, in the plasticity but also for magnetic hysteresis in elec-
tromagnetism and in some problems of phase transitions. So I think that considering fractional derivatives of
variable order may be a promising way to apply fractional calculus to the above complex phenomena.
Let us mention that in the literature one may �nd several de�nitions of time variable order fractional deriva-
tive [4], [5], [23], [25], [12], [13], [14], and even the order of derivation varying in time and the unknown of the
system [20] to cite but a few. However, it seems to us that the one that should be adopted is the de�nition

Eduardo Cuesta, Department Matematica Aplicada, E.T.S.I. de Telecomunicacion, Campus Miguel Delibes, University of Val-
ladolid, Paseo Belen 15, 47011 Valladolid, Spain, E-mail: eduardo@mat.uva.es
*Corresponding Author: Mokhtar Kirane, Department of Mathematics, College of Art and Sciences, Khalifa University of Sci-
ence and Technology, Abu Dhabi, United Arab Emirates, E-mail: mokhtar.kirane@ku.ac.ae
Ahmed Alsaedi, Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of
Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia, E-mail: aalsaedi@kau.edu.sa
Bashir Ahmad, Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of
Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia, E-mail: bashirahmad_qau@yahoo.com

https://doi.org/10.1515/anona-2020-0182


1302 | EduardoCuesta et al., On the sub–di�usion fractional initial valueproblemwith timevariable order

based on the Laplace transform.
Here after recalling the de�nition proposed by Scarpi, we address the important Leibniz rule from which we
derive an important inequality that is useful to obtaining estimates for fractional di�erential equations as it
was demonstrated for the case of a constant fractional order in [1].
Before stating and proving our results, we recall some de�nitions and preliminany results.

2 Background
Let us �rst recall the de�nition we consider along the paper; we will denote by L and L−1 the Laplace trans-
form and the inverse Laplace transform operators, respectively. Let α : [0, +∞) → (0, 1) be a function that
admits the Laplace transform denoted by α̃(z) := L(α)(z), for z belonging to certain complex domainD con-
taining C+

a := {z ∈ C : Re(z) ≥ a} (assume a > 0). For instance, a variety of piecewise continuous functions
of exponential growth. Moreover, assume now and hereafter that t > 0means to say a.e. t > 0.

De�nition 1. Given f ∈ L1([0, +∞)), we de�ne

∂−α(t)f (t) :=
t∫

0

k(t − s)f (s)ds, t > 0, (2.1)

where k : [0, +∞) → R is given in terms of the Laplace transform as

k(t) = L−1(K)(t) = 1
2πi

∫
Γ

etzK(z)dz, where K(z) = 1
zzα̃(z)

z ∈ D′, (2.2)

where D′ is a certain complex domain such that C+
a ⊂ D′, Γ is a complex path according to the Bronwich

formula for the inversion of the Laplace transform whose precise choice is discussed below, and k(t) vanishes
for t < 0. Note that in the case of α(t) = α = constant, the de�nition (2.1)matches the very well known de�nition
of fractional integral of order α in the sense of Riemann–Liouville, this is why this de�nition is often known as
the fractional integral of variable order in the sense of Riemann–Liouville.

Now we are in a position to de�ne the fractional derivative of variable order α(t) (FDVO). To this end there
are typically two di�erent ways, both in terms of the de�nition of the fractional integral (2.1)–(2.2).

In spite of the regularity does not a matter here, to be precise the functions involved in the following results
are required to belong to a convenient Sobolev space. In fact denote

Wm,p([0, +∞)) :=
{
f ∈ Lp([0, +∞)) : ∂n f ∈ Lp([0, +∞)), 0 ≤ n ≤ m

}
.

Now, given f ∈ W1,1([0, +∞)), and α : [0, +∞) → (0, 1):

1st.- We de�ne the FDVO as

∂α(t)f (t) := d
dt

{
∂α(t)−1f (t)

}
, t > 0. (2.3)

Note that α(t)−1 < 0, therefore, inside the brackets, we apply de�nition (2.1)–(2.2)with order1−α(t) instead
of α(t), to have

∂α(t)f (t) = k(t)f (0) +
t∫

0

k(t − s)f ′(s)ds, t > 0, (2.4)

where f ′ stands for the �rst time derivative of f , and k(t) is given by

k(t) = L−1(K)(t) = 1
2πi

∫
Γ

etzK(z)dz, now with K(z) = 1
z1−zα̃(z)

, (2.5)
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and Γ is a suitable path in the complex plane. The choice of Γ is precisely discussed later. The equality (2.4)
has been already noticed for α(t) = α = constant (e.g. formula (2.70), pp. 35 in [10], among many others
references). In order to keep the notation as simple as possible and while not confusing, we denote again
the Laplace transform of the convolution kernel by K(z).

2nd.- Alternatively one may de�ne the FDVO, for 0 < α(t) < 1 for f di�erentiable, as

∂α(t)f (t) := ∂α(t)−1
{

d
dt f (t)

}
= ∂α(t)f (t) =

t∫
0

k(t − s)f ′(s)ds, t > 0, (2.6)

where k is de�ned by (2.5).

Several comments related to the previous proposed de�nition for the FDVO can be made.
First of all note that, unlike what happens with the de�nition (2.3), with the de�nition (2.6) if f (t) =

constant, then the fractional derivative turns out to be zero. Moreover, if f (0) = 0, then both de�nitions
coincide. Although both de�nitions show some di�erences, the treatment turns out to be quite similar for
both, as we will show below.

Moreover, based on a fact that has already been observed in [6, 17, 18], we can assert that (2.2) and (2.5) are
meaningful under very weak restriction on α̃. In particular, let K(z) be a complex–valued or operator–valued
function, analytic outside of a complex sector of angle θ, θ < π/2, denoted by

Sθ := {z ∈ C : | arg(−z)| < θ}, (2.7)

and such that there exist M > 0 and β ∈ R, satisfying

‖K(z)‖ ≤ M
|z|β

, for z ∈ ̸ Sθ . (2.8)

As explained in [6, 17, 18], K(z) stands for the Laplace transform of a distribution k(t) in the real line, so that
k(t) = 0, for t < 0, whose singular support is empty, or merely concentrated at t = 0 (e.g. if β < 0), and which
is analytic for t > 0. In that case the inverse (distributional) Laplace transform, i.e. k(t), admits the integral
representation

k(t) = 1
2πi

∫
Γ

etzK(z)dz, for t > 0,

for a convenient path Γ in the complex plane running outside the sector of analyticity Sθ, e.g. one running
parallel to the boundary of Sθ, and with increasing imaginary part. We will precisely state below one of these
paths, according to our interest for the proofs.

In this context, let us recall the following lemma which has already been proven in [6], Lemma 2.1; it
provides useful bounds for k(t).

Lemma 1. Let K(z) be a analytic function outside a complex sector Sθ, 0 < θ < π/2, satisfying (2.8) for certain
M > 0 and β ∈ R.

Then there exists C > 0depending solely onM, β and θ (but not on t) such that the inverse Laplace transform
of K(z), k(t), is bounded as follows

‖k(t)‖ ≤ Ctβ−1, t > 0. (2.9)

Observe that bound (2.9) suggests the lack of regularity of k(t) at t = 0, if β < 1. Moreover, note that k(t) is
locally integrable is β > 0.

A more general case might be considered if instead of the sector Sθ of analyticity, one considers a shifted
sector a + Sθ = {a + z : z ∈ Sθ}, for a ≥ 0. However, since no noticeable additional di�culties arise in that
case, and for the sake of the simplicity of the presentation of results, we merely consider the case a = 0, i.e.
Sθ.
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Before going ahead in the paper, we make some assumptions which will be required when studying the
solutions of the sub–di�usion initial value problems of variable order α(t) in Section 4. These assumptions
are related to sectoriality angle θ, which will also a�ect the linear operators considered there as it will be
discussed in that section, and the fractional order α(t), and more particularly its Laplace transform α̃(z). In
fact, assume the following:

[H0]. The Laplace transform of α(t), α̃(z) := L(α)(z), exists outside a sector Sθ, for 0 < θ < π/2.
[H1]. Denote

g(z) := zα̃(z); gR(z) := Re(g(z)); gI(z) = Im(g(z)), z ∉ Sθ .

There exist R > 0 large enough, and 0 < m1,m2, C1 < 1, satisfying

1 − C1 ≤ C1, (expectedly C1 ≈ 1), and 1 − C1 ≤ m2,

such that gI(z) is bounded, for |z| ≤ R,∣∣gI(z) ln |z|∣∣ < C1(π − θ), |z| ≥ R,

and

0 < m1 ≤ gR(z) ≤ m2 < 1, z ∈ ̸ Sθ .

[H2]. The analyticity angle θ satis�es

0 < θ < π2

(
2 − m2

1 − C1

)
≤ π2 .

Note that, by hypothesis [H1], we have that 2 − m2/(1 − C1) ≤ 1, so this hypothesis is meaningful.

On the other hand note that, under Hypotheses [H0]–[H2] we have for (2.5),

‖K(z)‖ ≤ 1
|z|1−m2

, z ∉ Sθ , and by Lemma 1 ‖k(t)‖ ≤ Ct−m2 , t > 0. (2.10)

Therefore these inequalities suggest a lack of regularity of k(t) as t → 0+, and that the function k(t) is locally
integrable in R+. The same can be said for (2.2) related to the regularity and integrability since

‖K(z)‖ ≤ 1
|z|m1

, z ∈ ̸ Sθ , and by Lemma 1 ‖k(t)‖ ≤ Ctm1−1, t > 0. (2.11)

Finally, before ending this section we provide some examples of functions α(t) which satisfy [H0]–[H1],

α1(t) = 0.5 + 0.4 sin(t) t > 0,
(
α̃1(z) =

0.5
z + 0.4

1 + z2

)
,

α2(t) = 0.5 + 0.4 cos(t) t > 0,
(
α̃2(z) =

0.5
z + 0.4z

1 + z2

)
,

α3(t) = 0.9 e−t t > 0,
(
α̃3(z) =

0.9
1 + z

)
.

3 Leibniz rule and integration–by–parts formula for fractional
derivatives with time variable order

A Leibniz rule for fractional derivatives with constant order has already been provided in [1] as a generaliza-
tion of the classical product rule for integer derivatives. It can be observed that this derivation rule (and others
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of fractional type one can �nd in the literature) involve additional terms inspired by the non local character
of the fractional derivatives, particularly in the case of FDVO. One of our main contributions in this paper
is to go further in this generalization by extending such a property to the fractional derivatives, now with a
variable order α(t).

On the one hand it is expected that the Leibniz rule we achieve will adopt di�erent forms depending
on the de�nition of FDVO one considers. On the other hand the de�nitions of FDVO we consider here may
provide the simplest product rule among the ones provided by other de�nitions. An expected and desirable
fact is that the Leibniz rule one achieves for fractional derivatives and particularly the ones achieved here for
FDVO should be coherent with the classical product rule. That is the case for the equalities derived in this
section.

The next theorem stands for the main result of this section.

Theorem 1. Let f , g be two functions belonging toW1,1([0, +∞)). According to De�nition (2.3), there holds

∂α(t)
(
fg
)
(t) = f (t)∂α(t)g(t) + g(t)∂α(t)f (t) + ∂α(t)(h(t, ·))(t) − k(t)f (t)g(t), t > 0, (3.1)

and according to De�nition (2.6)

∂α(t)(fg)(t) = f (t)∂α(t)g(t) + g(t)∂α(t)f (t) + ∂α(t)(h(t, ·))(t), t > 0, (3.2)

where

h(t, s) := (f (s) − f (t))(g(s) − g(t)), 0 < s < t.

Proof. Consider �rst the De�nition (2.3). On the one hand,

∂α(t)
(
fg
)
(t) = d

dt

( t∫
0

k(t − s)f (s)g(s)ds
)

= k(t)f (0)g(0) −
t∫

0

k(t − s)
(
f ′(s)g(s) + f (s)g′(s)

)
ds;

on the other hand

f (t)∂α(t)g(t) = f (t)
{
k(t)g(0) −

t∫
0

k(t − s)g′(s)ds
}
,

g(t)∂α(t)f (t) = g(t)
{
k(t)f (0) −

t∫
0

k(t − s)f ′(s)ds
}
.

Therefore,

∂α(t)
(
f (t)g(t)

)
− f (t)∂α(t)g(t) − g(t)∂α(t)f (t)

= k(t)
{
f (0)g(0) − f (t)g(0) − f (0)g(t)

}
−

t∫
0

k(t − s)
{
f ′(s)g(s) + f (s)g′(s) − f (t)g′(s) − f ′(s)g(t)

}
ds

= k(t)
{
(f (0) − f (t))(g(0) − g(t)) − f (t)g(t)

}
−

t∫
0

k(t − s) d
ds
{
(f (s) − f (t))(g(s) − g(t))

}
ds.

Moreover by (2.4) we have

∂α(t)
(
f (t)g(t)

)
− f (t)∂α(t)g(t) − g(t)∂α(t)f (t)
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= −k(t)f (t)g(t) − k(t)h(t, 0) +
t∫

0

k(t − s)∂h∂s (t, s)ds

= −k(t)f (t)g(t) + ∂α(t)
(
h(t, ·)

)
(t),

and the proof of the equality (2.3) ends.
For the De�nition (2.6), we merely recall that

∂α(t)
(
fg
)
(t) =

t∫
0

k(t − s) d
ds

(
f (s)g(s)

)
ds =

t∫
0

k(t − s)
(
f ′(s)g(s) + f (s)g′(s)

)
ds,

from which (3.2) straightforwardly follows, and the proof of the theorem ends.

Here we have to highlight several facts.

– The terms ∂α(t)(h(t, ·))(t) − k(t)f (t)g(t) in (3.1) and ∂α(t)(h(t, ·))(t) in (3.2) stand for the di�erence (in the
form of an additional term) with respect to the classical product rule, i.e. the case α(t) ≡ 1. Moreover,
the formulation (3.1) and (3.2) of the fractional product rules according to the de�nitions (2.3) and (2.6),
respectively, may represent the simplest representations if compared to the ones achieved by considering
other de�nitions of FDVO.

– It is straightforward to check that equality (3.1) (analogously (3.2)) is satis�ed in the particular case of
α(t) ≡ α, 0 < α < 1. It can be easily illustrated by taking for example f (t) = tp, g(t) = tq, p, q ∈ Z+, and
any 0 < α < 1. In particular, in the constant case α(t) ≡ α, 0 < α < 1, the product rule achieved here
perfectly matches with the one derived in Eq. 3.12, [2],

∂α(fg)(t) = f (t)∂αg(t) + g(t)∂α f (t) − α
Γ(1 − α)

t∫
0

(f (s) − f (t))(g(s) − g(t))
(t − s)α+1 ds − t

−α f (t)g(t)
Γ(1 − α) , (3.3)

(∂α stands for the fractional derivative in the sense of Riemann–Liouville of order α > 0).
– Another relevant fact is that both equalities (3.1) and (3.2)) are coherent with the classical product rule,

namely the classical product rule turns out to be the limit case as α(t) tends to the constant function α(t) ≡
1. In that case the corresponding limit of the convolution kernel in the sense of distributions, and always
according to de�nition (2.5), turns out to be k(t) = δ0(t) where δ0(t) stands for Dirac’s delta distribution
with density concentrated at t = 0. In that manner, since k(t) = 0, for t < 0, then k(t)f (t)g(t) = 0, for t < 0.
Moreover, according to the de�nition (2.3)

∂α(t)(h(t, ·))(t) = d
dt

{
∂α(t)−1h(t, ·)(t)

}
,

and in the limit

∂α(t)−1h(t, ·)(t) =
t∫

0

k(t − s)h(t, s)ds =
t∫

0

δ0(t − s)h(t, s)ds = h(t, t) = 0, t > 0.

Therefore it comes ∂α(t)(h(t, ·))(t) = 0. Similarly, according to the de�nition (2.6)

∂α(t)(h(t, ·))(t) = ∂α(t)−1 d
ds h(t, ·)(t),

and since in the limit

∂α(t)(h(t, ·))(t) =
t∫

0

δ0(t − s)
d
ds h(t, s)ds =

d
ds h(t, s)|s=t = 0, t > 0,

both equalities (3.1) and (3.2) boil into the usual Leibniz rule

(f (t)g(t))′ = f (t)g′(t) + f ′(t)g(t), t > 0,

as conjectured above.
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– Finally, in spite of the inequality

∂α
(
f 2(t)

)
≤ 2f (t)∂α

(
f (t)
)
, t > 0, (which implies f (t)∂α f (t) ≥ 0)

has been proven in [2] from the equality (3.3) for the case of fractional derivatives of constant order α > 0,
in the case of the derivatives with time variable order considered here, the inequality

∂α(t)
(
f 2(t)

)
≤ 2f (t)∂α(t)

(
f (t)
)
, (3.4)

is not satis�ed in general. Only if we can guarantee that ∂α(t)(h(t, ·))(t) − k(t)f (t)g(t) ≤ 0, (or simply
∂α(t)(h(t, ·))(t) = 0 depending on the de�nition one adopts) for t > 0, the inequality (3.4) could become
valid, although this is not obvious at all for a so general class of functions α(t) we are here considering,
i.e., α(t) under the hypotheses made in Section 2.

From Theorem 1 several integration–by–parts formulas for FDVO can be straightforwardly derived. We
show two of such formulas in the following corollaries.

Corollary 2. Let f , g be two functions belonging toW1,1([0, +∞)). According to the De�nition (2.3)we have the
following integration–by–parts formula for FDVO

∂−α(t)
(
∂α(t)f (t) · g(t)

)
= f (t)g(t) − ∂−α(t)

(
f (t) · ∂α(t)g(t)

)
+ ∂−α(t)

(
k(t)f (t)g(t)

)
, t > 0, (3.5)

and according to the De�nition (2.6)

∂−α(t)
(
∂α(t)f (t) · g(t)

)
= f (t)g(t) − f (0)g(0) − ∂−α(t)

(
f (t) · ∂α(t)g(t)

)
+ h(t, 0), t > 0, (3.6)

where k(t) is in both cases the kernel de�ned in (2.5).

Proof. Let φ be a function belonging to L1([0, +∞)).
First of all, we show an equality that will be useful for the proof. In fact if we consider the De�nition (2.3),

then applying the Laplace transform we straightforwardly have that

∂−α(t)
(
∂α(t)φ(t)

)
= ∂−α(t)

(
d
dt ∂

α(t)−1φ(t)
)
= 1
2πi

∫
Γ

etzL(φ)(z)dz = φ(t), t ≥ 0. (3.7)

Note that this equality means that ∂−α(t) is the inverse operator of ∂α(t). Moreover if α(t) ≡ 1 and φ(0) = 0,
then this equality coincides with the classical one.

In the samemanner if one takes the de�nition (2.6) there is a subtle di�erence, in fact applying again the
Laplace transform we have

∂−α(t)
(
∂α(t)φ(t)

)
= ∂−α(t)

(
∂α(t)−1φ′(t)

)
= 1

2πi

∫
Γ

etzL(φ′)(z)dz

= 1
2πi

∫
Γ

etz
(
L(φ)(z) − h(0)z

)
dz

= φ(t) − φ(0), t ≥ 0. (3.8)

This formula perfectly matches with the classical one.
Now consider De�nition (2.3). Thanks to Theorem 1 and equality (3.7), we have

∂−α(t)
(
∂α(t)f (t) · g(t)

)
= ∂−α(t)

(
∂α(t)

(
f (t)g(t)

) )
− ∂−α(t)

(
f (t) · ∂α(t)g(t)

)
−∂−α(t)

(
∂α(t)(h(t, ·))(t)

)
+ ∂−α(t)

(
k(t)f (t)g(t)

)
= f (t)g(t) − h(t, t) − ∂−α(t)

(
f (t) · ∂α(t)g(t)

)
+ ∂−α(t)

(
k(t)f (t)g(t)

)
,

and the equality (3.5) follows (recall that h(t, t) = 0, for t ≥ 0).
In the same fashion (3.6) is obtained.



1308 | EduardoCuesta et al., On the sub–di�usion fractional initial valueproblemwith timevariable order

Notice that, by the same arguments as in Theorem 1, as α(t) tends to the constant function α(t) ≡ 1,
the kernel k(t) tends in the distributional sense to Dirac’s delta distribution δ0(t), and therefore the term
∂−α(t)

(
k(t)f (t)g(t)

)
tends to δ0(t)f (0)g(0) = 0 therefore the equality stated in Corollary 2 reads

t∫
0

f (s)g′(s)ds = f (t)g(t) −
t∫

0

f ′(t)g(s)ds, t > 0. (3.9)

Therefore, if f (0)g(0) = 0 (in particular if f (0) = g(0) = 0), then (3.9) is coherentwith the classical integration–
by–parts formula.

However according to the De�nition (2.6) although f (0) = g(0) = 0, the formulation is not coherent with
classical case since h(t, 0) = ̸ 0.

An alternative form of the integration–by–parts formula for FDVO in given in the following corollary.
This time the corollary is stated only for the De�nition (2.3) since we did not �nd the related formula for the
De�nition (2.6) coherent with the classical formula i.e. for α(t) ≡ 1.

Corollary 3. Let f , g be two functions belonging toW1,1([0, +∞)). According to the De�nition (2.3)we have the
following integration–by–parts formula for FDVO

T∫
0

∂α(t)f (t) · g(t)dt = −
T∫

0

f (t) · ∂α(t)g(t) +
T∫

0

(
k(T − t) − k(t)

)
f (t)g(t)dt +

T∫
0

k(T − t)h(t, T)dt, (3.10)

for t > 0, where k(t) is the kernel de�ned in (2.5).

Proof. By Theorem 1, one has
T∫

0

∂α(t)f (t) · g(t)dt =
T∫

0

∂α(t)(fg)(t)dt −
T∫

0

f (t) · ∂α(t)g(t)dt +
T∫

0

∂α(t)(h(t, ·))(t)dt −
T∫

0

k(t)f (t)g(t).

If one considers the De�nition (2.3), then
T∫

0

∂α(t)(fg)(t)dt =
T∫

0

d
dt

(
∂α(t)−1(fg)(t)

)
dt = ∂α(t)−1(fg)(t)

∣∣∣T
0

= ∂α(t)−1(fg)(T) =
T∫

0

k(T − t)f (t)g(t)dt,

and since
T∫

0

∂α(t)(h(t, ·))(t)dt =
T∫

0

d
dt ∂

α(t)−1(h(t, ·))(t)dt = ∂α(t)−1h(t, T) =
T∫

0

k(T − t)h(t, T)dt,

the equality (3.10) straightforwardly follows.

The equality (3.10) turns out to be coherent with the classical integration–by–parts formula as α(t) tends
to the function 1 since as above k(t) tends in the distributional sense to Dirac’s delta distribution δ0(t) and
therefore,

T∫
0

(
k(T − t) − k(t)

)
f (t)g(t)dt tends to f (T)g(T) − f (0)g(0),

and
T∫

0

k(T − t)h(t, T)dt tends to h(T, T) = 0.
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In that case, that is if α(t) tends to the constant function α(t) ≡ 1, thenwehaveagain the classical integration–
by–parts formula

T∫
0

f ′(t) · g(t)dt = f (T)g(T) − f (0)g(0) −
T∫

0

f (t) · g′(t).

4 On the initial data for fractional ODE’s

4.1 Formulation

In this section, we formulate precisely the sub–di�usion initial value problem with time dependent order
fractional derivatives with particular attention to the choice of the initial data. In fact, we here discuss how
the initial data of the value problem has to be chosen in coherence with the regularity of the solution and the
variable order of the fractional derivatives in the equation.

Another issue is the time regularity of the solution of the fractional initial value problems with non con-
stant order. In the case of constant order α(t) = α the regularity has been already studied [6] in the context
of the numerical solutions to such a kind of problems. Several properties of the fractional di�usion equation
with time dependent order, including the time regularity, have been already studied in [8] if 1 < α(t) < 2.
Here, we show the precise form of the non regular part of the solution as t → 0+ in the case of 0 < α(t) < 1.
This is a crucial subject for instance when discretizing in time such a kind of equations since this lack of
regularity restricts the order of convergence of the numerical schemes.

We conclude this section with the study of the asymptotic behavior of the solution of such a initial value
problems.

For the shortness of the presentation and since no relevant di�erences arise on the proofs, in this section
we solely focus on the FDVO given by (2.3). Therefore consider the abstract time varying order fractional
di�erential equation

∂α(t)u(t) = Au(t) + f (t), t > 0, (4.1)

where A is a linear operator, f stands for a suitable source term, and where we adopt the de�nition (2.3) for
the FDVO.

First of all by the de�nition (2.3)–(2.5) we have that

∂α(t)u(t) = d
dt

(
∂α(t)−1u(t)

)
= d

dt

 1
2πi

∫
Γ

etzK(z)U(z)dz

 , (4.2)

where U(z) represents the Laplace transform of u(t), and K(z) is de�ned by (2.5). Therefore, the Laplace trans-
form in both(4.2) leads to

L(∂α(t)u(·))(z) = zK(z)U(z) − ∂α(t)−1u(t)
∣∣∣
t=0

.

In the same manner the Laplace transform in both sides of (4.1) leads to

zK(z)U(z) − ∂α(t)−1u(t)
∣∣∣
t=0

= AU(z) + f̃ (z), z ∈ D, (4.3)

where f̃ (z) stands for the Laplace transform of f (t), and D for a complex domain in C/Sθ according to the
choice of θ below. Though that the resolvent (zK(z)−A)−1 of the operator A exists (as it will happen according
to the functional setting stated below) we have

U(z) = (zK(z) − A)−1
(
∂α(t)−1u(t)

∣∣∣
t=0

+ f̃ (z)
)
. (4.4)
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Expressions (4.3) or (4.4) actually suggest that the initial data for (4.1) must be

∂α(t)−1u(t)
∣∣∣
t=0

= u0, (4.5)

which will be consistent with the regularity of u(t) stated in Theorem 4 below, and advances the lack of reg-
ularity of u(t) at t = 0.

Now, we are in a position to formulate precisely the fractional sub–di�usion initial value problem with
non constant order we study in this section. Here, we opt for a very general/abstract framework which is the
one of the linear sectorial operators. In fact, consider ∂α(t)u(t) = Au(t) + f (t), t > 0,

∂α(t)−1u(t)
∣∣∣
t=0

= u0, (the initial data),
(4.6)

where f ∈ L1([0, +∞), X), X stands for a complex Banach space, and the linear operator A : D(A) ⊂ X → X
is a θ–sectorial operator, for 0 < θ < π/2 in X. Let us recall that a linear and closed operator A is θ–sectorial
if its resolvent R(z) = (zI − A)−1 (where I is the identity operator in X) is analytic outside the sector Sθ in the
sense of (2.8) with β = 1, i.e. there exists M > 0, such that R(z) is analytic outside the sector

Sθ := {z ∈ C : | arg(−z)| < θ}, and satis�es ‖(zI − A)−1‖X→X ≤
M
|z| , z ∈ ̸ Sθ .

For the sake of the simplicity of the presentation, and without loss of generality, as we have discussed in
Section 2 we consider a non shifted sector Sθ (according to the notation in Section 2 a = 0). Moreover if not
confusion, the we denote by simplicity ‖ · ‖ instead of ‖ · ‖X→X.

Note that a lot of linear operators �t in that general framework, e.g. complex scalars, �nite dimensional
operators like matrices (e.g. the ones coming out frommost of the spatial discretization of elliptic operators),
or in�nite dimensional operators (like Laplacian ∆, or fractional powers of the Laplacian −(−∆)β with β > 0),
and so on.

Moreover, the assumptions [H0]–[H2] arising from the de�nition of FDVO we have opted for, force us to
make additional assumptions now for A. In fact assume

[H3]. A is a θ–sectorial operator such that the sectoriality angle θ obeys the Hypothesis [H2].

4.2 Regularity

This section is devoted to study the regularity of the solution of (4.6) under the hypotheses [H0]–[H3] stated in
previous sections, in particular the statement of the theorem presented in this section shows how far goes the
lack of regularity at t = 0 of the mild solution of (4.6) or in other words how is the structure of the singularity
of the solution as t → 0+.

Under the Hypotheses [H0]–[H3], the resolvent (zI−A)−1 exists and the equality (4.4) is nowmeaningful,
for z ∈ ̸ Sθ. But even more, the same hypotheses unable us to apply the Bromwich formula for the inverse
Laplace transform to obtain a closed form of the mild solution of (4.6)

u(t) = 1
2πi

∫
Γ

ezt(zK(z) − A)−1(u0 + f̃ (z))dz =
1
2πi

∫
Γ

ezt(zzα̃(z) − A)−1(u0 + f̃ (z))dz, t > 0, (4.7)

where Γ is a suitable complex path connecting −i∞ and +i∞ with increasing imaginary part. We should not
get confused with the complex path Γ considered in (2.3)-(2.5) and the one in (4.7) in spite of the underlaying
ideas to de�ne one of these paths are the same in both cases. Let us de�ne for (4.7) one of these complex
paths that is suitable for us, in particular according to Hypotheses [H0]–[H3] one may de�ne Γ lying outside
the sector Sθ as Γ = Γ1 ∪ Γ2 where

Γ1 : γ1(ρ) := ρ e±iΨ , ρ ≥ R, for R = 1
t , (for each t > 0) (± means upper and lower branches),(4.8)
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Γ2 : γ2(φ) := R eiφ , −Φ ≤ φ ≤ Φ, with Φ := (1 − C1)(π − θ)
m2

. (4.9)

It is straightforward to see that the path Γ de�ned by (4.8)–(4.9) satis�es the following properties: zK(z) ∉ Sθ
for z ∈ Γ, Γ keeps outside of Sθ, and the real part of z is negative for all z ∈ Γ1.

The representation (4.7) is now completely determined once determined the complex path (4.8)–(4.9),
and the mild solution of (4.6) can be written in terms of the corresponding evolution operator, i.e. we can
write

u(t) = E(t)u0 +
t∫

0

E(t − s)f (s)ds, where E(t) := 1
2πi

∫
Γ

etz(zzα̃(z) − A)−1 dz, t > 0, (4.10)

where Γ is de�ned by (4.8)–(4.9). Note that it serves as a proof of the well posedness of (4.6).
Next theorem shows the regularity of the solution of (4.6) depending on the regularity of the initial data

u0, and source term f (t).

Theorem 4. Under the hypotheses [H0]–[H3] for A and α(t), if u0 ∈ D(Ap)where p := max{r ∈ Z+ : rm1−1 <
0}, and f ∈ C2([0, T], X), then the mild solution of (4.6) can be written as

u(t) =
∑

(r,s)∈J

kr,s(t) + v(t), t > 0, J = {(r, s) : r ∈ Z+, s ∈ Z+ ∪ {0}, rm1 − 1 + s < 0}, (4.11)

where, for each (r, s) ∈ J, there exists C > 0 (a generic constant which may change in each case) independent
on t, such that

‖kr,s(t)‖ ≤ Ctrm1−1+s , t → 0+, (4.12)

and v ∈ C([0, T], X).

Proof. The proof makes use of the superposition principle with the cases f ≡ 0 �rst, then with u0 = 0.
We �rst consider f ≡ 0, and de�ne, for (r, 0) ∈ J,

Kr,0(z) =
1
2πi

∫
Γ

etz 1
zrzα̃(z)

Ar−1u0,

where Γ is the complex path (4.8)–(4.9). We now prove that kr,0(t) = L−1(Kr,0)(t), for t > 0, are the functions
provided by the statement of the theorem, and in particular that

u(t) −
∑

(r,0)∈J

kr,0(t),

is regular, for t ≥ 0. To prove it let’s we go back to the Laplace domain where we have

U(z) −
∑

(r,0)∈J

Kr,0(z) = 1
2πi

∫
Γ

etz
(zzα̃(z) − A)−1u0 − ∑

(r,0)∈J

1
zrzα̃(z)

Ar−1u0

 dz

= 1
2πi

∫
Γ

etz 1
zpzα̃(z)

(zzα̃(z) − A)−1Apu0 dz.

By the sectoriality of A, ∥∥∥∥ 1
zpzα̃(z)

(zzα̃(z) − A)−1
∥∥∥∥ ≤ M∣∣z(p+1)zα̃(z)∣∣

and de�ning the function v(t) as follows,

v(t) := u(t) −
∑

(r,0)∈J

kr,0(t), t > 0,
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we have by Lemma 2.9 that there satis�es,

‖v(t)‖ =

∥∥∥∥∥∥u(t) −
∑

(r,0)∈J

kr,0(t)

∥∥∥∥∥∥ = O(t(p+1)m1−1), t → 0+.

Since by the de�nition of p, (p + 1)m1 − 1 ≥ 0, the regularity of v(t) is proven as said in the statement of the
theorem. The bounds for each kr,0(t), for (r, 0) ∈ J, straightforwardly follows from Lemma 2.9.

Moreover the contribution of remainder terms kr,s(t) (s ≠ 0), i.e. the case u0 ≡ 0 and f = ̸ 0, follows
similar steps merely by having into account the regularity of f (t), and consequently that f (t) can be written
as

f (t) = f (0) + f ′(0)t + Rf (t), t > 0,

where Rf (t) stands for the Taylor residual of f around t = 0.
Finally, let us show the coherence of (4.11) with the choice of the initial data. In fact, if we take the frac-

tional integral of order 1 − α(t) of u(t) we have

∂−(1−α(t))u(t) =
∑

(r,s)∈J

∂−(1−α(t))kr,s(t) + ∂−(1α(t))v(t), t > 0,

which, in the Laplace domain and according to the de�nition of kr,s(t), reads

U(z)
z1−zα̃(z)

= 1
z1−zα̃(z)

u0
zzα̃(z)

+
∑

(r,s)∈J−{(1,0)}

1
z1−zα̃(z)

Kr,s(z) +
V(z)
z1−zα̃(z)

,

whose inverse Laplace transform turn out to be zero at t = 0 for all terms in the left hand side, excepting the
�rst one, which is exactly u0 as expected. This concludes the proof.

Note that the spatial regularity of u0 is too demanding for practical cases, in fact if m1 is close to 0 we may
require a very high spatial regularity for u0 which might be unacceptable in practical cases. However, a case
particularly interesting is the case m1 = 1/2 (see e.g. [9]) where the required regularity is u0 ∈ D(A) which
is commonly acceptable in practice. In the scalar case (i.e. A being merely a constant or even a matrix) this
discussion is meaningless.

4.3 Asymptotic behavior

We conclude this section with the study of the asymptotic behavior of the solution of (4.6). First of all note
that, the asymptotic behavior is determined merely by the evolution operator (4.10) of the problem, in other
words it does not depend on u0, therefore we state the following theorem in terms of the evolution operator
E(t).

Theorem 5. Under the hypotheses [H0]–[H3] for A and α(t), there exists a constant C > 0, such that

‖E(t)‖X→X ≤ Ctm2 , as t → +∞,

where E(t) is the evolution operator given in (4.6), and m2 is the constant stated in the Hypothesis [H1].

Proof. The proof consists of two parts: The behavior of E(t) over Γ1 and Γ2 according to (4.8)–(4.9) respec-
tively. Therefore, the evolution operator (4.10) reads

E(t) = I1(t) + I2(t) where Ij(t) :=
1
2πi

∫
Γj

ezt(zzα̃(z) − A)−1 dz, j = 1, 2

Assume that t > 0 is large enough since the asymptotic behavior as t → +∞ is the matter.
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First case. If z ∈ Γ1, then z = ρ e±iΦ, for ρ ≥ R = 1/t. From the sectoriality property of A it follows

‖I1(t)‖ ≤
1
2π

∫
Γ1

| ezt| ‖(zzα̃(z) − A)−1‖ |dz| ≤ M2π

∫
Γ1

| ezt|
|zzα̃(z)|

|dz|.

On the other hand by Hypothesis [H1] there exist cm , Cm > 0 such that cm ≤ exp(− arg(z)gI(z)) ≤ Cm, for
z ∈ Γ1. Henceforth

|zzα̃(z)| = exp(gR(z) ln |z| − arg(z)gI(z)) ≥ exp(m2 ln(1/t))cm = cm
tm2

, t > 0,

and

‖I1(t)‖ ≤
Mtm2

2πcm

∫
Γ1

| ezt| |dz| = CMt
m2

2πcm
, (4.13)

where, by the de�nition of Γ1, C =
∫
Γ1 | e

zt| |dz| > 0 is independent on t.
Second case. If z ∈ Γ2, then z = (1/t) eiφ, for −Φ ≤ φ ≤ Φ. With the same arguments as in the �rst case it

is straightforward that

‖I2(t)‖ ≤
Mtm2

2πcm

∫
Γ2

| ezt| |dz| = CMt
m2

2πcm
, (4.14)

where, now by the de�nition of Γ2, C =
∫
Γ2 | e

zt| |dz| > 0 is again independent on t .
Bounds (4.13) and (4.14) end the proof.

Here we have to highlight two relevant facts. The asymptotic behavior provided by the Theorem 5 for the
solution of (4.6) might seem unexpected, instead a bounded behavior (or even exponential decay) might be
the expected one, however it is the best one can get. The reasonwhy is twofold: On the onehand the integrand
of the evolution operator (4.10) cannot be analytically extended to (−∞, 0], even if it were possible to shift the
sector Sθ to the left-hand complex plane, that is taking −a + Sθ, for a > 0, instead of Sθ. If this were the case,
then a slightly improved bound might be achieved but anymore. This fact has been already noticed in [7] in
the case of fractional equations with constant order; And the second issue is the initial data in (4.6). In this
respect one may thing of the integral counterpart of (4.6) as

u(t) = u0 + ∂−α(t)Au(t), t > 0, (4.15)

(homogeneous by simplicity). In this case, and following the ideas in [8] (there with 1 < α(t) < 2), it can be
proven that there exists a constant C > 0 such that

‖E(t)‖X→X ≤ C, t > 0,

where E(t) stands for the evolution operator associated to (4.15). However (4.15) does not correspond to the in-
tegral equivalent formulation to (4.6) since both initial data do not correspond to each other. The true integral
equivalent formulation to (4.6) actually reads as

u(t) = ∂1−α(t)u0 + ∂−α(t)Au(t), t > 0. (4.16)

It is straightforward to showapplying the fractional derivative ∂α(t) in both sides of (4.16) that equation in (4.6)
satis�es, and applying the fractional integral ∂α(t)−1 also in both sides of (4.16), at t = 0, the initial condition
in (4.6) satis�es as well. The evolution operator E(t) associated to (4.15) now applies to ∂1−α(t)u0 by mean of
the variation of constants formula, and having in mind that this evolution operator is in fact bounded the
statement of Theorem 5 is straightforwardly con�rmed.

Secondly, another issue to be emphasized is that the solution of (4.6) with f ≡ 0 is given by u(t) = E(t)u0,
E(t) de�ned in (4.10), and it follows by Theorem 5 that

‖u(t)‖ ≤ Ctm2 , t → +∞,
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whatever the initial data u0 is merely belonging to X, i.e. without any regularity requirement.
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