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Abstract

In the present work the optimal regularity, in the sense of Hölder continuity, of linear and semi–linear
abstract fractional differential equations is investigated in the framework of complex Banach spaces.
This framework has been considered by the authors as the most convenient to provide a posteriori error
estimates for the time discretizations of such a kind of abstract differential equations. In the spirit of
the classical a posteriori error estimates, under certain assumptions, the error is bounded in terms of
computable quantities, in our case measured in the norm of Hölder continuous and weighted Hölder
continuous functions.
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1. Introduction

A posteriori error estimates for space, time, and fully (space–time) discretizations of nonlinear partial
differential equations have been widely investigated in the past and until now. However, if we restrict
our attention to the framework of complex Banach spaces, and abstract formulations of nonlinear initial
value problems

u′(t) = F(u(t)), 0 < t ≤ T, with u(0) = u0, (1)

where F : B ⊂ Y → X is a nonlinear function, X,Y stand for two complex Banach spaces with Y ⊂ X
densely embedded, B is an open set, and u0 belongs to B, then the number of works one can find in
the literature is noticeably reduced. This kind of error estimates in the framework of Banach spaces for
the discretization of nonlinear problems (1) have been investigated e.g. in [15, 47, 48, 55]. In particular
in [47] accretive operators in X are considered, and the notion of relaxed solutions is the key point
to obtain their results; in [48] the author provides error estimates in the L1–norm via discrete energy
dissipation; in [55] the author provides error estimates for the space–time discretization of parabolic
problems making use of the Lp–regularity; and in [15] the error estimates for the time discretization are
based on a semi–linearization of (1)

u′(t) = Au(t) + F (u(t)), 0 < t ≤ T, with u(0) = u0, (2)

Email addresses: eduardo@mat.uva.es(corresponding author) (Eduardo Cuesta), rponce@inst-mat.utalca.cl
(Rodrigo Ponce)

Preprint submitted to Elsevier January 10, 2024



where A is a convenient linear operator, and on the optimal regularity of the solutions in the sense of the
Hölder continuity.

Notice that the idea of linearization is commonly used in the framework of Banach spaces when
studying the problem (1), in particular if one studies the well–posedness [41]. Notice also that the
main reason for the choice of a Banach space as the functional setting to obtain error estimates for the
discretization of (2) is that this framework allows us to consider operators A within a wide set of elliptic
operators beyond the classical Laplacian, and moreover the error estimates can be measured in any Lr–
norm, i.e. for 1 ≤ r ≤ +∞. That is why we will opt for the functional setting of complex Banach spaces
for our study.

Now, focusing on our contributions, let us replace the (integer) time derivative in (2) with a time
derivative of non–integer order or in other words, let us consider the following abstract semi–linear
differential equation of fractional order in time,

∂βt u(t) = Au(t) + F (u(t)), 0 ≤ t ≤ T, with u(0) = u0, (3)

where ∂βt stands for a time fractional derivative.
This work is motivated by the widespread use of nonlinear fractional equations of type (3) in the

context of anomalous diffusion phenomenon, in fact if 1 < β < 2, then it is applied as a super–diffusive
model of anomalous type e.g. in heterogeneous media diffusion or in wave propagation in viscoelastic
materials [4, 5, 17, 13, 21, 22, 24, 26, 27, 32, 36, 34, 31, 33, 43, 50, 51, 53, 56]. Notice that the nonlinear term
F (u) in (3) reflects the reaction effects in super–diffusive phenomenon. Let us highlight a particular case,
which can be considered as a prototype model, that is the fractional Burgers equation [18, 37, 52] which
is more closely raised in Section 2. In view of the above, in the framework of the numerical solutions
it looks like clear that accurate error estimations for time discretizations of (3) draws the interest of
researchers in numerical analysis. To this end, the well–posedness of the problem, and particularly the
regularity of the solution is one of the key points, see e.g. the recent works [45, 44].

We must notice that the maximal regularity of linear and non–linear (semi-linear) to time fractional
differential equations of type (3) has been already studied on continuous interpolation and Lp spaces (see
e.g. [12, 35, 36, 49, 50]). Our work differs from those mentioned, and this is our first contribution, in
that our proofs require technics allowing to state precisely all constants involved, that is they are useless
results or proofs were abstract constants are provided. Our second contribution is that the maximal
regularity stated for the linear problem, then extended to the non–linear one, allows us to obtain error
estimates for time discretizations of the non–linear problem in the framework of the a posteriori error
estimation.

As one of the main issues of this paper as we mentioned above, we will focus on the error estimates
derived in the framework of the a posteriori estimation for which, to best of our knowledge, there are
not so many works related to the numerical solutions of (3). Let us mention here some recent works.
In [10] the authors give, by using some ideas of [30], a posteriori error estimates in the maximum norm
for the equation (3) where the Banach space X stands there for the real line X = R, and 0 < β < 1.
It is a well known fact that fractional differential equations in the form of (3) can be considered as
Volterra equations with (possibly) a singular kernel, and having in mind this fact, in [54] the authors
give a posteriori error estimates for nonlinear Volterra equations with singular kernels, but again in a
finite dimensional context. More recently, in [25] the authors provide error estimates for several time
discretizations in Hilbert spaces and Lr–norms, 1 < r < +∞, whose proof is based on the lr–regularity
of the numerical solutions. On the other hand, in [7, 11] the fractional diffusion is understood in the
spatial domain (fractional Laplacian), and the authors derive a priori and a posteriori error estimates
in L2–norms, for FEMs based discretizations, and for several definitions of the non–local term. Let us
mention also [3] where the fractional diffusion is once again understood in the sense of the fractional
Laplacian, and where the a posteriori error estimates apply for an anisotropic FEM based discretization.

In the present work we provide a posteriori error estimates for the time discretization of an abstract
semi–linear fractional equations of type (3) on the wide context of complex Banach spaces. Such estimates
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are based on the optimal regularity, in the sense of the Hölder continuity, of a residual function arising
from a convenient continuous reconstruction of the discrete solution rather than from the discrete solution
itself. These estimates are obtained via classical fixed–point theorems applied to a convenient functional,
and thanks to some optimal regularity properties of the solutions of the linear equation (i.e. the equation
(3) with F (u(t)) = F (t)) which are also proved here.

In the spirit of the a posteriori error estimates, in the present work we get fully realistic error estimates
which means that all bounds and constants shown in the following sections are explicitly computed, or at
least they could be explicitly computed in practical instances. This fact leads us to a presentation with
a more complex notation which is the opposite what happens in classical a priori error estimates where
generic constants are allowed when obtaining the error bounds.

The results shown in this work extend in some manner the ones derived in [15] for classical nonlinear
parabolic problem (1), and stand for a theoretical approach to the a posteriori error estimation for the
time discretization of fractional differential equations (3) in the hope that these results will be further
applied in practical instances in forthcoming works. One of the relevant contributions of the present work,
if compared to the related work [15], is that we take here into account the initial error of the numerical
scheme, in other words the final estimates depend also on the initial error. As it can be observed in
Section 4, this fact forced us to assume additional regularity assumptions on the initial data.

This paper is organized as follows. In Section 2 we describe precisely the framework where we are
working on along the paper, the fractional initial value problem for which we obtain our estimates, and
the hypotheses required to that end. In Section 3 we provide some optimal regularity results for the linear
fractional problem, all of them oriented to the proof of the main result in Section 4 where our estimates
are provided.

2. Analytic framework and notation

In this section, we give the preliminaries, the notation, and the description of the functional setting
used throughout the present paper. Let (X, ‖ · ‖X) be a complex Banach space. The norm ‖ · ‖X in the
Banach space X will be denoted simply by ‖ · ‖, if not confusing. Moreover given two Banach spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ), L(X,Y ) denotes the Banach space of all linear and bounded operators from
X into Y. If X = Y , then we simply write L(X,X) = L(X).

Definition 1. A closed linear operator A : D(A) ⊂ X → X is called sectorial or θ–sectorial if there exist
a ∈ R, M ≥ 0, and 0 < θ < π/2 such that his resolvent is analytic outside the sector

a+ Sθ := {a+ z ∈ C : | arg(−z)| < θ},

and is bounded by

‖(z −A)−1‖L(X) ≤
M

|z − a|
, z 6∈ a+ Sθ.

In order to simplify the presentation of results, and without lost of generality, in the present paper we
assume that a = 0, if not so we can take the operator A− aI, also sectorial, where I denotes the identity
operator in X.

For a Banach space (Y, ‖ ·‖Y ) and 0 < α < 1, we will denote by Cα([0, T ];Y ) the space of all bounded
α-Hölder continuous functions g : [0, T ]→ Y, endowed with the norm

‖g‖Cα([0,T ];Y ) := sup
0≤t≤T

‖g(t)‖Y + [[g]]Cα([0,T ];Y ),

where [[g]]Cα([0,T ];Y ) denotes the semi–norm

[[g]]Cα([0,T ];Y ) := sup
0≤s<t≤T

‖g(t)− g(s)‖Y
(t− s)α

.
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Moreover, if 0 < α ≤ γ < 1, then we define the space Cαγ ((0, T ];Y ) as the set of all bounded functions
g : (0, T ]→ Y such that t 7→ tγ−αg(t) is α-Hölder continuous in (0, T ] endowed with the norm

‖g‖Cαγ ((0,T ];Y ) := sup
0<t≤T

‖g(t)‖Y + [[g]]Cαγ ((0,T ];Y ),

where [[g]]Cαγ ((0,T ];Y ) denotes the semi–norm

[[g]]Cαγ ((0,T ];Y ) := sup
0≤s<t≤T

sγ‖g(t)− g(s)‖Y
(t− s)α

.

Let A be a linear and closed operator whose resolvent set contains the real axis (−∞, 0], e.g. any
sectorial operator with a ≥ 0. For 0 ≤ ϑ ≤ 1, we denote by Xϑ the domain of the fractional power ϑ > 0
of A, that is Xϑ := D(Aϑ) endowed with the graph norm ‖x‖ϑ = ‖x‖+ ‖Aϑx‖ [29, 41]. In particular X1

corresponds to the domain of A, and X0 to the space X. Related to these spaces let us recall a classical
inequality which will be useful for us in the following sections: If 0 < ε < 1, and x ∈ D(A), then there
exists a constant κε > 0 such that (see [29, 41])

‖Aεx‖ ≤ κε‖Ax‖ε‖x‖1−ε. (4)

For the sake of the simplicity of the notation we will simply denote κ instead of κε, for any 0 < ε < 1.
Consider the nonlinear initial value problem{

u′(t) = F(u(t)), 0 ≤ t ≤ T,
u(0) = u0 ∈ B,

(5)

where F : B ⊂ Y → X is a nonlinear Fréchet differentiable function, B is an open set in Y , u0 ∈ B, and
(X, ‖ · ‖X), (Y, ‖ · ‖Y ) are two Banach spaces such that Y ⊂ X is densely embedded.

The existence and uniqueness of solution of (5) is very well known [2, 41], and the proof in the
framework of Banach spaces can be carried out making use of two facts: A linearization of (5) around a
state u∗ ∈ B; and the optimal regularity properties of the linearized problem. In particular, the linearized
problem reads {

u′(t) = Au(t) + F (u(t)), 0 ≤ t ≤ T,
u(0) = u0 ∈ B,

(6)

where A := Fu(u∗), Fu stands for the Fréchet derivative of F , and F : B ⊂ Y → X is defined by
F (u) = F(u)− Au which is Fréchet differentiable as well. Therefore it is assumed that B ⊆ D(A). The
initial value problem (6) can be written equivalently in integral form

u(t) = u0 +

∫ t

0

Au(s) ds+ F (u(t)), 0 ≤ t ≤ T, (7)

where, for the simplicity of the notation, we denote again by F the integral in time of F in (6).
In the present work we consider the nonlinear fractional initial value problem that comes out when

one replaces the integer integral in (7) by a fractional integral of order 1 < β < 2. In fact, we consider
the nonlinear fractional problem

u(t) = u0 + ∂−βt Au(t) + F (u(t)), 0 ≤ t ≤ T, with 1 < β < 2, (8)

where ∂−%t g(t) represents, for g : (0,+∞) → X, the fractional integral of order % > 0 in the variable t
of g. Note that the initial condition u(0) in (8) turns out to be u0 + F (u0), or simply u0 if one assumes
that F (u0) = 0. Moreover, since 1 < β < 2 (that is β is greater that 1), a second initial condition could
be expected which in this work is on u′(0), and which for the sake of the simplicity is assumed to be
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zero. Also for the sake of the simplicity, and without danger of confusion with derivatives respect to
other variables, we will denote ∂−% instead of ∂−%t . The fractional integration admits several definitions
[28, 46] but we opted here for the fractional integral in the sense of Riemann–Liouville, i.e. for % > 0

∂−%g(t) :=

∫ t

0

k%(t− s)g(s) ds, where k%(t) :=
t%−1

Γ(%)
, t > 0.

We observe that other definitions provide the same results without significant differences in the proofs.
The prototype equation we have in mind is the fractional Burgers equation [18, 37, 52]. In spite of

such equation admits several formulations, we adopt the following one

u(x, t) = u0(x) +

∫ t

0

kβ(t− s)∆u(x, s) ds+
∂

∂x
(u2(x, t)), 0 ≤ t ≤ T, x ∈ Ω,

where Ω ⊂ R denotes certain spatial domain, ∆ represents the 1D Laplacian operator, the nonlinear term
∂

∂x
u2(x, ·) plays the role of F (u) in (8), 1 < β < 2, and where some boundary conditions are satisfied.

Other equations of type (8), also highly interesting in practical instances, can be found in the literature.
Among the Burger’s equations above, let us mention the recent work [1] where the author studies a
fractional type approach to the Navier–Stokes equation which perfectly matches with (8).

For the sake of the simplicity of the presentation of our results, instead of the integral format (8)
henceforth we adopt an integro–differential one that is

u′(t) = u0 + ∂1−β
t Au(t) + F (u(t)), with u(0) = u0 ∈ D(A), 0 ≤ t ≤ T. (9)

Our approach requires some assumptions on the terms involved in (9), but in order to make lighter
the notation, and without lost of generality in the results below, assume the following: The linearization
we carried out is made around u0 as a natural choice, i.e. A := Fu(u0); F is defined and Fréchet
differentiable, by simplicity in D(A) (instead of B ⊆ D(A)), And finally there holds that Fu(u0) = 0.
Now we are in a position to state the hypotheses will hold,

(H1) If u0 is the initial data of (8), then there exist R = R(u0) > 0 and L = L(u0) > 0 such that

‖Fu(u2)− Fu(u1)‖L(D(A),X) ≤ L‖u1 − u2‖Y ,

for all u1, u2 ∈ B with ‖uj − u0‖Y ≤ R, j = 1, 2.

(H2) A : D(A) ⊂ Y → X is θ-sectorial, for some 0 < θ < π/2, such that θ < π(1 − β/2), according to
the Definition 1.

(H3) The graph norm of A is equivalent to the norm of Y, that is, there exists γ = γ(u0) > 0 such that

1

γ
‖y‖Y ≤ ‖y‖D(A) := ‖y‖X + ‖Ay‖X ≤ γ‖y‖Y .

Let us mention that the existence and uniqueness of local solutions of the semi–linear problem (8)
under hypotheses (H1)–(H3) can be straightforwardly deduced from results in [51] giving rise (probably)
to some restrictions for the final time T. Anyhow in the rest of the paper we will assume that T satisfies
such a restrictions (if the case), and the solution of (8) exists over the whole interval [0, T ].
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Figure 1: Complex path Γt.

3. The linear problem: Optimal regularity

We first consider the linear problem

v′(t) = ∂1−βAv(t) + f(t), with v(0) = v0, 0 ≤ t ≤ T, (10)

according to the notation of the Section 2, where 1 < β < 2, and f ∈W 1,1([0, T ], X) satisfying additional
regularity conditions to be precisely stated below. By means of the Laplace transform it can be straight-
forwardly proved that there exists a family of operators {Sβ(t)}t≥0 ⊂ L(X), such that the solution to
(10) is given by

v(t) = Sβ(t)v0 +

∫ t

0

Sβ(t− s)f(s) ds, 0 ≤ t ≤ T. (11)

In fact, the inversion formula of the Laplace transform allows to write

Sβ(t) =
1

2πi

∫
Γ

eztzβ−1(zβ −A)−1 dz, t ≥ 0, (12)

for a suitable complex path Γ connecting−i∞ and +i∞, positively oriented, i.e. with increasing imaginary
part, and surrounding the complex sector Sθ (see [16]).

For the convenience of the proofs below, now and hereafter we set a particular choice of Γ. To be

more precise, let φ an angle satisfying
βπ

2
< φ < (π − θ), and let Γt be the complex path Γt := Γ1

t ∪ Γ2
t

where (see Figure 3):

• Γ1
t is defined, at each time level t > 0, by γ1

t (ψ) =
1

t
eiψ/β , for −φ ≤ ψ ≤ φ, and

• Γ2
t is given by γ2

t (ρ) = ρe±iφ/β , for
1

t
≤ ρ < +∞, where ± stands for the lower and upper branches

of Γ2
t (negative and positive imaginary part) repectively.

Note that this choice of Γt respects hypothesis (H2) in the sense that Γt does not go into the sector Sθ
according the choice of θ in (H2).

Next four lemmas, Lemmas 2, 4, 6, and 8, stand for technical results to be used in the proofs of the
main theorems below.
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Lemma 2. Let µ ≥ 0. Then the following estimates hold∫
Γt

∣∣∣∣eztzµ
∣∣∣∣ | dz| ≤ (Cβ +

2ecos(φ/β)

− cos(φ/β)

)
tµ−1, (13)

and ∫
Γt

∣∣eztzµ∣∣ | dz| ≤ (Cβ +
2Γ(µ+ 1)

(− cos(φ/β))µ+1

)
1

tµ+1
, (14)

where

Cβ :=
1

β

∫ φ

−φ
ecos(ψ/β) dψ. (15)

Proof of Lemma 2. In order to prove (13), we first notice that on Γ1
t we have∫

Γ1
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| = ∫ φ

−φ

exp(t cos(ψ/β)
t )∣∣∣∣exp (iµψ/β)

tµ

∣∣∣∣
1

βt
dψ ≤ tµ−1

β

∫ φ

−φ
ecos(ψ/β) dψ = Cβt

µ−1.

On the other hand, since cos(φ/β) < 0 we have∫
Γ2
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| = 2

∫ ∞
1/t

exp(tρ cos(φ/β))

ρµ
dρ ≤ 2tµ

−ecos(φ/β)

t cos(φ/β)
= 2tµ−1 ecos(φ/β)

− cos(φ/β)
,

which implies (13). Now, to prove (14) we observe that on Γ1
t we have∫

Γ1
t

∣∣ezt∣∣ |z|µ|dz| = ∫ φ

−φ

∣∣∣∣exp

(
t
1

t
eiψ/β

)∣∣∣∣ 1

tµ
1

βt
dψ =

1

βtµ+1

∫ φ/β

−φ/β
ecos(ψ/β) dψ =

Cβ
tµ+1

.

Finally, on Γ2
t we have ∫

Γ2
t

∣∣ezt∣∣ |z|µ|dz| = 2

∫ ∞
1/t

∣∣∣exp(tρeiφ/β)
∣∣∣ |ρµeiµφ/β |dρ

= 2

∫ ∞
1/t

ρµetρ cos(φ/β) dρ

≤ 2

∫ ∞
0

ρµe−ρ(−t cos(φ/β)) dρ

= 2
Γ(µ+ 1)

tµ+1(− cos(φ/β))µ+1
.

Remark 3. Since the cosine function is an even function and
βπ

2
< φ < (π − θ), we have

φ

β2
< π, and

then we can estimate the constant Cβ as

Cβ =
2

β

∫ φ

0

ecos(ψ/β) dψ = 2

∫ φ/β

0

ecos(v) dv ≤ 2

∫ π

0

ecos(v) dv = 2πI0(1) < 2π cosh(1),

where I0 denotes the Bessel function of first kind (see [20, p. 336] and [40, p. 63, (6.25)]).

Lemma 4. Let 0 ≤ ϑ ≤ 1. If x ∈ Xϑ, then

‖Sβ(t)x‖ ≤ 1

2π

(
Cβ +

2ecos(φ/β)

− cos(φ/β)

)(
‖x‖+ κ (M + 1)1−ϑ‖Aϑx‖tϑβ

)
, (16)

where Sβ(t) is the operator (12), for t > 0, Cβ is the constant (15), and κ in given by (4).
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Proof of Theorem 4. Since

zβ(zβ −A)−1 = A(zβ −A)−1 + I, (17)

we have zβ−1(zβ −A)−1 =
1

z
[A(zβ −A)−1 + I] and thus, for x ∈ X, we can write

Sβ(t)x =
1

2πi

∫
Γt

ezt

z
xdz +

1

2πi

∫
Γt

ezt

z
A(zβ −A)−1xdz

=
1

2πi

∫
Γt

ezt

z
xdz +

1

2πi

∫
Γt

ezt

z
A1−ϑ(zβ −A)−1Aϑx dz.

Let x ∈ X with ‖x‖ ≤ 1. Since A is a sectorial operator, (zβ −A)−1x ∈ D(A), and D(A) ⊂ D(A1−ϑ), it
follows from (4) that∥∥A1−ϑ(zβ −A)−1x

∥∥ ≤ κ
∥∥A(zβ −A)−1x

∥∥1−ϑ ∥∥(zβ −A)−1x
∥∥ϑ

≤ κ
(
‖(zβ(zβ −A)−1 + I)x‖

)1−ϑ( M

|z|β
‖x‖
)ϑ

≤ κ ((M + 1)‖x‖)1−ϑ
(
M

|z|β
‖x‖
)ϑ

≤ κ (M + 1)1−ϑ ‖x‖
|z|βϑ

.

Therefore, ∥∥A1−ϑ(zβ −A)−1
∥∥
L(X)

≤ κ (M + 1)1−ϑ

|z|βϑ
. (18)

Lemma 2 allows us to obtain the following estimate for ‖Sβ(t)x‖

‖Sβ(t)x‖ ≤ 1

2π

∫
Γt

∣∣∣∣eztz
∣∣∣∣ |dz|‖x‖+

1

2π

∫
Γt

∣∣∣∣eztz
∣∣∣∣ ∥∥A1−ϑ(zβ −A)−1

∥∥
L(X)

|dz|‖Aϑx‖

≤ 1

2π

(
Cβ +

2ecos(φ/β)

− cos(φ/β)

)
‖x‖+

κ (M + 1)1−ϑ‖Aϑx‖
2π

∫
Γt

∣∣∣∣ ezt

zβϑ+1

∣∣∣∣ |dz|
≤ 1

2π

(
Cβ +

2ecos(φ/β)

− cos(φ/β)

)(
‖x‖+ κ (M + 1)1−ϑ‖Aϑx‖tϑβ

)
,

and the proof concludes.

Remark 5. If C0 :=
1

2π

(
Cβ +

2ecos(φ/β)

− cos(φ/β)

)
, then Lemma 4 implies for 0 ≤ t ≤ T that

‖Sβ(t)‖L(Xϑ,X) = sup{‖Sβ(t)x‖ : x ∈ Xϑ, ‖x‖ϑ ≤ 1}
≤ C0 sup{‖x‖+ κ (M + 1)1−ϑ‖Aϑx‖tβϑ : x ∈ Xϑ, ‖x‖ϑ ≤ 1}
≤ C0 max{1, κ (M + 1)1−ϑ}(1 + tβϑ).

Lemma 6. Let 0 ≤ ϑ ≤ 1. If x ∈ Xϑ, then

‖ASβ(t)x‖ ≤ κ(M + 1)1−ϑ

2π
‖Aϑx‖

(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
tβ(ϑ−1), 0 ≤ t ≤ T, (19)

where Sβ(t) is the operator (12).
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Proof of Theorem 6. We first notice that

ASβ(t)x =
1

2πi

∫
Γt

eztzβ−1A1−ϑ(zβ −A)−1Aϑxdz,

and by (18) and Lemma 2 we obtain

‖ASβ(t)x‖ ≤ 1

2π

∫
Γt

|ezt||z|β−1
∥∥A1−ϑ(zβ −A)−1

∥∥ ‖Aϑx‖|dz|
≤ κ (M + 1)1−ϑ

2π
‖Aϑx‖

∫
Γt

|ezt||z|β(1−ϑ)−1|dz|

≤ κ (M + 1)1−ϑ

2π
‖Aϑx‖

(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
tβ(ϑ−1),

for all 0 ≤ t ≤ T.

Remark 7. If C1 :=
κ (M + 1)1−ϑ

2π

(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
, then from Lemma 6 we obtain

‖ASβ(t)‖L(Xϑ,X) = sup{‖ASβ(t)x‖ : x ∈ Xϑ, ‖x‖ϑ ≤ 1} ≤ C1t
β(ϑ−1), 0 ≤ t ≤ T.

Lemma 8. If x ∈ Xϑ and ϑ >
β − 1

β
, then

∥∥∥∥∫ t

0

ASβ(s)x ds

∥∥∥∥ ≤ κ (M + 1)1−ϑ

2π

‖Aϑx‖
β(ϑ− 1) + 1

(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
tβ(ϑ−1)+1, 0 ≤ t ≤ T,

(20)
where Sβ(t) is the operator (12).

Proof of Theorem 8. Since β(ϑ− 1) + 1 > 0, if follows from Lemma 6 that∥∥∥∥∫ t

0

ASβ(s)x ds

∥∥∥∥ ≤
∫ t

0

‖ASβ(s)x‖ ds ≤ C1‖Aϑx‖
∫ t

0

sβ(ϑ−1) ds = C1
‖Aϑx‖

β(ϑ− 1) + 1
tβ(ϑ−1)+1,

where C1 is the constant defined in Remark 7.

The following theorem shows the main result of this section, which provides the optimal regularity in
the sense of the Hölder continuity achieved for the solution v of the linear problem (10). The assumptions
of this theorem might be do not look like natural in the framework of linear problems, however these
are the ones will serve as the key point in the proof of the a posteriori error estimation for the time
discretization of the semi–linear problem provided in Section 4.

Theorem 9. Let 1 < β < 2, v0 and f in (10) such that v0 ∈ X1+ε, and f ∈ Cαγ ((0, T ];Xϑ), with

(a)
1− γ
β
≤ ε.

(b)
β − 1

β
≤ ϑ < 1.

(c) α ≤ γ < α+ β(ϑ− 1) + 1.

Therefore, there exists a (computable) constant K > 0 such that

‖v‖Cαγ ((0,T ];D(A)) ≤ K
(
‖v0‖1+ε + ‖f‖Cαγ ((0,T ];Xϑ)

)
.

9



Proof of Theorem 9. We need to estimate ‖v‖Cαγ ((0,T ];D(A)), that is

‖v‖Cαγ ((0,T ];D(A)) = sup
0<t≤T

‖v(t)‖D(A) + [[v]]Cαγ ((0,T ];D(A))

First of all note that the solution v of (10) can be written as

v(t) = Sβ(t)v0 +

∫ t

0

Sβ(t− s)[f(s)− f(t)] ds+

∫ t

0

Sβ(t− s)f(t) ds

= Sβ(t)v0 +

∫ t

0

Sβ(t− s)[f(s)− f(t)] ds+

∫ t

0

Sβ(s)f(t) ds. (21)

In order to find the constant K, we will divide the proof in two parts.

Part I: We first estimate

sup
0<t≤T

‖v(t)‖D(A) = sup
0<t≤T

‖v(t)‖+ sup
0<t≤T

‖Av(t)‖.

Step 1: Estimation of sup
0<t≤T

‖v(t)‖.

Since v0 ∈ D(A1+ε) ⊂ D(A), by Lemma 4 with ϑ = 1 we have

‖Sβ(t)v0‖ ≤ C0(‖v0‖+ κ‖Av0‖tβ) ≤ C0 max{1, κT β}‖v0‖D(A),

where C0 is the constant defined in Remark 5. On the other hand, by Remark 5,∥∥∥∥∫ t

0

Sβ(t− s)[f(s)− f(t)] ds

∥∥∥∥ ≤
∫ t

0

‖Sβ(t− s)‖L(Xθ,X)‖f(t)− f(s)‖ϑ ds

≤ C0 max{1, κ (M + 1)1−ϑ}(1 + T βϑ)

∫ t

0

‖f(t)− f(s)‖ϑ ds

≤ 2C0 max{1, κ (M + 1)1−ϑ}(1 + T βϑ)

∫ t

0

sup
0≤t≤T

‖f(t)‖ϑ ds

≤ 2C0 max{1, κ (M + 1)1−ϑ}(1 + T βϑ)T‖f‖Cαγ ((0,T ];Xϑ).

Finally, similar computations now for the third term in (21) show that∥∥∥∥∫ t

0

Sβ(s)f(t) ds

∥∥∥∥ ≤ C0 max{1, κ (M + 1)1−ϑ}T (1 + T βϑ)‖f‖Cαγ ((0,T ];Xϑ), 0 ≤ t ≤ T.

We conclude that,

sup
0<t≤T

‖v(t)‖ ≤ C0 max{1, κT β}‖v0‖D(A) + 3C0 max{1, κ (M + 1)1−ϑ}T (1 + T βϑ)‖g‖Cαγ ((0,T ];Xϑ).

Step 2: Estimation of sup
0<t≤T

‖Av(t)‖.

Since v0 ∈ X1+ε ⊂ D(A), from Lemma 6 with ϑ = 1 we obtain that

‖ASβ(t)v0‖ ≤ C2‖Av0‖ ≤ C2‖v0‖D(A),
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where C2 :=
κ

2π
(Cβ + 2). On the other hand, Remark 7 implies

∥∥∥∥∫ t

0

ASβ(t− s)[f(s)− f(t)] ds

∥∥∥∥ ≤
∫ t

0

‖ASβ(t− s)‖L(Xϑ,X)‖f(t)− f(s)‖ϑ ds

≤ C1

∫ t

0

(t− s)β(ϑ−1)‖f(t)− f(s)‖ϑ ds

= C1

∫ t

0

(t− s)β(ϑ−1)+αs−γ
sγ‖f(t)− f(s)‖ϑ

(t− s)α
ds

≤ C1‖f‖Cαγ ((0,T ];Xϑ)

∫ t

0

(t− s)β(ϑ−1)+αs−γ ds

= C1‖f‖Cαγ ((0,T ];Xϑ)t
α+β(ϑ−1)+1−γB(α+ β(ϑ− 1) + 1, 1− γ),

where B(·, ·) denotes the Beta function, and C1 stands for the constant defined in Remark 7. The
condition (c) of the present theorem on the parameters α, β, ϑ and γ implies that α+β(θ−1)+1−γ ≥ 0,
therefore∥∥∥∥∫ t

0

ASβ(t− s)[f(s)− f(t)] ds

∥∥∥∥ ≤ C1‖f‖Cαγ ((0,T ];Xϑ)T
α+β(ϑ−1)+1−γB(α+ β(ϑ− 1) + 1, 1− γ).

Finally since f(t) ∈ Xϑ, for 0 ≤ t ≤ T , we have by Lemma 6∥∥∥∥∫ t

0

ASβ(s)f(t) ds

∥∥∥∥ ≤ C1
‖Aϑf(t)‖

β(ϑ− 1) + 1
tβ(ϑ−1)+1

≤ C1

β(ϑ− 1) + 1
tβ(ϑ−1)+1‖f(t)‖ϑ

≤ C1

β(ϑ− 1) + 1
T β(ϑ−1)+1‖f‖Cαγ ((0,T ];Xϑ).

Therefore, if C3 := C1T
α+β(ϑ−1)+1−γB(α+ β(ϑ− 1) + 1, 1− γ) +

C1

β(ϑ− 1) + 1
T β(ϑ−1)+1, then

sup
0<t≤T

‖Av(t)‖ ≤ C2‖v0‖D(A) + C3‖f‖Cαγ ((0,T ];Xϑ). (22)

Moreover since ‖v0‖D(A) ≤ ‖v0‖D(A1+ε), from Steps 1 and 2 we conclude that

sup
0<t≤T

‖v(t)‖D(A) ≤ D1‖v0‖D(A1+ε) +D2‖f‖Cαγ ((0,T ];Xϑ),

where D1 := C0 max{1, κT β}+ C2, and D2 := 3C0 max{1, κ (M + 1)1−ϑ}T (1 + T βϑ) + C3. This finishes
the proof or Part I.

Part II: Here we estimate

[[v]]Cαγ ((0,T ];D(A)) = sup
0≤s<t≤T

sγ‖v(t)− v(s)‖D(A)

(t− s)α
,

by considering separately sup
0≤s<t≤T

sγ‖v(t)− v(s)‖
(t− s)α

, and sup
0≤s<t≤T

sγ‖Av(t)−Av(s)‖
(t− s)α

.
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Step 1: Estimation of sup
0≤s<t≤T

sγ‖v(t)− v(s)‖
(t− s)α

.

First, we notice that, for 0 < s < t, v0 ∈ X1+ε ⊂ D(A), and f ∈ Cαγ ((0, T ];Xϑ), we have from (11)

v(t)− v(s) = (Sβ(t)− Sβ(s))v0 +

∫ s

0

[Sβ(t− r)− Sβ(s− r)]f(r) dr +

∫ t

s

Sβ(t− r)f(r) dr. (23)

Let us consider the first term in (23). By applying (17) once again, and making the change of variable
w = sz/t (but preserving by simplicity the notation with z), we have that

(Sβ(t)− Sβ(s))v0

=
1

2πi

∫
Γt

ezt

z
zβ(zβ −A)−1v0 dz − 1

2πi

∫
Γs

ezs

z
zβ(zβ −A)−1v0 dz

=
1

2πi

∫
Γt

ezt

z
zβ(zβ −A)−1v0 dz − 1

2πi

∫
Γt

ezt

z
zβ(zβ − (s/t)βA)−1v0 dz

=
1

2πi

∫
Γt

ezt

z
zβ
{

(zβ −A)−1 − (zβ − (s/t)βA)−1
}
v0 dz

=
1

2πi

∫
Γt

ezt

z

tβ − sβ

tβ
zβA(zβ −A)−1(zβ − (s/t)βA)−1v0 dz.

Observe that,

zβA(zβ −A)(zβ − (s/t)βA)−1 =
(
I + (s/t)β(zβ − (s/t)βA)−1A

)(
zβ(zβ −A)−1 − I

)
,

therefore, by Lemma 2 and the sectoriality bounds,

‖(Sβ(t)− Sβ(s))v0‖

=
1

2π

tβ − sβ

tβ

∥∥∥ ∫
Γt

ezt

z

(
(zβ(zβ −A)−1 − I) +

sβ

tβ
(zβ(zβ −A)− I)(zβ − (s/t)βA)−1A

)
v0 dz

∥∥∥
≤ 1

2π

tβ − sβ

tβ
(M + 1)

(∫
Γt

|ezt|
|z|
‖v0‖ |dz|+

sβ

tβ

∫
Γt

|ezt|
|z|
‖(zβ − (s/t)βA)−1‖ ‖Av0‖ |dz|

)
≤ 1

2π

tβ − sβ

tβ
(M + 1)

(∫
Γt

|ezt|
|z|
‖v0‖ |dz|+

Msβ

tβ

∫
Γt

|ezt|
|z|β+1

‖Av0‖ |dz|
)

≤ C0(M + 1)
tβ − sβ

tβ
(1 +Msβ)‖v0‖1+ε.

Hence,

‖(Sβ(t)− Sβ(s))v0‖sγ

(t− s)α
≤ C0(M + 1)

sγ(tβ − sβ)

tβ(t− s)α
(1 +Msβ)‖v0‖1+ε.

Here note that, by the boundness of the function (1− xβ)/(1− x)α, for 0 ≤ x < 1 (x here plays the role
of s/t), under the hypothesis (c) of the present Theorem, we have

sγ(tβ − sβ)

tβ(t− s)α
≤ 1− (s/t)β

(1− s/t)α
tγ−α ≤ T γ−β .

Therefore,

‖(Sβ(t)− Sβ(s))v0‖sγ

(t− s)α
≤ C0(M + 1)

(
T γ−α +MT γ+β−α

)
‖v0‖1+ε,

12



where have to note that, according the hypothesis (c), γ − α ≥ 0, and of course γ + β − α ≥ 0.
Now, we estimate the norm of the second term in (23), that is∥∥∥∥∫ s

0

(Sβ(t− r)− Sβ(s− r))f(r) dr

∥∥∥∥ , 0 ≤ s < t.

Observe that for x ∈ Xϑ, and t > s, the same ideas as in the previous bounds lead to the following
expression

(Sβ(t)− Sβ(s))x =
1

2πi

∫
Γt

ezt

z
zβ
(

(zβ −A)−1 − (zβ − (s/t)A)−1
)
x dz

=
1

2πi

tβ − sβ

tβ

∫
Γt

ezt

z
zβ(zβ − (s/t)βA)−1A1−ϑ(zβ −A)−1Aϑxdz.

Then the next bounds follows from Lemma 2, and (18)

‖Sβ(t)− Sβ(s))x‖ ≤ 1

2π
(1− (s/t)β)M

∫
Γt

|ezt|
|z|
‖A1−ϑ(zβ −A)−1‖ ‖Aϑx‖ dz

≤ M(1 +M)1−ϑκ

2π

(
Cβ +

2ecos(ϕ/β)

− cos(ϕ/β)

)
‖Aϑx‖(1− (s/t)β)tβϑ. (24)

Straightforwardly we have from (24)∥∥∥∥ sγ

(t− s)α

∫ s

0

(Sβ(t− r)− Sβ(s− r))xdr

∥∥∥∥
≤ M(1 +M)1−ϑκ

2π

(
Cβ +

2ecos(ϕ/β)

− cos(ϕ/β)

)
‖Aϑx‖

∫ s

0

sγ
(

1− (s−r)β
(t−r)β

)
(t− r)βϑ

(t− s)α
dr

≤ C0M(1 +M)1−ϑκ‖Aϑx‖tγ−α+βϑ+1,

where we applied again the straightforward bound

∫ s

0

sγ
(

1− (s−r)β
(t−r)β

)
(t− r)βϑ

(t− s)α
dr ≤ tγ−α+βϑ+1

Therefore, since γ − α + ϑβ + 1 ≥ 0 by the condition (c) of the present Theorem, and since f(r) ∈ Xϑ,
for 0 ≤ r ≤ s, and ‖Aϑf(r)‖ ≤ sup

0≤r≤T
‖f(r)‖ϑ ≤ ‖f‖Cαγ ((0,T ];Xϑ),

∥∥∥∥∫ s

0

sγ(Sβ(t− r)− Sβ(s− r))f(r)

(t− s)α
dr

∥∥∥∥ ≤ C0M(1 +M)1−ϑκT γ−α+βϑ+1‖f‖Cαγ ((0,T ];Xϑ).

Finally, we estimate the norm of the third term in (23). Again, since f(r) ∈ Xϑ, and ‖Aϑf(r)‖ ≤
‖f‖Cαγ ((0,T ];Xϑ), for r > 0, the Lemma 4 implies that

‖Sβ(t− r)f(r)‖ ≤ C0

(
‖f(r)‖+ κ (M + 1)1−ϑ‖Aϑf(r)‖(t− r)ϑβ

)
≤ C0‖f‖Cαγ ((0,T ];Xϑ) max{1, κ (M + 1)1−ϑ}

(
1 + (t− r)ϑβ

)
.
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Hence,∥∥∥∥∫ t

s

Sβ(t− r)f(r) dr

∥∥∥∥ ≤
∫ t

s

‖Sβ(t− r)f(r)‖ dr

≤ C0‖f‖Cαγ ((0,T ];Xϑ) max{1, κ(M + 1)1−ϑ}
∫ t

s

1 + (t− r)ϑβ dr

≤ C0‖f‖Cαγ ((0,T ];Xϑ) max{1, κ(M + 1)1−ϑ}
(

(t− s) +
(t− s)ϑβ+1

βϑ+ 1

)
.

Therefore,∥∥∥∥∫ t

s

sγSβ(t− r)f(r)

(t− s)α
dr

∥∥∥∥ ≤ C0‖f‖Cαγ ((0,T ];Xϑ) max{1, κ (M + 1)1−ϑ}
(

(t− s)1−αsγ +
(t− s)ϑβ+1−αsγ

βϑ+ 1

)
≤ C0 max{1, κ (M + 1)1−ϑ}

(
T 1−α+γ +

Tϑβ+1−α+γ

βϑ+ 1

)
‖f‖Cαγ ((0,T ];Xϑ).

We conclude that

sup
0≤s<t≤T

sγ‖v(t)− v(s)‖
(t− s)α

≤ C4‖v0‖1+ε + C5‖f‖Cαγ ((0,T ];Xϑ).

where C4 := C0(M + 1)
(
T γ−α +MT γ+β−α

)
and

C5 := C0M(1 +M)1−ϑκTγ−α+βϑ+1

+ C0 max{1, κ (M + 1)1−ϑ}
(
T 1−α+γ +

Tϑβ+1−α+γ

βϑ+ 1

)
.

Step 2: Estimation of sup
0≤s<t≤T

sγ‖Av(t)−Av(s)‖
(t− s)α

.

In order to obtain this estimation, we first notice that, for 0 < s < t, and v0 ∈ X1+ε we can write

Av(t)−Av(s) = (ASβ(t)−ASβ(s))v0 +

∫ s

0

ASβ(r)(f(t− r)− f(s− r)) dr+

∫ t

s

ASβ(r)f(s− r) dr. (25)

Repeating previous ideas, the following equality is straightforward,

(ASβ(t)−ASβ(s))v0 =
1

2πi

∫
Γt

ezt

z

tβ − sβ

tβ
zβA(zβ −A)−1(zβ − (s/t)βA)−1Av0 dz.

Now observe that A(zβ − A)−1Av0 = A1−ε(zβ − A)−1A1+εv0, and that D(A) ⊂ X1−ε. Therefore, in
similar fashion as in (18)

∥∥A(zβ −A)−1Av0

∥∥ ≤ κ(M + 1)1−ε‖A1+εv0‖
|z|βε

. (26)

By Lemma 2, and (26), we have

‖(ASβ(t)−ASβ(s))v0‖ ≤
Mκ(1 +M)1+ε

2π
‖A1+εv0‖

tβ − sβ

tβ

∫
Γt

|ezt|
|z|1+βε

dz

≤ Mκ(1 +M)1+ε

2π
‖A1+εv0‖

tβ − sβ

tβ−βε
.
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Having in mind that by assumption (c) of this theorem there holds γ + βε− 1 ≥ 0, we obtain

sγ‖(ASβ(t)−ASβ(s))v0‖
(t− s)−α

≤ Mκ(1 +M)1+ε

2π
‖A1+εv0‖

(tβ − sβ)sγ

tβ−βε(t− s)α

≤ Mκ(1 +M)1+ε

2π
‖A1+εv0‖T γ−α+βε

= C6‖A1+εv0‖,

where

C6 :=
Mκ(1 +M)1+ε

2π
T γ−α+βε

To estimate the second term in (25) we notice that

ASβ(r)(f(t− r)− f(s− r)) =
1

2πi

∫
Γr

ezrzβ−1(zβ −A)−1(f(t− r)− f(s− r)) dz

=
1

2πi

∫
Γr

ezrzβ−1A1−ϑ(zβ −A)−1Aϑ(f(t− r)− f(s− r)) dz,

which implies by (18) and Lemma 2 that

‖ASβ(r)(f(t− r)− f(s− r))‖

≤ κ (M + 1)1−ϑ

2π
‖Aϑ(f(t− r)− f(s− r))‖

∫
Γr

|ezr||z|β(1−ϑ)−1|dz|

≤
(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
rβ(ϑ−1)κ (M + 1)1−ϑ

2π
‖Aϑ(f(t− r)− f(s− r))‖.

On the other hand, we notice that

‖Aϑ(f(t− r)− f(s− r))‖ =
‖Aϑ(f(t− r)− f(s− r))‖

(t− s)α
(s− r)γ (t− s)α

(s− r)γ
≤ (t− s)α

(s− r)γ
‖f‖Cαγ ((0,T ];Xϑ).

Hence,

‖ASβ(r)(f(t− r)− f(s− r))‖

≤
(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
κ (M + 1)1−ϑ

2π

(t− s)α

(s− r)γ
rβ(ϑ−1)‖f‖Cαγ ((0,T ];Xϑ).

Since β(ϑ− 1) + 1 ≥ 0 we have∫ s

0

(s− r)−γrβ(ϑ−1) dr = sβ(ϑ−1)+1−γB(1− γ, β(ϑ− 1) + 1),

and we obtain that∫ s

0

‖ASβ(r)(f(t− r)− f(s− r))‖ dr ≤ C7(t− s)αsβ(ϑ−1)+1−γ‖f‖Cαγ ((0,T ];Xϑ),

where

C7 :=

(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
κ (M + 1)1−ϑ

2π
B(1− γ, β(ϑ− 1) + 1).
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Thus, ∫ s

0

∥∥∥∥ASβ(r)
sγf(t− r)− f(s− r)

(t− s)α

∥∥∥∥ dr ≤ C6T
β(ϑ−1)+1‖f‖Cαγ ((0,T ];Xϑ).

Finally, to estimate the third integral in (25) we write

ASβ(r)f(t− r) =
1

2πi

∫
Γr

ezrzβ−1A1−ϑ(zβ −A)−1Aϑf(t− r) dz,

and since, ‖Aϑf(t− r)‖ ≤ ‖f‖Cαγ ((0,T ];Xϑ), we obtain by (18) and Lemma 2 that

‖ASβ(r)f(t− r)‖ ≤ 1

2π

∫
Γr

|ezr||z|β−1‖A1−ϑ(zβ −A)−1‖‖Aϑf(t− r)‖| dz|

≤
(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
κ(M + 1)1−ϑ

2π
rβ(ϑ−1)‖f‖Cαγ ((0,T ];Xϑ), (27)

which implies, for 0 ≤ s < t ≤ T , that∫ t

s

‖ASβ(r)f(t− r)‖ dr ≤ C8(tβ(ϑ−1)+1 − sβ(ϑ−1)+1)‖f‖Cαγ ((0,T ];Xϑ),

where,

C8 :=

(
Cβ +

2Γ(β(1− ϑ))

(− cos(φ/β))β(1−ϑ)

)
κ (M + 1)1−ϑ

2π[β(ϑ− 1) + 1]
.

One more time, according the hypothesis (c) of the present Theorem, the function
1− xβ(ϑ−1)+1

(1− x)α
is

bounded by 1, for 0 ≤ x < 1, where once again x plays the role here of s/t. This allows us to conclude
from (27) that,

sγ

(t− s)α

∫ t

s

‖ASβ(r)f(t− r)‖dr ≤ C8s
γtβ(ϑ−1)+1−α‖f‖Cαγ ((0,T ];Xϑ) ≤ C8T

β(ϑ−1)+1+γ−α‖f‖Cαγ ((0,T ];Xϑ).

Now, we notice that ‖A1+εv0‖ ≤ ‖v0‖1+ε and hence

sup
0≤s<t≤T

sγ‖Av(t)−Av(s)‖
(t− s)α

≤ C6‖v0‖1+ε + C10‖f‖Cαγ ((0,T ];Xϑ),

where C10 := C7T
β(ϑ−1)+1 + C8T

β(ϑ−1)+1+γ−α.

From Steps 1 and 2 of the Part II of this proof we have

sup
0≤s<t≤T

sγ‖v(t)− v(s)‖D(A)

(t− s)α
≤ D3‖v0‖1+ε +D4‖f‖Cαγ ((0,T ];Xϑ).

where D3 = C4 + C6 and D4 := C5 + C10. This concludes the proof or Part II.
From Part I and II, we obtain that

‖v‖Cαγ ((0,T ];D(A)) ≤ (D1 +D3) sup
0<t≤T

‖v(t)‖D(A) + (D2 +D4) sup
0≤s<t≤T

sγ‖v(t)− v(s)‖D(A)

(t− s)α
,

and therefore there exists a constant K := max{D1 +D3, D2 +D4} such that

‖v‖Cαγ ((0,T ];D(A)) ≤ K
(
‖v0‖1+ε + ‖f‖Cαγ ((0,T ];Xϑ)

)
,

and the proof concludes.

Remark 10. Observe that all constants shown in the proof of Theorem 9 are in fact computable, which is
an essential requirement in the main result of next section.
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4. A posteriori error estimates for the time discretization

Let {Un}Nn=1 be a time discretization of (9) at time levels 0 = t0 < t1 < t2 < . . . < tN = T , where Un
stands for the approximation to the continuous solution u(t) in tn, i.e. Un ≈ u(tn), 1 ≤ n ≤ N . Moreover
denote In = [tn−1, tn], and τn := tn − tn−1, for 1 ≤ n ≤ N . A lot of time discretizations of (9) (but
also for (8)) have been studied in the literature, e.g. convolution quadrature based methods [6, 14, 42],
numerical inversion of the Laplace transform [9, 38], collocation methods [8], Adomian decomposition
methods [19, 23], and so many others. Without loss of generality we can assume that the numerical
method that provides the numerical solution above admits the format

Un = U0 +

n∑
j=0

qn−jUj + τnF (Un), 1 ≤ n ≤ N, (28)

for certain weights {qj}Nn=0 where each qn depends in some manner on τn. In particular, if one can
combine the backward Euler method for the time derivative, and a convolution quadrature methods with
constant step size, such numerical method admits the formulation (28) (see [16, 39]).

Note that the nonlinearity F of (8), and henceforth of (28), typically obliges to assume some restric-
tions on the largest time step τmax := max0≤n≤N{τn}, however this fact is not relevant for our purposes
and therefore we will assume in the rest of the section that τmax is small enough.

Anyhow, since our results make use of a convenient continuous reconstruction of the discrete solution,
rather than of the discrete solution itself, and since the convergence order of the method is not the subject
of this work, the numerical scheme chosen does not deserve further attention.

An important issue in our study is the regularity of the terms involved, not only in the continuous
equation but also in the numerical scheme. In fact, the nonlinear character of (8) makes expected that
some regularity on the discrete solution {Un}Nn=0 is required, but even more, the fractional nature of the
integral term involved in (8) will make expected as well some additional regularity conditions. To be
more precise, assume that

{Un}Nn=0 ⊂ X1+ϑ, with
β − 1

β
≤ ϑ < 1, (29)

where β is the order of integration in (8). In the integer case, i.e. if β = 1, ϑ can be 0 and therefore
spatial regularity is not longer needed. This is consistent with the results achieved in [15] where it is
merely required that {Un}Nn=0 ⊂ B.

Special attention must be paid to the regularity of the numerical initial data U0, and more precisely,
since the estimates we show below takes into account the contribution of the initial error e0 := U(0)−u0 =
U0 − u0, special attention must be paid to the regularity of the initial error e0 rather than of U0. In
particular, we assume that for certain 0 < ε < 1, to be determined below, we have

e0 ∈ X1+ε. (30)

Our estimates are obtained from a convenient continuous reconstruction of the numerical solution. In
this way, we define the continuous piecewise polynomial function

U : [0, T ]→ X1+ϑ, U ∈ C1((0, T ), X1+ϑ), (31)

satisfying for 1 ≤ n ≤ N ,

• U|In ∈ P3(In, X
1+ϑ).

• U(tn) = Un.

• U ′|In(tn) = U ′|In+1(tn), for 1 ≤ n ≤ N − 1, and U ′(0) = U ′(T ) = 0,
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where P3(In, X
1+ϑ) is the set of all X1+ϑ-valued polynomials of degree less or equal to 3 defined in In.

Let e : [0, T ]→ B be the error function defined as e(t) := U(t)−u(t). Then, there exists a computable
residual function R : [0, T ]→ B such that e is the solution of

e′(t) = ∂1−βAe(t) +G(t, e(t)) +R(t), e(0) = e0, 0 ≤ t ≤ T, (32)

where G : [0, T ]× B → X is the function defined by

G(t, w) := F (U(t))− F (U(t)− w), 0 ≤ t ≤ T. (33)

Note that G(t, e(t)) = F (U(t)) − F (U(t) − e(t) = F (U(t)) − F (u(t)), for 0 ≤ t ≤ T . Moreover, R is
in fact computable since it can be expressed in term of computable quantities as

R(t) = U ′(t)− ∂1−βAU(t)− F (U(t)), U(0) = U0, 0 ≤ t ≤ T,

or in other words, there holds

U ′(t) = ∂1−βAU(t) + F (U(t)) +R(t), U(0) = U0, 0 ≤ t ≤ T.

The proof on the main result in this paper is based on the application of a fixed point theorem over
the linear problem

e′(t) = +∂1−βAe(t) +G(t, w(t)) +R(t), e(0) = e0, 0 ≤ t ≤ T, (34)

for a given w belonging to a suitable functional space to be described below, in such a manner that the
fixed point of (34) stands for the solution of (32). Here G(t, w(t)) +R(t) plays the role of f(t) in (10),
is for that the regularity of such a term is one of the key points for our purposes.

On the one hand, the regularity of R is straightforward having in mind that U ∈ C1((0, T ), X1+ϑ), the
linear structure of the numerical scheme assumed in (28), and Hypothesis (H1) on the Lipchitz continuity
of Fu. In fact we have that R ∈ Cαγ ((0, T ];Xϑ).

The regularity of G(t, w(t)) is not so trivial and it is shown in Lemma 11 below. To this end we need
to state a suitable set of functions, in fact let 0 < ρ < 1 be a constant such that

ρ ≤ 1

2
R(u0), (35)

where R(u0) is the constant given in Hypothesis (H1), and define the set of functions

Yρ :=
{
w ∈ Cαγ ((0, T ];D(A)) : w(0) = e0, and ‖w‖Cαγ ((0,T ];D(A)) < ρ

}
.

Moreover, in addition to (H1)–(H3) we assume that

(H4) The reconstruction U defined in (31) satisfies

‖U(·)− u0‖Cαγ ((0,T ];D(A)) ≤ ρ.

In order to formulate all our results in terms of truly computable terms one can express Hypothesis (H4)
depending on U0 instead of u0 . In that case small changes in the proof lead to the same result, however
for the sake of the simplicity of the presentation we assume Hypothesis (H4) as stated above.

Lemma 11. Let U be the continuous reconstruction (31) satisfying Hypothesis (H4), and ρ satisfying
the condition (35). Assume also that α, β, γ, and ϑ satisfy the conditions (a)–(c) of Theorem 9. Then
G(·, w(·)) ∈ Cαγ ((0, T ];Xϑ), for every w ∈ Yρ, and there holds

‖G(·, w(·))‖Cαγ ((0,T ];Xϑ) ≤ Λ‖w‖Cαγ ((0,T ];D(A)),

where Λ := 9Lρ
2 , and L = L(u0) is the constant given in (H1).
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Proof of Theorem 11. Let w ∈ Yρ. Since F is Frechét differentiable and Fu(u0) = 0 , we can write

G(t, w(t)) = F (U(t))− F (U(t)− w(t)) =

∫ 1

0

[Fu(U(t)− (1− τ)w(t))− Fu(u0)] d. τ w(t).

By Hypothesis (H1) we have

‖G(t, w(t))‖ϑ ≤
∫ 1

0

‖Fu(U(t)− (1− τ)w(t))− Fu(u0)‖L(D(A),Xϑ) dτ‖w(t)‖D(A)

≤ L

∫ 1

0

[
‖U(t)− u0‖D(A) + (1− τ)‖w(t)‖D(A)

]
dτ sup

0<t≤T
‖w(t)‖D(A)

≤ L

∫ 1

0

[
sup

0<t≤T
‖U(t)− u0‖D(A) + (1− τ) sup

0<t≤T
‖w(t)‖D(A)

]
dτ‖w‖Cαγ ((0,T ];D(A))

≤ L

∫ 1

0

[
‖U − u0‖Cαγ ((0,T ];D(A)) + (1− τ)‖w‖Cαγ ((0,T ];D(A))

]
dτ‖w‖Cαγ ((0,T ];D(A))

≤ L

∫ 1

0

ρ+ (1− τ)ρ dτ‖w‖Cαγ ((0,T ];D(A))

=
3Lρ

2
‖w‖Cαγ ((0,T ];D(A)).

On the other hand, if w ∈ Yρ, and 0 ≤ s < t ≤ T, then

G(t, w(t))−G(s, w(s)) = [F (U(t))− F (U(s))]− [F (U(t)− w(t))− F (U(s)− w(s))].

Once again, since F is Frechét differentiable and Fu(u0) = 0, we obtain

G(t, w(t))−G(s, w(s)) =

∫ 1

0

[Fu(U(t)− (1− τ)w(t))− Fu(U(s)− (1− τ)w(s))] dτ w(t)

+

∫ 1

0

[Fu(U(s)− (1− τ)w(s))− Fu(u0)] dτ [w(t)− w(s)],

which implies

‖G(t, w(t))−G(s, w(s))‖ϑ

≤
∫ 1

0

‖Fu(U(t)− (1− τ)w(t))− Fu(U(s)− (1− τ)w(s))‖L(D(A),Xϑ) dτ‖w(t)‖D(A)

+

∫ 1

0

‖Fu(U(s)− (1− τ)w(s))− Fu(v0)‖L(D(A),Xϑ) dτ‖w(t)− w(s)‖D(A)

≤ L

∫ 1

0

‖(U(t)− U(s))− (1− τ)(w(t)− w(s))‖D(A) dτ‖w‖Cαγ ((0,T ];D(A))

+L

∫ 1

0

‖(U(s)− u0)− (1− τ)w(s)‖D(A) dτ‖w(t)− w(s)‖D(A).

Moreover, we notice that by Hypothesis (H4)

sγ‖U(t)− U(s)‖D(A)

(t− s)α
=
sγ‖(U(t)− u0)− (U(s)− u0)‖D(A)

(t− s)α
≤ ‖U − u0‖Cαγ ((0,T ];D(A)) < ρ. (36)
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Henceforth, since ‖w‖Cαγ ((0,T ];D(A)) < ρ

sγ‖G(t, w(t))−G(s, w(s))‖ϑ
(t− s)α

≤ L

[
ρ+

∫ 1

0

(1− τ)
sγ‖w(t)− w(s)‖D(A)

(t− s)α
dτ

]
‖w‖Cαγ ((0,T ];D(A))

+L

[
ρ+

∫ 1

0

(1− τ)‖w(s)‖D(A) dτ

]
sγ‖w(t)− w(s)‖D(A)

(t− s)α

≤ 2L

[
ρ+

∫ 1

0

(1− τ) dτ‖w‖Cαγ ((0,T ];D(A))

]
‖w‖Cαγ ((0,T ];D(A))

= 2L
[
ρ+

ρ

2

]
‖w‖Cαγ ((0,T ];D(A))

= 3Lρ‖w‖Cαγ ((0,T ];D(A)).

Since ‖G(·, w(·))‖Cαγ ((0,T ];Xϑ) = sup
0<t≤T

‖G(t, w(t))‖ϑ + sup
0≤s<t≤T

sγ‖G(t, w(t))−G(s, w(s))‖ϑ
(t− s)α

we obtain

‖G(·, w(·))‖Cαγ ((0,T ];Xϑ) ≤
9

2
Lρ‖w‖Cαγ ((0,T ];D(A)),

and the proof is finished.

The next theorem shows the main result of this paper.

Theorem 12. Let u,U : [0, T ] → B be the solution of (5), and the continuous reconstruction (31)
respectively, such that u satisfies Hypotheses (H1)–(H3), and U Hypothesis (H4).

Let α, β, γ, ε, and ϑ be positive constants satisfying (a)–(c) of Theorem 9, and ρ > 0 satisfying

ρ <
1

6KL
, (37)

where K is the constant obtained in Theorem 9 and L = L(u0) is the Lipschitz constant of Hypothesis
(H1). If there holds (30), and the residual R defined in (32) satisfies

‖e0‖1+ε + ‖R‖Cαγ ((0,T ];Xϑ) ≤
ρ

K

(
1− 9KLρ

2

)
, (38)

then there exists a computable constant C > 0 such that

‖U − u‖Cαγ ((0,T ];D(A)) ≤ C
(
‖e0‖1+ε + ‖R‖Cαγ ((0,T ];Xϑ)

)
. (39)

Proof of Theorem 12. First of all, recall that e(t) stands for the solution of equation (32), i.e.

e′(t) = ∂1−βAe(t) +G(t, w(t)) +R(t), e(0) = e0, 0 ≤ t ≤ T, (40)

for each w ∈ Yρ. Notice that for the brevity of the notation we avoided the dependence of e on w. Let
Ψ : Yρ → Yρ be the operator defined by Ψ(w) = h, for w ∈ Yρ, where h is the solution of the linear
equation

h′(t) = ∂1−βAh(t) +G(t, w(t)) +R(t), h(0) = e0, 0 ≤ t ≤ T.

Recall that the fixed point of Ψ is the solutions of the equation (32) in Yρ, and therefore, in order to
prove the theorem we will show in two steps that Ψ has a unique fixed point in Yρ.

Step 1: Let us show that Ψ(Yρ) ⊂ Yρ.
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If we take w ∈ Yρ, then by Lemma 11 the function G(·, w(·)) belongs to Cαγ ((0, T ];Xϑ). Since R ∈
Cαγ ((0, T ];Xϑ) we have that the function f(t) := G(t, w(t)) + R(t) belongs to Cαγ ((0, T ];Xϑ) as well.
Therefore, by Theorem 9, and Lemma 11, Ψ(w) ∈ Cαγ ((0, T ];D(A)), and

‖Ψ(w)‖Cαγ ((0,T ];D(A)) = ≤ K
(
‖e0‖1+ε + ‖G(·, w(·)) +R‖Cαγ ((0,T ];Xϑ)

)
≤ K

(
‖e0‖1+ε +

9Lρ

2
‖w‖Cαγ ((0,T ];D(A)) + ‖R‖Cαγ ((0,T ];Xϑ)

)
. (41)

Since ‖w‖Cαγ ((0,T ];D(A)) < ρ we obtain by Lemma 11 that

‖Ψ(w)‖Cαγ ((0,T ];D(A)) ≤ K
(
‖e0‖1+ε + ‖R‖Cαγ ((0,T ];Xϑ) +

9Lρ

2
ρ

)
. (42)

The assumption (38) implies ‖Ψ(w)‖Cαγ ((0,T ];D(A)) < ρ, and therefore Ψ(Yρ) ⊂ Yρ.

Step 2: Ψ is a contraction on Cαγ ((0, T ];D(A)).
We need to prove that if w1, w2 ∈ Cαγ ((0, T ];D(A)) with ‖wi‖Cαγ ((0,T ];D(A)) < ρ, i = 1, 2, then

‖Ψ(w2)−Ψ(w1)‖Cαγ ((0,T ];D(A)) ≤ c‖w2 − w1‖Cαγ ((0,T ];D(A))

for certain constant 0 < c < 1. In fact, let wj ∈ Yρ and hj = Ψ(wj), be the solutions of

h′j(t) = ∂1−βAhj(t) +G(t, wj(t)) +R(t), e(0) = e0, 0 ≤ t ≤ T,

for j = 1, 2, respectively. Then, for h(t) := h2(t)− h1(t), and applying (11), we have

Ψ(w2(t))−Ψ(w1(t)) =

∫ t

0

Sβ(t− s)
(
G(t, w2(s))−G(t, w1(s))

)
ds, 0 ≤ t ≤ T,

or in other words, h(t) is the solution of a linear equation (10) with v0 = 0, and f(t) = G(t, w2(t)) −
G(t, w1(t)). Hence, by Theorem 9, there holds

‖Ψ(w2)−Ψ(w1)‖Cαγ ((0,T ];D(A)) ≤ K‖G(·, w2(·))−G(·, w1(·))‖Cαγ ((0,T ];Xϑ). (43)

Now, we will estimate ‖G(·, w2(·))−G(·, w1(·))‖Cαγ ((0,T ];Xϑ). From the definition of function G we have

‖G(t, w2(t))−G(t, w1(t))‖ϑ = ‖F (U(t)− w2(t))− F (U(t)− w1(t))‖ϑ,

and by Hypotheses (H1)–(H4)

‖F (U(t)− w2(t))− F (U(t)− w1(t))‖ϑ

=

∥∥∥∥∫ 1

0

Fu(U(t)− τw2(t)− (1− τ)w1(t)) dτ(w2(t)− w1(t))

∥∥∥∥
ϑ

≤
∫ 1

0

‖Fu(U(t)− τw2(t)− (1− τ)w1(t))− Fu(u0)‖L(D(A),Xϑ) dτ‖w2(t)− w1(t)‖D(A)

≤ L

∫ 1

0

‖(U(t)− u0)− τw2(t)− (1− τ)w1(t)‖D(A) dτ‖w2(t)− w1(t)‖D(A)

≤ L

[
‖U − u0‖Cαγ ((0,T ];D(A)) +

∫ 1

0

τ‖w2‖Cαγ ((0,T ];D(A)) dτ +

∫ 1

0

(1− τ)‖w1‖Cαγ ((0,T ];D(A)) dτ

]
·

‖w2(t)− w1(t)‖D(A)

≤ L
[
ρ+

ρ

2
+
ρ

2

]
‖w2 − w1‖Cαγ ((0,T ];D(A))

≤ 2Lρ‖w2 − w1‖Cαγ ((0,T ];D(A)).
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We conclude that

sup
0<t≤T

‖G(t, w2(t))−G(t, w1(t))‖ϑ ≤ 2Lρ‖w2 − w1‖Cαγ ((0,T ];D(A)). (44)

On the other hand,

(G(t, w2(t))−G(t, w1(t)))− (G(s, w2(s))−G(s, w1(s)))

= [(F (U(t))− F (U(t)− w2(t)))− (F (U(t))− F (U(t)− w1(t)))]

− [(F (U(s))− F (U(s)− w2(s)))− (F (U(s))− F (U(s)− w1(s)))]

=

∫ 1

0

[Fu(U(t)− (1− τ)w2(t))− Fu(U(t)− (1− τ)w1(t))] dτ(w2(t)− w1(t))

−
∫ 1

0

[Fu(U(s)− (1− τ)w2(s))− Fu(U(s)− (1− τ)w1(s))] dτ(w2(s)− w1(s))

=

∫ 1

0

[Fu(U(t)− (1− τ)w2(t))− Fu(U(t)− (1− τ)w1(t))] dτ(w2(t)− w1(t))

+

∫ 1

0

[Fu(U(s)− (1− τ)w2(s))− Fu(U(s)− (1− τ)w1(s))] dτ(w2(t)− w1(t))

−
∫ 1

0

[Fu(U(s)− (1− τ)w2(s))− Fu(U(s)− (1− τ)w1(s))] dτ(w2(t)− w1(t))

−
∫ 1

0

[Fu(U(s)− (1− τ)w2(s))− Fu(U(s)− (1− τ)w1(s))] dτ(w2(s)− w1(s))

:= I1 + I2 + I3 + I4.

We first estimate ‖I2 + I4‖ϑ. We notice that

I2 + I4 =

∫ 1

0

[Fu(U(s)− (1− τ)w2(s))− Fu(U(s)− (1− τ)w1(s))] dτ [(w2 − w1)(t)− (w2 − w1)(s)],

which implies

‖I2 + I4‖ϑ ≤
∫ 1

0

‖Fu(U(s)− (1− τ)w2(s))− Fu(U(s)− (1− τ)w1(s))‖L(D(A),Xϑ) dτ ·

‖(w2 − w1)(t)− (w2 − w1)(s)‖D(A)

≤ L

∫ 1

0

(1− τ)(‖w1(s)‖D(A) + ‖w2(s)‖D(A)) dτ‖(w2 − w1)(t)− (w2 − w1)(s)‖D(A)

≤ L

∫ 1

0

(1− τ)(‖w1‖Cαγ ((0,T ];D(A)) + ‖w2‖Cαγ ((0,T ];D(A))) dτ‖(w2 − w1)(t)− (w2 − w1)(s)‖D(A)

≤ Lρ‖(w2 − w1)(t)− (w2 − w1)(s)‖D(A).

Hence,

sγ‖I2 + I4‖ϑ
(t− s)α

≤ Lρ
sγ‖(w2 − w1)(t)− (w2 − w1)(s)‖D(A)

(t− s)α
≤ Lρ‖w2 − w1‖Cαγ ((0,T ];D(A)).
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The estimate of the norm of I1 + I3 follows from Hypotheses (H1)–(H4):

‖I1 + I3‖ϑ ≤

[∫ 1

0

‖Fu(U(t)− (1− τ)w2(t))− Fu(U(s)− (1− τ)w2(s))‖L(D(A),Xϑ) dτ

+

∫ 1

0

‖Fu(U(t)− (1− τ)w1(t))− Fu(U(s)− (1− τ)w1(s))‖L(D(A),Xϑ) dτ

]
·

‖w2(t)− w1(t)‖D(A)

≤ L

[∫ 1

0

‖U(t)− U(s)‖D(A) + (1− τ)‖w2(t)− w2(s)‖D(A) dτ

+

∫ 1

0

‖U(t)− U(s)‖D(A) + (1− τ)‖w1(t)− w1(s)‖D(A) dτ

]
‖w2(t)− w1(t)‖D(A)

≤ L

[
2‖U(t)− U(s)‖D(A) +

1

2
‖w2(t)− w2(s)‖D(A) +

1

2
‖w1(t)− w1(s)‖D(A)

]
·

‖w2 − w1‖Cαγ ((0,T ];D(A)).

From (36) we have

sγ‖I1 + I3‖ϑ
(t− s)α

≤ L

[
2ρ+

1

2

sγ‖w2(t)− w2(s)‖D(A)

(t− s)α
+

1

2

sγ‖w1(t)− w1(s)‖D(A)

(t− s)α

]
‖w2 − w1‖Cαγ ((0,T ];D(A))

≤ L

[
2ρ+

1

2
(‖w1‖Cαγ ((0,T ];D(A)) + ‖w2‖Cαγ ((0,T ];D(A)))

]
‖w2 − w1‖Cαγ ((0,T ];D(A))

≤ 3Lρ‖w2 − w1‖Cαγ ((0,T ];D(A)).

Therefore,

(45)

sup
0≤s<t≤T

sγ‖ (G(t, w2(t))−G(t, w1(t)))− (G(s, w2(s))−G(s, w1(s))) ‖ϑ
(t− s)α

≤ 4Lρ‖w2 − w1‖Cαγ ((0,T ];D(A)).

We conclude from (44) and (45) that

‖G(·, w2(·))−G(·, w1(·))‖Cαγ ((0,T ];Xϑ) ≤ 6Lρ‖w2 − w1‖Cαγ ((0,T ];D(A)). (46)

From (43) we obtain

‖Ψ(w2)−Ψ(w1)‖Cαγ ((0,T ];D(A)) < 6LρK‖w2 − w1‖Cαγ ((0,T ];D(A)),

and since 6LρK < 1 as assumed in (37), we have that Ψ is a contraction
Therefore, Ψ has a unique fixed point e ∈ Yρ, that is, e ∈ Cαγ ((0, T ];D(A)) with ‖e‖Cαγ ((0,T ];D(A)) < ρ

and Ψ(e) = e. Moreover, by (37) and (42), and since 1− 9KLρ

2
> 0 , we have that

‖e‖Cαγ ((0,T ];D(A)) ≤ C
(
‖e0‖1+ε + ‖R‖Cαγ ((0,T ];Xϑ)

)
,

where C :=
K

1− 9KLρ
2

stands for the computable constant predicted in the statement of the theorem,

and which concludes the proof.
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As a final remark in this work notice that our estimates take into account not only the computable
residual R but also the contribution of the initial error e0. This is meaningful in the context of partial
differential equations where the exact evaluation of the initial data u0 is often unachievable, in other
words U0 does not always coincide exactly with u0. Unfortunately the contribution of the initial error in
the final estimate forces us to demand certain regularity to e0.
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americana para Jóvenes Profesores e Investigadores, Banco de Santander, and also by the Fog Research
Institute under contract no. FRI-454.

Moreover, part of this work was done while the second author was on a research visit at the Department
of Applied Mathematics, E.T.S.I. of Telecomunication, Campus Miguel Delibes, University of Valladolid.
He thanks to the members of this group for their kind hospitality.

References

[1] B. de Andrade, On the well-posedness of a Volterra equation with applications in the Navier-Stokes
problem,Math. Methods Appl. Sci. 41 (2018), , 750-768.

[2] H. Amann, Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory, Mono-
graphs in Mathematics, vol. 89, Birkhäuser, Basel–Boston–Berlin, 1995.
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