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Abstract

In this paper a video sequence is considered as a two dimensional time evolving process. Under this as-
sumption two Volterra equations based mathematical models are introduced for video restoration purposes.
The first one is based on geometric features related to the spatial–time structure of the video sequence and
gives rise to a nonlinear Volterra equation. This model arises from the Mean Curvature Flow linked to
evolving surfaces. The second one is based on analytic features and leads to the formulation of a linear
Volterra model. The second procedure relies on the assumption of local time coherence in the sequence of
frames, at least short back in time. In both cases Volterra equations based approach introduces a memory
effect in the process which in the present terminology means that several frames back may be taken into
account for the better reconstruction of the current frame throughout a convenient choice of the convolution
kernel. On the other hand the role played by Least Squares Method focuses on the practical computation of
that convolution kernel just at discrete level. The performance of both approaches is shown through a list
of suitable experiments, and the better performance of the second approach is illustrated with remarkable
improvements in critical cases.
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1 Introduction

Video processing is nowadays one of the most active fields of scientific research in Computer Vision, involving
areas like superesolution [?], compression [?], or restoration [?] among others. The present paper focuses on
the last point, and it is mainly focused towards the reconstruction of old movies which have been degraded,
along the storage process or their conversion to digital format, by artifacts of different type. The most
common artifacts are probably those related to the noise generation, the formation of blotches and scratches,
the so–called Vinegard Syndrome on several frames, or Moiré and intensity Flicker effects (see [?, ?] and
references therein). In [?] readers can find a detailed state–of–the–art about these topics at the early years
of this century.

To fix ideas, we restrict ourselves to gray–level images since our proposals can be extended in a very
simple way to the corresponding color representations. Every digital gray–level image can be understood as
a discrete surface arising from a map z = u(x, y), where u stands for the gray–level intensity. Hence, a digital
gray–level video mini–sequence is understood as an one–parameter family of discrete surfaces arising from
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a family of maps {z = u(x, y, t)}t≥0. Thus, its time evolution is understood as a time discrete evolutionary
process. Notice that if in a set of pixels of a single frame of the sequence a large gray intensity change comes
suddenly to appear (beyond some threshold), then these pixels are candidate to be damaged pixels.

In restoration techniques the pixels to be restored are typically are affected by irregularly distributed
noise or by artificial blotches (i.e. unexpected dark or bright spots). There are very different denoising
techniques for noisy images. In fact, evolving surfaces z = u(x, y, t) representing the frames may show high
gray–level variability and different kinds of noise. Noise removal is actually out of the scope of this paper.
Instead in this work we are certainly concerned with restoration of regions which are not well defined, where
the information is lost, or, for instance, where higher resolution is required. Therefore advanced techniques
of video enhancement and restoration are required.

The main goal of video restoration is to recover the original spatial and temporal structure by taking into
account local information in the current, precedent, and even subsequent frames (if available). The recovery
can be performed in statistical terms (by using correlations, e.g.), analytical terms (weighted averages based
on convolution operators, e.g.) or geometric terms (by using e.g. conformal flows or, alternately, curvature
flows for the underlying surfaces among others). The choice of the most appropriate approach depends on
evolving geometric vs. radiometric characteristics of the support (including features as complex textures
e.g.) or motion characteristics (which can introduce artifacts linked to sudden changes along the motion
such as edges breaking, e.g.) see [?]. In the present paper we leave aside statical approaches and focus on
analytic and geometric based models.

On the one hand, the goal of analytical approaches is to improve or restore “infinitesimal” properties
according to the time variation of local information around damaged pixels. It can be considered as a
planar approach because it uses information about continuity respect to t of planar regions r(t) and their
boundaries b(t) = ∂r(t). Usually, analytical approaches are linked to some variant of the gradient ∇b(t),
which is geometrically reinterpreted as the normal flow of the boundary b(t) itself. If the region r(t) is
convex, the normal outward propagation has good properties: it can be shrinked to a point. However,
furthermore usual inconvenient of the gradient flow (as directional field), the normal propagation displays a
lot of “pathologies”. Typical examples are given by different kinds of self–intersections and cusps (linked to
normal envelopes or caustics, e.g.) which degrade local computations linked to convolution filters.

Alternately, in the geometric framework one may consider several mathematical tools closely related to
the spatial–time geometric structure of the video sequence. Our proposal is based on the very well known
Mean Curvature Flow (MCF hereinafter) which incorporates volumetric information about shrinking or
expanding phenomena contained in neighbor images of the video mini–sequence. A good recent survey for
the MCF of surfaces can be read in [?]. Recall that the MCF is defined as the divergence of the unit normal
vector of the surface.

From the Classical Differential Geometry viewpoint, a smooth surface S ⊂ R3 is locally characterized
at each point p ∈ S (up to rigid motions) by the Mean Curvature H and the Total Curvature K (Gauss
Theorem) which is an intrinsic invariant. They are respectively defined as the arithmetical mean H :=
(κ1 +κ2)/2, and geometric mean K := κ1κ2 , which are the elementary symmetric functions of the principal
curvatures κ1, and κ2. In fact κ1, and κ2 stand for the eigenvalues of the curvature matrix corresponding
to minimal and maximal values for sectional curvatures, i.e. sections by hyperplanes containing the normal
vector NpS to S at p ∈ S (see [?]).

The use of the MCF is not a novelty for propagation models on surfaces; it has been used from long
time ago for different purposes, including image and video restoration. In fact to best of our knowledge the
original MCF level set equation was proposed in [?], and further generalizations in [?, ?, ?, ?]. A classical
reference is [?].

Let us remark that video restoration is based on the preservation of the Mean Curvature over the time by
non–trivial isometric deformations. The above condition is equivalent to the existence of a conformal metric
for which one can compute the evolution of Mean Curvature H and Total Curvature K of a third order
ordinary differential equation which allows the construction of an isometric deformation (Codazzi equation
[?]) keeping the MCF [?]. Unfortunately, in video sequences one cannot expect so good conditions. Hence,
several alternative approaches has been developed from the late nineties. Let us mention the one in [?]
for normal inward direction with speed equal to the Harmonic Mean Curvature H/K for a surface in the
ordinary space. This method provides explicit solutions with a good behavior for revolution surfaces.

Nevertheless its interest linked to normal inward propagation, their applicability to video sequences is

2



limited to a very specific kind of surfaces. In [?] the authors develop an approach based on m–th powers of
the Mean Curvature going farther the cases corresponding to convex hypersurfaces converging to a sphere.
The strategy consists of using volume–preserving MCF to obtain finer convergence results (towards a sphere
of radius r > 0), by extending previous results of [?].

The use of the MCF associated to an evolving surface Mt : R2 7→ R3, t ≥ 0 displays some inherent
troubles. To understand them, let us observe that MCF is defined as the solution of a quasilinear parabolic
equation

∂H(Mt)

∂t
= ∆g(t)H(Mt) + |A|2H(Mt), t ≥ 0, (1)

where A is the second fundamental form of the evolving surface Mt, ∆g(t) is the classical Laplace–Beltrami
operator, and g(t) stands for a given metric tensor. In other words, it is a quasilinear heat equation with a
superlinear growth [?] which gives an explosive behavior of MCF in finite time, and forces to a very careful
analysis of discrete approaches taking into account the length of the time intervals. Different alternatives
have been proposed in the literature. A first option consists of combining short–time analytic conditions
along with the first step of iteration (expressed in numerical terms). Another option consists of obtaining
geometric stability conditions for the partial reconstruction, by means of a suitable regularizations. Last
ones are discussed more in depth in Section ??.

Based on the above considerations our first proposal consists of an integral approach to MCF based on
(??). In particular our first approach consists of developing a video restoration model based on a nonlinear
and non–local in time MCF formulation arising from the time integration of (??), that is

H(Mt) = H(M0) +

∫ t

0

{
∆g(s)H(Ms) + |A|2H(Ms)

}
ds, t ≥ 0. (2)

What is more, we consider a further generalization of (??) in terms of nonlinear convolution equations

H(Mt) = H(M0) +

∫ t

0

K(t− s)
{

∆g(s)H(Ms) + |A|2H(Ms)
}

ds, t ≥ 0. (3)

where K(t) stands for a suitable convolution kernel. This choice is proposed for a twofold reason:

1. The proposed approach allows us to take into account a larger amount of information back in time. In
the discrete setting this means that one can take into account more frames back apart from the current
and previous ones.

2. The regularization effect of the convolution approach is expected to cut down the singularities associated
to the classical approach (??).

The practical results achieved with several video mini–sequences show that the classical MCF (??) (i.e. if
one goes back in time one frame), provides little competitive performances. Moreover we have observed that
if more than one frame is considered according to (??) instabilities remain, and what is worse, the more
frames back we consider, the worse the restoration is. In particular unexpected artifacts come to appear as
one goes further back in time. This suggests that geometric features associated to the MCF make unstable
the propagation model for large time scales, therefore unsuitable for our purposes.

Our second contribution consists of developing an analytical approach, according to the classification
above, where geometrical characteristics do not play a key role. Instead, we assume a “short time coherence”.
In other words, we assume that the video sequence displays some kind of local continuity for the intensity at
every single pixel around the damaged area; this region is called a “collar” in Differential Topology. From
an analytic viewpoint, this “timeline continuity” is modeled by means of a classical linear Volterra equation
(known as well as linear non–local in time evolution equation), both from a continuous viewpoint

Mt = M0 +

∫ t

0

K(t− s)Ms ds, t > 0, (4)

but also from its discrete counterpart, namely in terms of a discrete set of frames as described in Section ??.
Instead of considering geometric properties of the MCF, the convolution kernel K(t) is expected to regularize
instabilities associated to large time scales ocuring in practical situations. Let us remark that K(t) explicitly
arises only in the discrete context where it is computed according to particular features of the sequence. The
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convolution weights arising in the discrete formulation are computed by means of the Least Squares Method
following similar ideas to those appearing in Machine Learning methodologies.

The experimental results revealed the good performance of this approach including the stability as we go
back in time, that is if one uses the information provided by several previous frames, up to some threshold.
Our results show that this approach provides by far better performance that (??), also. Notice that in this
approach subsequent frames could be considered as well, but not only previous ones, however this issue
keeps out of the scope of the present work. To the best of our knowledge, this approach has not been
considered before in the literature, and provides a very low computational cost and effective procedure for
video restoration.

Other approaches have been also considered in recent literature for video restoration, let us mention
some based on geometrical features of the video sequence as e.g. motion compensation (see e.g. [?]), optical
flow (see e.g. [?]), or fractional optical flow (see e.g. [?]) among others. All these approaches are more
sophisticated that the one proposed in (??). Hence, they are much more expensive in terms of computational
runtime; what is more, their stability has not been always accurately studied. By these reasons, we focus
on the two approaches described above in order to show their performance, and mainly in (??) owing to its
analytic nature, as more efficient alternative to the geometric one. Also, we show that the number of frames
to take into account in each mini–sequence restoration must be somehow limited. Otherwise, undesired
artifacts in the restored frame begin to appear.

Finally, our research does not focus on an automatic location of damaged/lost pixels since this issue
deserves his own development. Instead, to localize damaged/lost pixels in our experiments we make a
partial use of existing algorithms (see e.g. [?], Ch. 4, or [?]).

According to the above remarks, the contents of the article is as follows: Section ?? is devoted to give an
accurate formulation of MCF based approaches, and its further discussion. In this section we also describe
how convolutions weights involved in the non–local approaches are in practice computed. In Section ?? we
describe in detail our second proposal based on a linear convolution equation. The paper concludes with
Section ?? where a deep result assessment of our proposals is carried out by means of a number of suitable
practical experiments.

2 Mean Curvature Flow.

Let us fix the notation to be used throughout the paper. In fact in the continuous setting we denote by
{Mt}0≤t≤T a one–parameter set of surfaces in R3 corresponding to a video mini–sequence. Their implicit
representation can be ideally written as the level set of maps, ψ(·, t) : R3 → R, 0 ≤ t ≤ T , that is

Mt := {x = (x, y, z)T ∈ R3 : ψ(x, t) = 0}, 0 ≤ t ≤ T. (5)

Alternately, one may assume that surfaces Mt admit an explicit representation, that is there exists
u(·, ·, t) : R2 → R, 0 ≤ t ≤ T , so that

Mt := {(x, y, u(x, y, t)) : x, y ∈ Ω}, 0 ≤ t ≤ T. (6)

Notice that in that case Mt stands for the level sets of ψ(x, y, z, t) = z−u(x, y, t), 0 ≤ t ≤ T , or equivalently
for the solutions of the equation z = u(x, y, t), 0 ≤ t ≤ T , where for the sake of the simplicity of the notation
we avoid the dependence on t of z.

The representation (??) is suitable for the presentation of our results this is why now and hereafter we
merely focus on such representation.

2.1 Classical Mean Curvatura Flow.

According to the explicit representation (??) of a surface the standard Curvature Flow for the family of
surfaces {Mt}0≤t≤T is defined as

H(Mt) = H(u(x, t)) =
1

2
div

(
∇u(x, t)

‖∇u(x, t)‖

)
, 0 ≤ t ≤ T, x = (x, y) ∈ Ω, (7)
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where Ω ⊂ R2 stands for the spatial domain, and the operators div, and ∇ stand for the divergence and
gradient operators, respectively, on plane variables (x, y). Therefore the differential formulation of the
standard MCF reads

∂u

∂t
(x, t) = H(u(x, t)) =

1

2
div

(
∇u(x, t)

‖∇u(x, t)‖

)
, 0 ≤ t ≤ T, x ∈ Ω, (8)

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω, and
∂u

∂n
(x, t) = 0, 0 ≤ t ≤ T, x ∈ ∂Ω, (9)

respectively. In (??) u0 stands for the initial data of the problem, and in p ur framework to the first frame
considered in the restoration process. Moreover ∂Ω stands for the boundary of Ω. Therefore (??)–(??) gives
rise to the parabolic initial and boundary value problem to be solved.

According to the remarks appearing in the introduction, there can appear degenerate solutions of (??).
This occurs when the denominator in (??) vanishes, that is if ∇u = ~0. Therefore a suitable regularization
may be seen as a possible solution. In this regard different regularizations have been proposed in the
literature, including the regularized mean curvature R instead of H proposed in [?] and defined as

R(u) =

∫
Ω

|H(u)|q dΩ, (10)

where q > 0, typically q = 1 or q = 2, or e.g. the one proposed by Evans–Spruck in [?]. In the present paper
we focus in the last one which, according to the explicit representation of surfaces, can be writen as

H(Mt) = H(u(x, t)) = D div

(
∇u(x, t)√

ε+ ‖∇u(x, t)‖2

)
0 ≤ t ≤ T, x ∈ Ω, (11)

where D > 0 stands for the diffusion coefficient, and ε > 0 for the regularizing parameter, thought it is
expected to be small. Therefore the parabolic problem associated to (??) reads as

∂u

∂t
(x, t) = H(u(x, t)) = D div

(
∇u(x, t)√

ε+ ‖∇u(x, t)‖2

)
, 0 ≤ t ≤ T, x ∈ Ω, (12)

along with the initial and boundary conditions (??). The nonlinear parabolic problem (??) and (??) turns
out to be well–posed [?].

A more general approach to MCF (see [?]) is written as

∂u

∂t
(x, t) = H(u(x, t)), 0 ≤ t ≤ T, x ∈ Ω, (13)

where H stands for

H(u(x, t)) = g(‖∇u(x, t)‖) div

(
∇u(x, t)

f(‖∇u(x, t)‖)

)
, 0 ≤ t ≤ T, x ∈ Ω, (14)

for a suitable choice of f and g. In particular, MCF (??) consists of taking f(x) = x and g(x) = D (both of
them before regularization).

Note that the equation (??) may be explicitly written as

∂u

∂t
(x, t) = D

(ε+ u2
x)uyy − 2uxuyuxy + (ε+ u2

y)uxx

(ε+ u2
x + u2

y)3/2
, 0 ≤ t ≤ T, x ∈ Ω. (15)

In regard to the numerical solution of MCF models, let us mention two recent works, the first one
involving the finite volume discretization of K. Mikula et al. [?], and the second one of Ch. Lubich et al.
based on the finite element method [?, ?]. However since the nature of our approach is originally discrete,
we do not longer pay attention in this paper to the analysis of its numerical solutions.
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2.2 Non–local in time Mean Curvature Flow

The MCF process starts with an original surface corresponding to the initial data of the problem (??) and
(??). Afterward, solutions to the evolution problem (that is as the time scale evolves) provide new surfaces
corresponding to images expected to be a smoothing/filtering/re–construction of the original one.

Our proposed non–local approach consists of considering each video mini–sequence as a set of surfaces
{Mt}0≤t≤T evolving over time, and whose structure depends in some manner on the memory of the process
further than merely the current and previous surfaces, at least short back in time. This idea comes out from
the re–formulation of (??) in integral form simply by integrating it in time. This fact allows us to write (??)
as follows

u(x, t) = u0(x) +

∫ t

0

H(u(x, s)) ds, x ∈ Ω, 0 ≤ t ≤ T, (16)

where H(u(·, t)) is defined in (??), with boundary conditions as in (??). Note that in (??) the initial
condition is explicitly given by u0(x).

Typical artifacts to be restored are linked to lost pixels/blotches/patches/occlusions, e.g. In this frame-
work of video mini–sequence, we take into account the memory of the process, that is in the discrete setting
a number of previous frames of the sequence, furthermore the previous one as with (??) and (??). This
argument applies only within a limited time back. In other words, this idea works only if we assume “some
time coherence” at least in the pixels belonging to a small neighborhood around the damaged ones.

Our first contribution introduces a more general approach beyond (??), always within the assumption of
certain time coherence. In fact, we introduce a convolution kernel in (??) which enable us to handle more
accurately the memory of the process according to the features of the sequence. Therefore, the mathematical
model we propose writes as the non–linear Volterra equation

u(x, t) = u0(x) +

∫ t

0

K(t− s)H(u(x, s)) ds, 0 ≤ t ≤ T, x ∈ Ω, (17)

where in a classical context K(t) is a priori known. More general formulation of non–linear Volterra equations
might be considered however these are out of the scope of the present paper.

As we have advanced in the introduction the convolution kernel K(t) does not play any role in the
continuous setting due to the discrete nature of our approach. In the next section, we give an accurate
description about how the discrete convolution kernel can be computed in practice according to the features
of each single sequence around the damaged area to be restored. This explains why very weak conditions
may be required on K(t) in the continuous setting. So the well–posedness of (??) may be simply derived
from the well–posed conditions for (??).

Since the discrete framework is the one where we will work on, we now show the discretization of (??),
first in time, then in the spatial variables. Firstly, for the time discretization we set h > 0, tj = jh,
j = 0, 1, . . . , N (T = Nh), (??) becomes the following time discrete non–linear Volterra equation (also
known as time discrete convolution equation)

un(x) = u0(x) +

n−1∑
j=0

Kn−jH(uj(x)), 1 ≤ n ≤ N, x ∈ Ω, (18)

where uj(x) stands for the approximation to u(x, tj), even though in our framework it corresponds to the j–
th frame of the mini–sequence. Since the convergence of the numerical scheme is not a matter in this paper,
we can set h = 1 as the unit time without loss of generality. Thus, the time step length of the discretization
is neither a matter. On the other hand, the convolution weights Kj do not necessarily correspond to K(tj).
Actually, they arise from a Machine Learning based procedure as we describe in the next section.

The fully discretization of (??) is reached by replacing in H the spatial continuous derivatives by a
convenient finite differences scheme. Once again since the stability of the numerical discretization does not
matter in this paper, we adopt a classical second order difference scheme over a uniform spatial mesh of
length 1 both in x and y coordinate axis. In particular if we consider the spatial mesh M := {(p, q) : 0 ≤
p ≤ P, 0 ≤ q ≤ Q}, P,Q ∈ Z+, then the fully discretization of (??) gives rise, for every single time step
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1 ≤ n ≤ N , to the following system of fully discrete non–linear Volterra equations

u0,0
n = u0,0

0 +

n−1∑
j=0

Kn−jH0,0
j

u1,0
n = u1,0

0 +

n−1∑
j=0

Kn−jH1,0
j

...
...

up,q
n = up,q

0 +

n−1∑
j=0

Kn−jHp,q
j

...
...

(p, q) ∈M, (19)

where

Hp,q
n :=

D(
ε+

(
up+1,q
n − up,q

n

)2
+
(
up,q+1
n − up,q

n

)2)3/2
·

{(
ε+

(
up+1,q
n − up,q

n

)2)
(up,q+1

n − 2up,q
n + up,q−1

n )

−2 (up+1,q
n − up,q

n ) · (up,q+1
n − up,q

n ) · (up+1,q+1
n − up,q+1

n − up+1,q
n + up,q

n )

+
(
ε+

(
up,q+1
n − up,q

n

)2)
(up+1,q

n − 2up,q
n + up−1,q

n )

}
. (20)

The algorithm (??) is fully stated if combined with the discrete initial condition

up,q
0 = u0(p, q), 0 ≤ p ≤ P, 0 ≤ q ≤ Q, (21)

and the discrete boundary conditions (extending the domain by reflection as usual)

uP−1,q
j = uP+1,q

j , up,Q−1
j = up,Q+1

j , (p, q) ∈M. (22)

Notice that in a numerical context up,q
j stands for the approximation of u(p, q, j), however, in the present

context it represents the gray value of pixel (p, q) in the frame j.

2.3 Computation of convolution weights

The computation of convolution weights is worthy of the current section, where we explain how they can
be in practice computed. We are interested in the convolution weights in (??) rather than the convolution
kernel K(t) itself, which at first are not a priori known. The underlying idea we propose here is based on
Machine Learning methodologies and follows the following steps:

1. Locate the set of damaged pixels L = {p1, p2, . . . , pMl} in a given frame F0. These pixels belong to the
patch to be restored. For the sake of the simplicity of the notation we avoid the Euclidean notation
that is the explicit components pj = (pj,1, pj,2). Therefore the value u

pj
F0

, 1 ≤ j ≤ Ml corresponds to
the grey level of damaged pixel pj in the frame F0.

2. Assume that the patch can be surrounded by a set ofMr undamaged pixels denoted byR = {q1, q2, . . . , qMr}.
Once again we use an abbreviated notation for these pixels.

3. Assume also that the set of pixels L ∪R in NR > 0 previous frames are not damaged.

4. Now if we denote F−n the n–th frame back from the current one F0, then we use the set of pixels R
over the frames F0 and F−1, F−2, . . . , F−NR to learn the weights in (??). Here the main idea of the
paper applies, that is we apply here the local coherence, which means that not damaged pixels satisfy
a local equation of type (??) where the weights have to be determined. In particular this leads to solve
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a Mr × NR system of equations arising from the set of pixels R, with NR unknowns, i.e. the set of
weights {Kj}NR

j=1, which reads

uF0 = u0 +

NR∑
j=1

KjHF−j , (23)

where

uF0 =


uq1
F0

uq2
F0

...

u
qMr
F0

 ,u0 =


uq1
F−NR

uq2
F−NR

...

u
qMr
F−NR

 ,HF−j =


Hq1

F−j

Hq2
F−j

...

HqMr
F−j

 , j = 1, . . . , NR. (24)

Notice that in this context the initial value u0 stands for the set of values of pixels of the first image
we take into account in the discrete evolution process corresponding to the patch we are working with.

5. Since in our framework NR < Mr the system of equations (??) gives rise to an overdetermined system
and its solution {Kj}Nr

j=1 is understood in the sense of Least Squares Method. Note that we are allowed
to apply the Least Squares Method as shown below since the equations of system (??) are all of them
implicit. In fact, that system may be written in matrix form as

uF0 = u0 +HK, where H =


Hq1

F−1
Hq1

F−2
· · · Hq1

F−NR

Hq2
F−1

Hq2
F−2

· · · Hq2
F−NR

...
...

...
...

HqMr
F−1

HqMr
F−2

· · · HqMr
F−NR

,

 ,K =


K1

K2

...
KNR

 . (25)

The solution provided by the Least Squares Method for the system (??) comes out by solving the
associated normal equations, that is

HT (uF0 − u0

)
= HTHK,

whose solution K stands for the wanted set of weights {Kj}NR
j=1.

6. The restoration of damaged pixels comes through the weights {Kj}NR
j=1 computed above. This means

that the same local coherence as for the set of pixels R applies to the set of lost pixels L according to
(??) as follows

vF0 = v0 +

NR∑
j=1

KjHF−j , (26)

where

vF0 =


up1
F0

up2
F0

...

u
pMl
F0

 ,v0 =


up1
F−NR

up2
F−NR

...

u
pMl
F−NR

 ,HF−j =


Hp1

F−j

Hp2
F−j

...

H
pMl
F−j

 , j = 1, . . . , NR. (27)

7. Therefore the entries of vector vF0 stands the set of restored pixels.

3 A linear Volterra type based approach

The practical experiments carried out in Section ?? show that the behavior of MCF (??) and (??), that
is MCF in the classical sense, provides accurate results in the restoration of damaged pixels. However the
non–local in time MCF (??), or more precisely in a discrete format (??), does not improve in general such a
results. Instead, the algorithm performance worsened if more than one frame back is used in the restoration.
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Our experiments have shown that a simpler approach turned out to be much more accurate. In particular,
such approach consists of replacing the operator H(u(·, t)) in (??) by the identity operator I(u(·, t)). This
leads to the non–local in time equation

u(x, t) = u0(x) +

∫ t

0

K(t− s)u(x, s) ds, 0 ≤ t ≤ T, x ∈ Ω, (28)

along with the same boundary conditions (??). Again the initial condition u0(x) appears in (??) explicitly.
Moreover a fully discrete formulation of (??), in the same manner as in (??), leads to solve at single time
step 0 ≤ n ≤ N , the system of linear equations

u0,0
n = u0,0

0 +

n−1∑
j=0

Kn−ju
0,0
n

u1,0
n = u1,0

0 +

n−1∑
j=0

Kn−ju
1,0
n

...
...

up,q
n = up,q

0 +

n−1∑
j=0

Kn−ju
p,q
n

...
...

(p, q) ∈M.

According to the notation in Section ??, we must solve now the Mr ×NR system of linear equations

uF0 = u0 +

NR∑
j=1

KjuF−j , (29)

where

u0 =


uq1
F−NR

uq2
F−NR

...

u
qMr
F−NR

 ,uF−j =


uq1
F−j

uq2
F−j

...

u
qMr
F−j

 , j = 0, . . . , NR. (30)

After computing the weights {Kj}NR
j=1 by Least Squares Method as we have described in Section ??, the

restored pixels vF0 are then computed by

vF0 = v0 +

NR∑
j=1

KjuF−j , (31)

where

v0 =


up1
F−NR

up2
F−NR

...

u
pMl
F−NR

 ,uF−j =


up1
F−j

up2
F−j

...

u
pMl
F−j

 , j = 1, . . . , NR. (32)

The experiments in Section ?? show that going back short in time with (??) noticeably improves the
restoration carried out both by the non–local MCF model (??), but also by the classical MCF, that is if
NR = 1.
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4 Numerical experiments

This section is devoted to assess the performance of the proposed approaches, the one based on the MCF,
local and non–local in time, and the one based on linear Volterra type equations. The section is divided
into three subsections corresponding to three different situations: Non–damaged video sequences which have
been artificially damaged in order to accurately measure the quality of performance. Originally damaged
video sequences where only a visual perception of the error is allowed; in particular in the second subsection
we have considered old movies sequences. Finally, we show how our approach is applied to the restoration
of some parts of a sequence which have been occluded by moving objects.

Let us point out that in all experiments shown below the absolute gray scale is preserved. This actually
means that original gray scales of each mini sequence and each small window of interest have not been
re–scaled, e.g. up to cover the whole range of values (from 0 to 255). The linearity of our main proposal
makes the final results independent on any gray level re–scaling.

Moreover, despite the runtime of both implementations depends on the size of the sets of damage and
training pixels, and the number of frame considered, this never has gone beyond a few hundredths of second.
Therefore, since in such case the runtime may hardly affected by internal CPU’s processes we do not show
these data for our experiments.

4.1 Test movies

The sequence of frames considered in this subsection has been artificially damaged in different ways. In par-
ticular, damaged areas adopt different shapes and sizes in order to get a realistic measure of the performance
of the method we propose, and show whether the restoration depends on that or not. In Addition, we show
the performance of our methods in some color (RGB format) sequences.

The errors of restorations in the present section have been evaluated according to the following:

• Let uF = [Up1
F , Up2

F , . . . , U
pMl
F ]T be the vector of original pixels in the current frame F before being

damaged. Recall that L = {p1, p2, . . . , pMl} stands for the set of damaged pixels according to the
notation in Section ??, Step 1. Though the inputs of uF are ranged from 0 to 255, we normalize the
vector to values from 0 to 1 merely by dividing by 255. For the sake of the simplicity of notation we
denote the vector again by uF .

• Let vF = [vp1F , vp2F , . . . , v
pMl
F ]T be the vector of pixels, again in the frame F , after being restored

according to Steps 1–6 of Section ??. We normalize the vector also here to values from 0 to 1, and
once again for the sake of the simplicity of notation we denote the vector in the same manner.

• The error is measured by means of the discrete L2–norm, however since the error is in fact affected by
the number of pixels damaged, we relate the error to Ml. In fact the error is computed as follows

Error =

√√√√Ml∑
j=1

(
U

pj
F − v

pj
F

)2
Ml

. (33)

Finally we multiply Error by 100 as to have the error percentage, once again keeping the same notation.

4.1.1 First experiment

Firstly we consider the artificially damaged frame of Figure ??. In Figure ?? the performance of the classical
MCF (??), NR = 1, may be observed where a visual assessment suggests that this method provides very
accurate results. However, if one compares those results to the ones provided by non–local MCF (??)–(??)
with different values of NR > 1, then it is shown that restoration is not longer improved, in fact the larger
the number of frames we consider, the worse the restoration is.

Moreover Figure ?? shows the results provided by non–local MCF merely with NR = 2 and certainly
the restored image reveals that some artifacts begin to appear, that is restoration is not longer improved
if compared to the classical MCF. In addition to the visual assessment Table ?? shows how the error for
different values of NR = 1, 2, . . . , 5, grows up as NR get larger.
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Figure 1: (From the left to the right) Original frame once it has been damaged; Damaged area zoomed; Damaged
area zoomed again, and training pixels (in black). Data of the experiment: #L = 121 (lost pixels), #R = 104
(training pixels).

Figure 2: Classical MCF (NR = 1). First row: Original frame; area of interest zoomed; and area of interest
zoomed again. Second row: Restored frame; restored area zoomed; and restored area zoomed again.
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NR 1 2 3 4 5
Error 0.80% 1.21% 1.24% 1.21% 1.79%

Table 1: Non–local MCF (see Figures ?? and ??).

Figure 3: Non–local MCF with NR = 2 (only zoomed frame). Form left to right: Original frame, lost pixels,
and restore frame

In the same frame a different set of pixels is removed, with a different size and shape (see Figure ??).
The results are neither improved if NR > 1 (see Table ??). Once again rare artifacts begin to appear if
NR > 1 (see Figure ??).

Figure 4: From left to the right: Original frame (zoomed); damaged frame (zoomed); and set of removed
pixels (in white) surrounded by training pixels (in black). Data of the experiment: #L = 102 (lost pixels) and
#R = 228 (training pixels).
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NR 1 2 3 4 5
Error 1.08% 1.65% 1.94% 2.52% 2.61%

Table 2: Non–local MCF (see Figures ?? and ??).

Figure 5: From left to the right: Original frame (zoomed); damaged frame; restoration with the classical MCF
(NR = 1); and restoration with non–local MCF and NR = 2.

4.1.2 Second experiment

Now we comment on the results of our approach (??)–(??). Once again, we firstly consider the damaged
frame in Figure ?? where the good performance is observed. In particular Figure ?? shows the result of the
restoration with NR = 5, 10 and 30 frames back in the sequence. In that case, beyond the visual assessment
the errors in Table ?? support numerically such a good performance, at least if one goes back up to some
point. In particular in Table ?? that the error begins to increase for Nr = 40, or even at earlier stages (see
also Figure ??)

In this case we also stress the method by considering the damaged area in Figure ??. In that case the
performance of the method seems to be not so good, because the shape of the damaged area walks over
a more non–homogeneous part of the frame (see Figure ??). Nevertheless, our method outperforms the
local and non–local MCF based ones. Numerical errors may be seen in Table ??. In case of having such so
non–homogeneous damaged area one always may split it into several smaller area, and treat them separately.
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Figure 6: Linear Volterra equations based approach. First row: original frame, zoomed, and re–zoomed. The
following three rows: restored whole frame, it zoomed, and re–zoomed; for NR = 5, NR = 10, and NR = 30
each row respectively. Data of the experiment: #L = 121 (lost pixels) and #R = 104 (training pixels).
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NR 5 10 20 30 40
Error 0.81% 0.80% 0.67% 0.55% 0.70%

Table 3: Linear Volterra equations based model (see Figures ?? and ??).

Figure 7: Linear Volterra equations based approach. First row the original frame (first column), and the zoomed
and re–zoomed frame (second and third columns). The second row shows the performance with NR = 40 where
the results are worse than for NR = 30 (see Table ??)

Figure 8: The performance of our approach with NR = 5, 10, 20, and 40.
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NR 5 10 20 30 40
Error 0.89% 0.84% 0.81% 0.70% 0.72%

Table 4: Linear Volterra equations based model (see Figure ??).

Non–local MCF
NR 1 2 3 4 5

Error Red Channel 1.46% 1.69% 1.54% 1.55% 1.53%

Linear Volterra model
NR 10 20 30 40 50

Error Red Channel 1.47% 1.12% 0.66% 0.55% 0.56%

Table 5: Errors in the Red channel for methods (??)–(??), and (??)–(??), and different values of NR (see
Figures ?? and ??).

4.1.3 Third experiment

In the current paragraph we show how both methods (??)–(??), and (??)–(??) behaves if colored sequences
in RGB format are considered. Here both methods apply channel–by–channel, that is in the Red, Green,
and Blue channel separately. To fix ideas, let us consider the frame and damaged area shown in Figure ??.
The results of the restoration based on (??)–(??) with NR = 1, 2, 3 and 4 frames back is shown in Figure
??, and the results based on (??)–(??) with NR = 10, 20, 30 and 40 frames back in Figure ??.

It can be seen that the method (??)–(??) largely outperforms (??)–(??). In fact, Table ?? displays only
errors in the Red channel for different values of NR. In this Table error is never smaller with MCF based
methods (except might be in the first case) than with (??)–(??). Furthermore, while errors with (??)–(??)
fall down as NR increases, with (??)–(??) errors hardly keep constants.

Figure 9: From left to the right: Original frame, damaged frame, zoomed damaged part, and training pixels.
Data of the experiment: #L = 105 (lost pixels) and #R = 120 (training pixels).
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Figure 10: From left to right: MCF with NR = 1, 2, 3 and 4 (only zoomed parts).

Figure 11: From left to right: Linear Volterra equations based approach with NR = 10, 20, 30 and 40 (only
zoomed parts).

4.2 Restoration of damaged movies

We devote this subsection to show how the method (??)–(??) applies to restore old movies that have
been damaged along the archive process, recording, or while their conversion to digital format. In view of
performance of both methods discussed above, now we merely focus on (??)–(??). Furthermore we show
the resulting restoration in two different sequences of a First World War documentary film.

Firstly consider the frame in Figure ?? where the patch to be restored is circled. We here compare the
performance of the algorithm with two different sets of training pixels:

• In Figure ?? we show the set of lost pixel (left image), the first set of training pixels (middle image),
and a second set of training pixels (right image).

• In Figures ?? and ?? we show the restored frame with the first and second set of training sets in Figure
?? (middle and right images respectively), both for NR = 5, 10, 20, and 30.

17



Figure 12: Original full frame; zoomed damaged area; and re–zoomed damaged area.

Figure 13: Window of interest corresponding to Figure ??: Set of lost pixels (left); and both sets of training
pixels (two right).
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Figure 14: Damaged area (first row) and re–zoomed damaged area (second row) for NR = 5, 10, 20 and 30.

Figure 15: Damaged area (first row) and re–zoomed damaged area (second row) for NR = 5, 10, 20 and 30.

The visual assessment suggests that both sets of training pixels provide similar results, and that NR = 5
seems to provided the best performance, so there are not needed a large amount of frames back to provide
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such good results.
Now consider the frame in Figure ?? where the patch to be restored is circled. We here compare the

performance of the algorithm with two different sets of training pixels:

• In Figure ?? we show the set of lost pixels, and the set of training pixels. In this case we only show
the results with one training set.

• In Figure ?? we show the restored frame, for NR = 5, 10, 20, and 30, where we must highlight that
restoration starts to be worsened forNR = 30 (or smaller) as expected when the number of frames
considered grows up after some threshold.

Figure 16: Original full frame; zoomed damaged area; and re–zoomed damaged area.

Figure 17: Window of interest corresponding to Figure ??: Set of lost pixels; and set of training pixels (both
sets in black).
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Figure 18: Damaged area (first row) and re–zoomed damaged area (second row) for NR = 5, 10, 20 and 30.

4.3 Restoration of occluded objects

This last subsection is devoted to show that the method (??)–(??) may be also applied to recover areas
occluded by moving objects. In particular in this experiment we recover a background consisting of moving
plants in a fish tank where a fish comes to appear in the scene.

In Figure ?? we show the full frames where we apply the recovery of occluded parts in the area enclosed
by a circle, and in Figure ?? we show the same (full) frames after the removing is done. In this experiment
method (??)–(??) has been applied with NR = 5. Moreover in Figure ?? we show the window of interest
in the frames considered once we have applied the removing and where it can be precisely observed the
occluding object (a fish entering in the scene), the training pixels surrounding the occluding pixels, and the
final result of the recovery.

It must be highlighted the good performance of the method also in this context of occluding objets
entering in a scene.
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Figure 19: Full original frames with the area of interest circled.

Figure 20: Full original frames with the area of interest circled once it has been recovered the occluded part.
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Figure 21: Linear Volterra equations based approach. First row: Original frames zoomed; Second row: Occlud-
ing pixels; Third row: Training pixels; Fourth row: Restored frames. All of them performed with NR = 5.

5 Conclusions

In this paper we have proposed two new approaches to video restoration based on non–local in time mathe-
matical models. One of them in the framework of non–linear equations and based on the geometric features
of time–spatial structure of a video sequence. The second one arose from a linear Volterra equation and
it is based on the analytic time regularity (so–called here time coherence) of the video sequence. While
the first approach did not improved the results obtained in the local context, the second one provided a
very good performance in very different situations, always exploiting the information provided by several
previous frames, and within a negligible runtime. This method might give rise to automated real–time video
restoration algorithms.
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