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Abstract

In this paper a video sequence is considered as a two dimensional time evolving process. Under this
assumption two Volterra equations based mathematical models are introduced for video restoration
purposes. The first one is based on geometric features related to the spatial-time structure of the video
sequence and gives rise to a nonlinear Volterra equation. This model arises from the Mean Curvature
Flow linked to evolving surfaces. The second one is based on analytic features and leads to the
formulation of alinear Volterra model. The second procedure relies on the assumption of local time
coherence in the sequence of frames, at least short back in time. In both cases Volterra equations based
approach introduces a memory effect in the process which in the present terminology means that
several frames back may be taken into account for the better reconstruction of the current frame
throughout a convenient choice of the convolution kernel. On the other hand the role played by Least
Squares Method focuses on the practical computation of that convolution kernel just at discrete level.
The performance of both approaches is shown through alist of suitable experiments, and the better
performance of the second approach is illustrated with remarkable improvements in critical cases.

1. Introduction

Video processing is nowadays one of the most active fields of scientific research in Computer Vision, involving
areas like superesolution [1], compression [2], or restoration [3] among others. The present paper focuses on the
last point, and it is mainly focused towards the reconstruction of old movies which have been degraded, along
the storage process or their conversion to digital format, by artifacts of different type. The most common
artifacts are probably those related to the noise generation, the formation of blotches and scratches, the so—called
Vinegard Syndrome on several frames, or Moiré and intensity Flicker effects (see [2, 4] and references therein).
In [3] readers can find a detailed state—of—the—art about these topics at the early years of this century.

To fix ideas, we restrict ourselves to gray—level images since our proposals can be extended in a very simple
way to the corresponding color representations. Every digital gray—level image can be understood as a discrete
surface arising from a map z = u(x, y), where u stands for the gray—level intensity. Hence, a digital gray-level
video mini—sequence is understood as an one—parameter family of discrete surfaces arising from a family of
maps {z = u(x, y, t) } ;>o. Thus, its time evolution is understood as a time discrete evolutionary process. Notice
thatif in a set of pixels of a single frame of the sequence a large gray intensity change comes suddenly to appear
(beyond some threshold), then these pixels are candidate to be damaged pixels.

In restoration techniques the pixels to be restored are typically are affected by irregularly distributed noise or
by artificial blotches (i.e. unexpected dark or bright spots). There are very different denoising techniques for
noisy images. In fact, evolving surfaces z = u(x, y, f) representing the frames may show high gray-level variability
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and different kinds of noise. Noise removal is actually out of the scope of this paper. Instead in this work we are
certainly concerned with restoration of regions which are not well defined, where the information is lost, or, for
instance, where higher resolution is required. Therefore advanced techniques of video enhancement and
restoration are required.

The main goal of video restoration is to recover the original spatial and temporal structure by taking into
account local information in the current, precedent, and even subsequent frames (if available). The recovery can
be performed in statistical terms (by using correlations, e.g.), analytical terms (weighted averages based on
convolution operators, e.g.) or geometric terms (by using e.g. conformal flows or, alternately, curvature flows for
the underlying surfaces among others). The choice of the most appropriate approach depends on evolving
geometric versus radiometric characteristics of the support (including features as complex textures e.g.) or
motion characteristics (which can introduce artifacts linked to sudden changes along the motion such as edges
breaking, e.g.) see [5]. In the present paper we leave aside statical approaches and focus on analytic and geometric
based models.

On the one hand, the goal of analytical approaches is to improve or restore ‘infinitesimal’ properties
according to the time variation of local information around damaged pixels. It can be considered as a planar
approach because it uses information about continuity respect to ¢ of planar regions r(¢) and their boundaries
b(t) = Or(#). Usually, analytical approaches are linked to some variant of the gradient Vb(¢), which is
geometrically reinterpreted as the normal flow of the boundary b(¢) itself. If the region (%) is convex, the normal
outward propagation has good properties: it can be shrinked to a point. However, furthermore usual
inconvenient of the gradient flow (as directional field), the normal propagation displays a lot of ‘pathologies’.
Typical examples are given by different kinds of self-intersections and cusps (linked to normal envelopes or
caustics, e.g.) which degrade local computations linked to convolution filters.

Alternately, in the geometric framework one may consider several mathematical tools closely related to the
spatial-time geometric structure of the video sequence. Our proposal is based on the very well known Mean
Curvature Flow (MCF hereinafter) which incorporates volumetric information about shrinking or expanding
phenomena contained in neighbor images of the video mini—sequence. A good recent survey for the MCF of
surfaces can be read in [6]. Recall that the MCF is defined as the divergence of the unit normal vector of the
surface.

From the Classical Differential Geometry viewpoint, asmooth surface S C R?islocally characterized at each
point p € S (up to rigid motions) by the Mean Curvature H and the Total Curvature K (Gauss Theorem) which is
an intrinsic invariant. They are respectively defined as the arithmetical mean H := (k1 + £,)/2, and geometric
mean K := Kk, , which are the elementary symmetric functions of the principal curvatures k1, and k,. In fact x4,
and r, stand for the eigenvalues of the curvature matrix corresponding to minimal and maximal values for
sectional curvatures, i.e. Sections by hyperplanes containing the normal vector N,Sto Sat p € S(see [7]).

The use of the MCF is not a novelty for propagation models on surfaces; it has been used from long time ago
for different purposes, including image and video restoration. In fact to best of our knowledge the original MCF
level set equation was proposed in [8], and further generalizations in [9-12]. A classical referenceis [13].

Let us remark that video restoration is based on the preservation of the Mean Curvature over the time by
non-—trivial isometric deformations. The above condition is equivalent to the existence of a conformal metric for
which one can compute the evolution of Mean Curvature H and Total Curvature K of a third order ordinary
differential equation which allows the construction of an isometric deformation (Codazzi equation [14])
keeping the MCF [15]. Unfortunately, in video sequences one cannot expect so good conditions. Hence, several
alternative approaches has been developed from the late nineties. Let us mention the one in [16] for normal
inward direction with speed equal to the Harmonic Mean Curvature H/K for a surface in the ordinary space. This
method provides explicit solutions with a good behavior for revolution surfaces.

Nevertheless its interest linked to normal inward propagation, their applicability to video sequences is
limited to a very specific kind of surfaces. In [17] the authors develop an approach based on m—th powers of the
Mean Curvature going farther the cases corresponding to convex hypersurfaces converging to a sphere. The
strategy consists of using volume—preserving MCF to obtain finer convergence results (towards a sphere of
radius r > 0), by extending previous results of [18].

The use of the MCF associated to an evolving surface M;: R? — R?, t > 0 displays some inherent troubles.
To understand them, let us observe that MCF is defined as the solution of a quasilinear parabolic equation

OH (M,)

o AgyH (M) + |APH (M), =0, ey

where A is the second fundamental form of the evolving surface M,, Ay, is the classical Laplace—Beltrami
operator, and g(¢) stands for a given metric tensor. In other words, it is a quasilinear heat equation with a
superlinear growth [19] which gives an explosive behavior of MCF in finite time, and forces to a very careful
analysis of discrete approaches taking into account the length of the time intervals. Different alternatives have
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been proposed in the literature. A first option consists of combining short—time analytic conditions along with
the first step of iteration (expressed in numerical terms). Another option consists of obtaining geometric stability
conditions for the partial reconstruction, by means of a suitable regularizations. Last ones are discussed more in
depth in section 2.

Based on the above considerations our first proposal consists of an integral approach to MCF based on (1). In
particular our first approach consists of developing a video restoration model based on a nonlinear and non—
local in time MCF formulation arising from the time integration of (1), that is

HOM) = HM + [ 180 HOM) + APHM)) ds, 130 @
What is more, we consider a further generalization of (2) in terms of nonlinear convolution equations
HM,) = HM,) + fo K- (A HOM) + APHM)} ds, 13 0. 3)
where K(t) stands for a suitable convolution kernel. This choice is proposed for a twofold reason:

1. The proposed approach allows us to take into account a larger amount of information back in time. In the
discrete setting this means that one can take into account more frames back apart from the current and
previous ones.

2. The regularization effect of the convolution approach is expected to cut down the singularities associated to
the classical approach (1).

The practical results achieved with several video mini—sequences show that the classical MCF (1) (i.e. if one goes
back in time one frame), provides little competitive performances. Moreover we have observed that if more than
one frame is considered according to (3) instabilities remain, and what is worse, the more frames back we
consider, the worse the restoration is. In particular unexpected artifacts come to appear as one goes further back
in time. This suggests that geometric features associated to the MCF make unstable the propagation model for
large time scales, therefore unsuitable for our purposes.

Our second contribution consists of developing an analytical approach, according to the classification above,
where geometrical characteristics do not play a key role. Instead, we assume a ‘short time coherence’. In other
words, we assume that the video sequence displays some kind of local continuity for the intensity at every single
pixel around the damaged area; this region is called a ‘collar’ in Differential Topology. From an analytic
viewpoint, this ‘timeline continuity’ is modeled by means of a classical linear Volterra equation (known as well as
linear non—local in time evolution equation), both from a continuous viewpoint

t
M, = My + j; K(t — )M, ds,  t>0, 4

but also from its discrete counterpart, namely in terms of a discrete set of frames as described in section 2.2.
Instead of considering geometric properties of the MCF, the convolution kernel K(t) is expected to regularize
instabilities associated to large time scales ocuring in practical situations. Let us remark that IC(¢) explicitly arises
only in the discrete context where it is computed according to particular features of the sequence. The
convolution weights arising in the discrete formulation are computed by means of the Least Squares Method
following similar ideas to those appearing in machine Learning methodologies.

The experimental results revealed the good performance of this approach including the stability as we go
back in time, that is if one uses the information provided by several previous frames, up to some threshold. Our
results show that this approach provides by far better performance that (2), also. Notice that in this approach
subsequent frames could be considered as well, but not only previous ones, however this issue keeps out of the
scope of the present work. To the best of our knowledge, this approach has not been considered before in the
literature, and provides a very low computational cost and effective procedure for video restoration.

Other approaches have been also considered in recent literature for video restoration, let us mention some
based on geometrical features of the video sequence as e.g. motion compensation (see e.g. [20]), optical flow (see
e.g.[21]), or fractional optical flow (see e.g. [22]) among others. All these approaches are more sophisticated that
the one proposed in (4). Hence, they are much more expensive in terms of computational runtime; what is more,
their stability has not been always accurately studied. By these reasons, we focus on the two approaches described
above in order to show their performance, and mainly in (4) owing to its analytic nature, as more efficient
alternative to the geometric one. Also, we show that the number of frames to take into account in each mini—
sequence restoration must be somehow limited. Otherwise, undesired artifacts in the restored frame begin to
appear.




10P Publishing

Phys. Scr. 98 (2023) 054002 E Cuestaet al

Finally, our research does not focus on an automatic location of damaged /lost pixels since this issue deserves
his own development. Instead, to localize damaged,/lost pixels in our experiments we make a partial use of
existing algorithms (see e.g. [3], Ch. 4, or [23]).

According to the above remarks, the contents of the article is as follows: section 2 is devoted to give an
accurate formulation of MCF based approaches, and its further discussion. In this section we also describe how
convolutions weights involved in the non—local approaches are in practice computed. In section 3 we describe in
detail our second proposal based on a linear convolution equation. The paper concludes with section 4 where a
deep result assessment of our proposals is carried out by means of a number of suitable practical experiments.

2. Mean curvature flow

Let us fix the notation to be used throughout the paper. In fact in the continuous setting we denote by { M, }o<,<r
a one—parameter set of surfaces in R? corresponding to a video mini—sequence. Their implicit representation
can be ideally written as the level set of maps, ¥/ (-,t): R* — R,0 < t < T, thatis

M,:={x = (x, y, 2)| € R®: ¢(x, t) = 0}, 0<t<T. (5)

Alternately, one may assume that surfaces M, admit an explicit representation, that is there exists
u(): R — R,0 <t < T,sothat

M; == {(x, y, u(x, y, )): x, y € 0}, 0<t<T. (6)

Notice that in that case M, stands for the level sets of {(x, ¥, z, t) = z — u(x, y, 1), 0 < t < T, or equivalently for the
solutions of the equation z = u(x, y, 1), 0 < ¢ < T, where for the sake of the simplicity of the notation we avoid the
dependence on tof z.

The representation (6) is suitable for the presentation of our results this is why now and hereafter we merely
focus on such representation.

2.1. Classical mean curvatura flow
According to the explicit representation (6) of a surface the standard Curvature Flow for the family of surfaces
{M,}o<r<risdefined as

0<t<T, x=(xy) €0, )

HM,) = H(u(x, t)) = %div( Vu(x, t) )

([Vu(x, 1|
where €2 C IR? stands for the spatial domain, and the operators div, and Vstand for the divergence and gradient

operators, respectively, on plane variables (x, ). Therefore the differential formulation of the standard MCF
reads

a—u(x, 1) =Hux, t) = ldiv M , 0<t<T, xe€9, (8)
ot 2 (IVu(x, t)]|
with the initial and boundary conditions
u(x, 0) = up(x), x¢€ 9, and g—u(x, t)=0, 0<t<T, x¢€099, ©)
n

respectively. In (9) u, stands for the initial data of the problem, and in p ur framework to the first frame
considered in the restoration process. Moreover 0f2 stands for the boundary of (2. Therefore (8)—(9) gives rise to
the parabolic initial and boundary value problem to be solved.

According to the remarks appearing in the introduction, there can appear degenerate solutions of (8). This
occurs when the denominator in (8) vanishes, that is if Vu = 0. Therefore a suitable regularization may be seen
as a possible solution. In this regard different regularizations have been proposed in the literature, including the
regularized mean curvature R instead of H proposed in [24] and defined as

R(u) = fs MG d2, (10)

where g > 0, typically g = 1 or g = 2, or e.g. the one proposed by Evans—Spruck in [25]. In the present paper we
focus in the last one which, according to the explicit representation of surfaces, can be writen as

HM) = H(u(x, t)) = Ddiv[ Vu 1) ] 0<t<T, x€9Q, 11

Je+ |[Vuk, P

where D > 0 stands for the diffusion coefficient, and e > 0 for the regularizing parameter, thought it is expected
to be small. Therefore the parabolic problem associated to (11) reads as
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Vu(x, t)
Je+ |[Vux, t)|?

along with the initial and boundary conditions (9). The nonlinear parabolic problem (9) and (12) turns out to be
well-posed [25].
A more general approach to MCF (see [26]) is written as

({;—?(x, 1) = H(u(x, t)) = Ddiv( ], 0<t<T, xe€qQ, (12)

M0 =R ), 0<IST, xe® (13)
where H stands for
. Vu(x, t)
Hu, 1)) = g(||Vux, t)|)div| ——————|, 0<t<T, xe9, (14)
«d ” (f(IIW(x, t)ll))

for a suitable choice of fand g. In particular, MCF (12) consists of taking f (x) = x and g(x) = D (both of them
before regularization).
Note that the equation (12) may be explicitly written as

(e + uf)u},y — 2uyuyiyy, + (6 + uf)uxx

(e + ul + u)y/? o 0sisT o xe (15)

ou
Zx =D
at(X)

In regard to the numerical solution of MCF models, let us mention two recent works, the first one involving
the finite volume discretization of K Mikula et al [26], and the second one of Ch. Lubich et al based on the finite
element method [27, 28]. However since the nature of our approach is originally discrete, we do not longer pay
attention in this paper to the analysis of its numerical solutions.

2.2.Non-local in time mean curvature flow

The MCF process starts with an original surface corresponding to the initial data of the problem (9) and (12).
Afterward, solutions to the evolution problem (that is as the time scale evolves) provide new surfaces
corresponding to images expected to be a smoothing/filtering/re—construction of the original one.

Our proposed non-local approach consists of considering each video mini—sequence as a set of surfaces
{M,}o<r<r evolving over time, and whose structure depends in some manner on the memory of the process
further than merely the current and previous surfaces, at least short back in time. This idea comes out from the
re—formulation of (12) in integral form simply by integrating it in time. This fact allows us to write (12) as follows

u(x, t) = ug(x) + fot H(u(x, s)) ds, xe, 0<Kt<T, (16)

where H(u(-,t)) is defined in (11), with boundary conditions as in (9). Note that in (16) the initial condition is
explicitly given by uy(x).

Typical artifacts to be restored are linked to lost pixels /blotches/patches/occlusions, e.g. In this framework
of video mini—sequence, we take into account the memory of the process, that is in the discrete setting a number
of previous frames of the sequence, furthermore the previous one as with (9) and (12). This argument applies
only within alimited time back. In other words, this idea works only if we assume ‘some time coherence’ at least
in the pixels belonging to a small neighborhood around the damaged ones.

Our first contribution introduces a more general approach beyond (16), always within the assumption of
certain time coherence. In fact, we introduce a convolution kernel in (16) which enable us to handle more
accurately the memory of the process according to the features of the sequence. Therefore, the mathematical
model we propose writes as the non—linear Volterra equation

u(x, t) = up(x) + j;t K@ — s)yH(u(x, s)) ds, 0<t<T, xe€9, (17)

where in a classical context K(t) is a priori known. More general formulation of non—linear Volterra equations
might be considered however these are out of the scope of the present paper.

Aswe have advanced in the introduction the convolution kernel K(¢) does not play any role in the
continuous setting due to the discrete nature of our approach. In the next section, we give an accurate
description about how the discrete convolution kernel can be computed in practice according to the features of
each single sequence around the damaged area to be restored. This explains why very weak conditions may be
required on () in the continuous setting. So the well-posedness of (17) may be simply derived from the well—
posed conditions for (12).

Since the discrete framework is the one where we will work on, we now show the discretization of (17), first
in time, then in the spatial variables. Firstly, for the time discretization we set h > 0,¢; = jh,j =0, 1,...,N
(T'=Nh), (17) becomes the following time discrete non—linear Volterra equation (also known as time discrete
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n—1
un(X) = uo(®) + ) Ko H(uj(x), 1<n<N, xe, (18)
j=0

where uj(x) stands for the approximation to u(x, t;), even though in our framework it corresponds to the j—th
frame of the mini—sequence. Since the convergence of the numerical scheme is not a matter in this paper, we can
set h = 1 as the unit time without loss of generality. Thus, the time step length of the discretization is neither a
matter. On the other hand, the convolution weights K; do not necessarily correspond to K(t;). Actually, they
arise from a Machine Learning based procedure as we describe in the next section.

The fully discretization of (18) is reached by replacing in H the spatial continuous derivatives by a
convenient finite differences scheme. Once again since the stability of the numerical discretization does not
matter in this paper, we adopt a classical second order difference scheme over a uniform spatial mesh of length 1
both in xand y coordinate axis. In particular if we consider the spatial mesh M := {(p,q): 0 < p < P,0 < g < Q},
P, Q € Z7, then the fully discretization of (18) gives rise, for every single time step 1 < n < N, to the following
system of fully discrete non-linear Volterra equations

n—1
00 _ 00 0,0
u,” = ug +ZIC,1,]'H]-
j=0

n—1
ub? = up® + Z lCn,ﬂ‘(lj’O
. j=0 (p,q9 €M, (19)

n—1
upt = w4 30 K M

j=0

where

D .
(64 @f™H0 — w2 + (uPT — u a3
{(e + WP — uPH) (WP — 2upt + y 171

+1, s ,q+1 s +1,9+1 ,q+1 +1, s
2 (uPth — Py (P Py L (P TIE y patL  pELA g Py

+(e 4+ (Prtt — y PO (Pt — 2upt 4 u P b)), (20)

HP =

n =

The algorithm (20) is fully stated if combined with the discrete initial condition
u(f)q:uo(p)q)) 0<P<P> O<q<07 (21)

and the discrete boundary conditions (extending the domain by reflection as usual)

WP PR pQl L OHL (o ) € M. 2

i i
Notice that in a numerical context ujp "1 stands for the approximation of u(p, g, /), however, in the present
context it represents the gray value of pixel (p,q) in the framej.

2.3. Computation of convolution weights

The computation of convolution weights is worthy of the current section, where we explain how they can be in
practice computed. We are interested in the convolution weights in (19) rather than the convolution kernel XC(t)
itself, which at first are not a priori known. The underlying idea we propose here is based on Machine Learning
methodologies and follows the following steps:

1. Locate the set of damaged pixels L = {p,, p,,...,p} in a given frame F,. These pixels belong to the patch to
be restored. For the sake of the simplicity of the notation we avoid the Euclidean notation that is the explicit
components p; = (pj 1, pj2). Therefore the value u zfé , 1 <j < Mjcorresponds to the grey level of damaged
pixel p; in the frame F,,

2. Assume that the patch can be surrounded by a set of M, undamaged pixels denoted by R = {q,, q,...,q, }-
Once again we use an abbreviated notation for these pixels.

3. Assume also that the set of pixels L U R in Ny > 0 previous frames are not damaged.

4. Now if we denote F_,, the n—th frame back from the current one F, then we use the set of pixels R over the
frames Fyand E_j, E,,...,F y, tolearn the weights in (19). Here the main idea of the paper applies, that is we

6
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apply here the local coherence, which means that not damaged pixels satisfy alocal equation of type (19) where
the weights have to be determined. In particular this leads to solve a M, x Np system of equations arising
from the set of pixels R, with N unknowns, i.e. the set of weights { ; };Vi » Which reads

Nk
Ug, = up + Z IC]'HE)-, (23)
j=1
where
q, 4 9
Ug, UFE HF,j
qZ qz qz
u u H
F E F . .
Up, = 1, u = Ne HF,)- = . 1 ] = L..., NR- (24)
m, Imy Dy
UF, UE n Hg

Notice that in this context the initial value u, stands for the set of values of pixels of the first image we take
into account in the discrete evolution process corresponding to the patch we are working with.

5. Since in our framework N; < M, the system of equations (23) gives rise to an overdetermined system and its
solution {/C;} j\i | is understood in the sense of Least Squares Method. Note that we are allowed to apply the
Least Squares Method as shown below since the equations of system (23) are all of them implicit. In fact, that
system may be written in matrix form as

q q q
HFI,I HFI,Z HFI,NR /Cl
qu qu . qu
up, = up + HK, where H = _F*I Ea ) ’?NR K= IC:Z . (25)
VY K.
HFilf HFZ' e FiA,\rzR ) Ng

The solution provided by the Least Squares Method for the system (25) comes out by solving the associated
normal equations, that is

HT(ug, — o) = HTHK,

whose solution K stands for the wanted set of weights { K; i\]‘:‘ .

6. The restoration of damaged pixels comes through the weights {;} j-\’il computed above. This means that the
same local coherence as for the set of pixels R applies to the set of lost pixels L according to (19) as follows

Np
Vg, = Vo + E ’C]'HFfj, (26)
j=1
where
p pl p]
uF(} uF*NR HF*)'
Pz PZ pZ
u Uurp HF . .
VE, = fol, vy = R, HE, = b j=1,..., N 27
Py Py Py
Ug, UF HF,]-

7. Therefore the entries of vector vy, stands the set of restored pixels.

3. Alinear Volterra type based approach

The practical experiments carried out in section 4 show that the behavior of MCF (9) and (12), that is MCF in the
classical sense, provides accurate results in the restoration of damaged pixels. However the non—local in time
MCEF (17), or more precisely in a discrete format (19), does not improve in general such a results. Instead, the
algorithm performance worsened if more than one frame back is used in the restoration.
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Figure 1. (From the left to the right) Original frame once it has been damaged; Damaged area zoomed; Damaged area zoomed again,
and training pixels (in black). Data of the experiment: #L = 121 (lost pixels), #R = 104 (training pixels).

Figure 2. Classical MCF (N = 1). First row: Original frame; area of interest zoomed; and area of interest zoomed again. Second row:
Restored frame; restored area zoomed; and restored area zoomed again.

Our experiments have shown that a simpler approach turned out to be much more accurate. In particular,
such approach consists of replacing the operator H (u (:,t)) in (17) by the identity operator Z(u(-,¢)). Thisleads
to the non-local in time equation

u(x, 1) = uo(x) + fot K(t — syu(x, s)ds, 0<t<T, xe, (28)

along with the same boundary conditions (9). Again the initial condition u(x) appears in (28) explicitly.
Moreover a fully discrete formulation of (28), in the same manner as in (17), leads to solve at single time step
0 < n < N, the system of linear equations
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Figure 3. Non—local MCF with N = 2 (only zoomed frame). Form left to right: Original frame, lost pixels, and restore frame.

Figure 4. From left to the right: Original frame (zoomed); damaged frame (zoomed); and set of removed pixels (in white) surrounded
by training pixels (in black). Data of the experiment: #L = 102 (lost pixels) and #R = 228 (training pixels).

Table 1. Non-local MCF (see figures 2 and 3).

Nz 1 2 3 4 5

Error 0.80% 1.21% 1.24% 1.21% 1.79%

n—1
0,0 _ .00 0,0
u’ = ug® + > Kuju,
j=0
n—1
1,0 1,0 1,0
u? = ug® + > Kuju,
4 =0 (P» Q) € M.
n—1
) 2T — P4 .y P4
uPl = uf+ > Ky jul
j=0

According to the notation in section 2.3, we must solve now the M, x N system oflinear equations

Nr
uFo = Uy + z ICqu,jr (29)
j=1
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Figure 5. From left to the right: Original frame (zoomed); damaged frame; restoration with the classical MCF (N = 1); and restoration
with non-local MCF and N = 2.

Figure 6. Linear Volterra equations based approach. First row: original frame, zoomed, and re—zoomed. The following three rows:
restored whole frame, it zoomed, and re—zoomed; for Ng = 5, N = 10, and N = 30 each row respectively. Data of the experiment:
#L = 121 (lost pixels) and #R = 104 (training pixels).

10
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Figure 7. Linear Volterra equations based approach. First row the original frame (first column), and the zoomed and re—zoomed
frame (second and third columns). The second row shows the performance with N = 40 where the results are worse than for Nz = 30

(see table 3).

-

e

Figure 8. The performance of our approach with Ny = 5, 10, 20, and 40.

where

ul
‘12
f—f , j=0,..., N (30)

After computing the weights {K; X 2, by Least Squares Method as we have described in section 2.3, the restored
pixels vg, are then computed by

Nr
VE, = Vo + Z K:jllp_}., (31)

j=1

11
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Figure 9. From left to the right: Original frame, damaged frame, zoomed damaged part, and training pixels. Data of the experiment:
#L = 105 (lost pixels) and #R = 120 (training pixels).

Figure 10. From left to right: MCF with Nz = 1,2, 3 and 4 (only zoomed parts).

Figure 11. From left to right: Linear Volterra equations based approach with Ny = 10, 20, 30 and 40 (only zoomed parts).

Table 2. Non—local MCF (see figures 4 and 5).

N 1 2 3 4 5
Error 1.08% 1.65% 1.94% 2.52% 2.61%
where
P, Py
UE Up,
u ng u Ifz' .
Vo = ] R )uF,j = ‘7’ , ] = 1,...,NR. (32)
PMI le
UE g Ug;

The experiments in section 4 show that going back short in time with (29) noticeably improves the
restoration carried out both by the non—local MCF model (19), but also by the classical MCF, that is if N = 1.

12
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Figure 12. Original full frame; zoomed damaged area; and re-zoomed damaged area.

=

Figure 13. Window of interest corresponding to figure 12: Set of lost pixels (left); and both sets of training pixels (two right).

Table 3. Linear Volterra equations based model (see figures 6 and 7).

N 5 10 20 30 40

Error 0.81% 0.80% 0.67% 0.55% 0.70%

Table 4. Linear Volterra equations based model (see figure 8).

Ng 5 10 20 30 40

Error 0.89% 0.84% 0.81% 0.70% 0.72%

4. Numerical experiments

This section is devoted to assess the performance of the proposed approaches, the one based on the MCF, local
and non-local in time, and the one based on linear Volterra type equations. The section is divided into three
subsections corresponding to three different situations: Non—damaged video sequences which have been
artificially damaged in order to accurately measure the quality of performance. Originally damaged video
sequences where only a visual perception of the error is allowed; in particular in the second subsection we have
considered old movies sequences. Finally, we show how our approach is applied to the restoration of some parts
of a sequence which have been occluded by moving objects.

Let us point out that in all experiments shown below the absolute gray scale is preserved. This actually means
that original gray scales of each mini sequence and each small window of interest have not been re—scaled, e.g. up

13
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Figure 14. Damaged area (first row) and re—zoomed damaged area (second row) for Ny = 5, 10, 20 and 30.

Figure 15. Damaged area (first row) and re—zoomed damaged area (second row) for N = 5, 10, 20 and 30.

to cover the whole range of values (from 0 to 255). The linearity of our main proposal makes the final results
independent on any gray level re—scaling.

Moreover, despite the runtime of both implementations depends on the size of the sets of damage and
training pixels, and the number of frame considered, this never has gone beyond a few hundredths of second.
Therefore, since in such case the runtime may hardly affected by internal CPU’s processes we do not show these
data for our experiments.

14
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Figure 16. Original full frame; zoomed damaged area; and re-zoomed damaged area.

Figure 17. Window of interest corresponding to figure 16: Set of lost pixels; and set of training pixels (both sets in black).

Figure 18. Damaged area (first row) and re—zoomed damaged area (second row) for N = 5, 10, 20 and 30.

15
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Figure 19. Full original frames with the area of interest circled.

Figure 20. Full original frames with the area of interest circled once it has been recovered the occluded part.

4.1. Test movies
The sequence of frames considered in this subsection has been artificially damaged in different ways. In
particular, damaged areas adopt different shapes and sizes in order to get a realistic measure of the performance
of the method we propose, and show whether the restoration depends on that or not. In Addition, we show the
performance of our methods in some color (RGB format) sequences.

The errors of restorations in the present section have been evaluated according to the following:

* Letuy = [UD, UL, Ulf M7 be the vector of original pixels in the current frame F before being damaged.
Recallthat L = {p,, p,,...,p),} stands for the set of damaged pixels according to the notation in section 2.3,
Step 1. Though the inputs of upare ranged from 0 to 255, we normalize the vector to values from 0 to 1 merely
by dividing by 255. For the sake of the simplicity of notation we denote the vector again by up.

16
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Figure 21. Linear Volterra equations based approach. First row: Original frames zoomed; Second row: Occluding pixels; Third row:
Training pixels; Fourth row: Restored frames. All of them performed with N = 5.

Table 5. Errors in the Red channel for methods (23)—(26), and (29)—(31), and
different values of Ny, (see figures 10 and 11).

Non-local MCF

N 1 2 3 4 5
Error Red 1.46% 1.69% 1.54% 1.55% 1.53%
Channel
Linear Volterra model
Nr 10 20 30 40 50
Error Red 1.47% 1.12% 0.66% 0.55% 0.56%
Channel

 Letvy = [v0, vi,.. .,Vlf M7 be the vector of pixels, again in the frame F, after being restored according to Steps
1-6 of section 2.3. We normalize the vector also here to values from 0 to 1, and once again for the sake of the
simplicity of notation we denote the vector in the same manner.

* The error is measured by means of the discrete L’~norm, however since the error is in fact affected by the
number of pixels damaged, we relate the error to M;. In fact the error is computed as follows

17
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MU — vy
. (33)

M,

Error =

Finally we multiply Error by 100 as to have the error percentage, once again keeping the same notation.

4.1.1. First experiment

Firstly we consider the artificially damaged frame of figure 1. In figure 2 the performance of the classical MCF
(19), Ng = 1, may be observed where a visual assessment suggests that this method provides very accurate results.
However, if one compares those results to the ones provided by non—local MCF (23)—(26) with different values
of N > 1, then it is shown that restoration is not longer improved, in fact the larger the number of frames we
consider, the worse the restoration is.

Moreover figure 3 shows the results provided by non—local MCF merely with N = 2 and certainly the
restored image reveals that some artifacts begin to appear, that is restoration is not longer improved if compared
to the classical MCF. In addition to the visual assessment table 1 shows how the error for different values of
Nr=1,2,...,5, grows up as Ny get larger.

In the same frame a different set of pixels is removed, with a different size and shape (see figure 4). The results
are neither improved if N; > 1 (see table 2). Once again rare artifacts begin to appear if N > 1 (see figure 5).

4.1.2. Second experiment

Now we comment on the results of our approach (29)—(31). Once again, we firstly consider the damaged frame
in figure 1 where the good performance is observed. In particular figure 6 shows the result of the restoration with
Nr =5, 10 and 30 frames back in the sequence. In that case, beyond the visual assessment the errors in table 3
support numerically such a good performance, at least if one goes back up to some point. In particular in table 3
that the error begins to increase for N, = 40, or even at earlier stages (see also figure 7).

In this case we also stress the method by considering the damaged area in figure 4. In that case the
performance of the method seems to be not so good, because the shape of the damaged area walks over a more
non-homogeneous part of the frame (see figure 8). Nevertheless, our method outperforms the local and non—
local MCF based ones. Numerical errors may be seen in table 4. In case of having such so non-homogeneous
damaged area one always may split it into several smaller area, and treat them separately.

4.1.3. Third experiment

In the current paragraph we show how both methods (23)—(26), and (29)—(31) behaves if colored sequences in
RGB format are considered. Here both methods apply channel-by—channel, that is in the Red, Green, and Blue
channel separately. To fix ideas, let us consider the frame and damaged area shown in figure 9. The results of the
restoration based on (23)—(26) with N = 1, 2, 3 and 4 frames back is shown in figure 10, and the results based on
(29)—(31) with N = 10, 20, 30 and 40 frames back in figure 11.

It can be seen that the method (29)—(31) largely outperforms (23)—(26). In fact, table 5 displays only errors in
the Red channel for different values of Ny. In this table error is never smaller with MCF based methods (except
might be in the first case) than with (29)—(31). Furthermore, while errors with (29)—(31) fall down as Ny
increases, with (23)—(26) errors hardly keep constants.

4.2. Restoration of damaged movies
We devote this subsection to show how the method (29)—(31) applies to restore old movies that have been
damaged along the archive process, recording, or while their conversion to digital format. In view of
performance of both methods discussed above, now we merely focus on (29)—(31). Furthermore we show the
resulting restoration in two different sequences of a First World War documentary film.

Firstly consider the frame in figure 12 where the patch to be restored is circled. We here compare the
performance of the algorithm with two different sets of training pixels:

+ Infigure 13 we show the set of lost pixel (left image), the first set of training pixels (middle image), and a
second set of training pixels (right image).

+ Infigures 14 and 15 we show the restored frame with the first and second set of training sets in figure 13
(middle and right images respectively), both for N = 5, 10, 20, and 30.

The visual assessment suggests that both sets of training pixels provide similar results, and that N = 5 seems
to provided the best performance, so there are not needed a large amount of frames back to provide such good
results.
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Now consider the frame in figure 16 where the patch to be restored is circled. We here compare the
performance of the algorithm with two different sets of training pixels:

+ Infigure 17 we show the set of lost pixels, and the set of training pixels. In this case we only show the results
with one training set.

+ Infigure 18 we show the restored frame, for N = 5, 10, 20, and 30, where we must highlight that restoration
starts to be worsened forN; = 30 (or smaller) as expected when the number of frames considered grows up
after some threshold.

4.3. Restoration of occluded objects

This last subsection is devoted to show that the method (29)—(31) may be also applied to recover areas occluded
by moving objects. In particular in this experiment we recover a background consisting of moving plants in a fish
tank where a fish comes to appear in the scene.

In figure 19 we show the full frames where we apply the recovery of occluded parts in the area enclosed by a
circle, and in figure 20 we show the same (full) frames after the removing is done. In this experiment method
(29)—(31) has been applied with N = 5. Moreover in figure 21 we show the window of interest in the frames
considered once we have applied the removing and where it can be precisely observed the occluding object (a fish
entering in the scene), the training pixels surrounding the occluding pixels, and the final result of the recovery.

It must be highlighted the good performance of the method also in this context of occluding objets entering
inascene.

5. Conclusions

In this paper we have proposed two new approaches to video restoration based on non—local in time
mathematical models. One of them in the framework of non-linear equations and based on the geometric
features of time—spatial structure of a video sequence. The second one arose from a linear Volterra equation and
itis based on the analytic time regularity (so—called here time coherence) of the video sequence. While the first
approach did not improved the results obtained in the local context, the second one provided a very good
performance in very different situations, always exploiting the information provided by several previous frames,
and within a negligible runtime. This method might give rise to automated real-time video restoration
algorithms.
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