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Abstract
In this paper a video sequence is considered as a two dimensional time evolving process. Under this
assumption twoVolterra equations basedmathematicalmodels are introduced for video restoration
purposes. Thefirst one is based on geometric features related to the spatial–time structure of the video
sequence and gives rise to a nonlinear Volterra equation. Thismodel arises from theMeanCurvature
Flow linked to evolving surfaces. The second one is based on analytic features and leads to the
formulation of a linear Volterramodel. The second procedure relies on the assumption of local time
coherence in the sequence of frames, at least short back in time. In both cases Volterra equations based
approach introduces amemory effect in the process which in the present terminologymeans that
several frames backmay be taken into account for the better reconstruction of the current frame
throughout a convenient choice of the convolution kernel. On the other hand the role played by Least
SquaresMethod focuses on the practical computation of that convolution kernel just at discrete level.
The performance of both approaches is shown through a list of suitable experiments, and the better
performance of the second approach is illustratedwith remarkable improvements in critical cases.

1. Introduction

Video processing is nowadays one of themost activefields of scientific research inComputer Vision, involving
areas like superesolution [1], compression [2], or restoration [3] among others. The present paper focuses on the
last point, and it ismainly focused towards the reconstruction of oldmovies which have been degraded, along
the storage process or their conversion to digital format, by artifacts of different type. Themost common
artifacts are probably those related to the noise generation, the formation of blotches and scratches, the so–called
Vinegard Syndrome on several frames, orMoiré and intensity Flicker effects (see [2, 4] and references therein).
In [3] readers canfind a detailed state–of–the–art about these topics at the early years of this century.

Tofix ideas, we restrict ourselves to gray–level images since our proposals can be extended in a very simple
way to the corresponding color representations. Every digital gray–level image can be understood as a discrete
surface arising from amap z= u(x, y), where u stands for the gray–level intensity. Hence, a digital gray–level
videomini–sequence is understood as an one–parameter family of discrete surfaces arising from a family of
maps {z= u(x, y, t)}t�0. Thus, its time evolution is understood as a time discrete evolutionary process. Notice
that if in a set of pixels of a single frame of the sequence a large gray intensity change comes suddenly to appear
(beyond some threshold), then these pixels are candidate to be damaged pixels.

In restoration techniques the pixels to be restored are typically are affected by irregularly distributed noise or
by artificial blotches (i.e. unexpected dark or bright spots). There are very different denoising techniques for
noisy images. In fact, evolving surfaces z= u(x, y, t) representing the framesmay showhigh gray–level variability
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and different kinds of noise. Noise removal is actually out of the scope of this paper. Instead in this workwe are
certainly concernedwith restoration of regionswhich are notwell defined, where the information is lost, or, for
instance, where higher resolution is required. Therefore advanced techniques of video enhancement and
restoration are required.

Themain goal of video restoration is to recover the original spatial and temporal structure by taking into
account local information in the current, precedent, and even subsequent frames (if available). The recovery can
be performed in statistical terms (by using correlations, e.g.), analytical terms (weighted averages based on
convolution operators, e.g.) or geometric terms (by using e.g. conformal flows or, alternately, curvature flows for
the underlying surfaces among others). The choice of themost appropriate approach depends on evolving
geometric versus radiometric characteristics of the support (including features as complex textures e.g.) or
motion characteristics (which can introduce artifacts linked to sudden changes along themotion such as edges
breaking, e.g.) see [5]. In the present paperwe leave aside statical approaches and focus on analytic and geometric
basedmodels.

On the one hand, the goal of analytical approaches is to improve or restore ‘infinitesimal’ properties
according to the time variation of local information around damaged pixels. It can be considered as a planar
approach because it uses information about continuity respect to t of planar regions r(t) and their boundaries
b(t)= ∂r(t). Usually, analytical approaches are linked to some variant of the gradient∇b(t), which is
geometrically reinterpreted as the normalflowof the boundary b(t) itself. If the region r(t) is convex, the normal
outward propagation has good properties: it can be shrinked to a point.However, furthermore usual
inconvenient of the gradient flow (as directional field), the normal propagation displays a lot of ‘pathologies’.
Typical examples are given by different kinds of self–intersections and cusps (linked to normal envelopes or
caustics, e.g.)which degrade local computations linked to convolutionfilters.

Alternately, in the geometric framework onemay consider severalmathematical tools closely related to the
spatial–time geometric structure of the video sequence. Our proposal is based on the verywell knownMean
Curvature Flow (MCFhereinafter)which incorporates volumetric information about shrinking or expanding
phenomena contained in neighbor images of the videomini–sequence. A good recent survey for theMCFof
surfaces can be read in [6]. Recall that theMCF is defined as the divergence of the unit normal vector of the
surface.

From theClassical Differential Geometry viewpoint, a smooth surface Ì S 3 is locally characterized at each
point pä S (up to rigidmotions) by theMeanCurvatureH and the Total CurvatureK (Gauss Theorem)which is
an intrinsic invariant. They are respectively defined as the arithmeticalmeanH≔ (κ1+ κ2)/2, and geometric
meanK≔ κ1κ2 , which are the elementary symmetric functions of the principal curvaturesκ1, andκ2. In factκ1,
andκ2 stand for the eigenvalues of the curvaturematrix corresponding tominimal andmaximal values for
sectional curvatures, i.e. Sections by hyperplanes containing the normal vectorNpS to S at pä S (see [7]).

The use of theMCF is not a novelty for propagationmodels on surfaces; it has been used from long time ago
for different purposes, including image and video restoration. In fact to best of our knowledge the originalMCF
level set equationwas proposed in [8], and further generalizations in [9–12]. A classical reference is [13].

Let us remark that video restoration is based on the preservation of theMeanCurvature over the time by
non–trivial isometric deformations. The above condition is equivalent to the existence of a conformalmetric for
which one can compute the evolution ofMeanCurvatureH andTotal CurvatureK of a third order ordinary
differential equationwhich allows the construction of an isometric deformation (Codazzi equation [14])
keeping theMCF [15]. Unfortunately, in video sequences one cannot expect so good conditions.Hence, several
alternative approaches has been developed from the late nineties. Let usmention the one in [16] for normal
inward directionwith speed equal to theHarmonicMeanCurvatureH/K for a surface in the ordinary space. This
method provides explicit solutions with a good behavior for revolution surfaces.

Nevertheless its interest linked to normal inward propagation, their applicability to video sequences is
limited to a very specific kind of surfaces. In [17] the authors develop an approach based onm–th powers of the
MeanCurvature going farther the cases corresponding to convex hypersurfaces converging to a sphere. The
strategy consists of using volume–preservingMCF to obtain finer convergence results (towards a sphere of
radius r> 0), by extending previous results of [18].

The use of theMCF associated to an evolving surface  M :t
2 3, t� 0 displays some inherent troubles.

To understand them, let us observe thatMCF is defined as the solution of a quasilinear parabolic equation

( ) ( ) ∣ ∣ ( ) ( )( )
¶

¶
= D + H M

t
H M A H M t, 0, 1t

g t t t
2

whereA is the second fundamental formof the evolving surfaceMt,Δg(t) is the classical Laplace–Beltrami
operator, and g(t) stands for a givenmetric tensor. In otherwords, it is a quasilinear heat equationwith a
superlinear growth [19]which gives an explosive behavior ofMCF infinite time, and forces to a very careful
analysis of discrete approaches taking into account the length of the time intervals. Different alternatives have
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been proposed in the literature. Afirst option consists of combining short–time analytic conditions alongwith
thefirst step of iteration (expressed in numerical terms). Another option consists of obtaining geometric stability
conditions for the partial reconstruction, bymeans of a suitable regularizations. Last ones are discussedmore in
depth in section 2.

Based on the above considerations our first proposal consists of an integral approach toMCFbased on (1). In
particular ourfirst approach consists of developing a video restorationmodel based on a nonlinear and non–
local in timeMCF formulation arising from the time integration of (1), that is

( ) ( ) { ( ) ∣ ∣ ( )} ( )( )ò= + D + H M H M H M A H M s td , 0. 2t

t

g s s s0
0

2

What ismore, we consider a further generalization of (2) in terms of nonlinear convolution equations

( ) ( ) ( ){ ( ) ∣ ∣ ( )} ( )( )ò= + - D + H M H M t s H M A H M s td , 0. 3t

t

g s s s0
0

2

where ( )t stands for a suitable convolution kernel. This choice is proposed for a twofold reason:

1. The proposed approach allows us to take into account a larger amount of information back in time. In the
discrete setting thismeans that one can take into accountmore frames back apart from the current and
previous ones.

2. The regularization effect of the convolution approach is expected to cut down the singularities associated to
the classical approach (1).

The practical results achievedwith several videomini–sequences show that the classicalMCF (1) (i.e. if one goes
back in time one frame), provides little competitive performances.Moreover we have observed that ifmore than
one frame is considered according to (3) instabilities remain, andwhat is worse, themore frames backwe
consider, theworse the restoration is. In particular unexpected artifacts come to appear as one goes further back
in time. This suggests that geometric features associated to theMCFmake unstable the propagationmodel for
large time scales, therefore unsuitable for our purposes.

Our second contribution consists of developing an analytical approach, according to the classification above,
where geometrical characteristics do not play a key role. Instead, we assume a ‘short time coherence’. In other
words, we assume that the video sequence displays some kind of local continuity for the intensity at every single
pixel around the damaged area; this region is called a ‘collar’ inDifferential Topology. From an analytic
viewpoint, this ‘timeline continuity’ ismodeled bymeans of a classical linear Volterra equation (known aswell as
linear non–local in time evolution equation), both froma continuous viewpoint

( ) ( )ò= + - >M M t s M s td , 0, 4t

t

s0
0


but also from its discrete counterpart, namely in terms of a discrete set of frames as described in section 2.2.
Instead of considering geometric properties of theMCF, the convolution kernel ( )t is expected to regularize
instabilities associated to large time scales ocuring in practical situations. Let us remark that ( )t explicitly arises
only in the discrete context where it is computed according to particular features of the sequence. The
convolutionweights arising in the discrete formulation are computed bymeans of the Least SquaresMethod
following similar ideas to those appearing inmachine Learningmethodologies.

The experimental results revealed the good performance of this approach including the stability as we go
back in time, that is if one uses the information provided by several previous frames, up to some threshold. Our
results show that this approach provides by far better performance that (2), also. Notice that in this approach
subsequent frames could be considered as well, but not only previous ones, however this issue keeps out of the
scope of the present work. To the best of our knowledge, this approach has not been considered before in the
literature, and provides a very low computational cost and effective procedure for video restoration.

Other approaches have been also considered in recent literature for video restoration, let usmention some
based on geometrical features of the video sequence as e.g.motion compensation (see e.g. [20]), optical flow (see
e.g. [21]), or fractional optical flow (see e.g. [22]) among others. All these approaches aremore sophisticated that
the one proposed in (4). Hence, they aremuchmore expensive in terms of computational runtime; what ismore,
their stability has not been always accurately studied. By these reasons, we focus on the two approaches described
above in order to show their performance, andmainly in (4) owing to its analytic nature, asmore efficient
alternative to the geometric one. Also, we show that the number of frames to take into account in eachmini–
sequence restorationmust be somehow limited. Otherwise, undesired artifacts in the restored frame begin to
appear.
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Finally, our research does not focus on an automatic location of damaged/lost pixels since this issue deserves
his own development. Instead, to localize damaged/lost pixels in our experiments wemake a partial use of
existing algorithms (see e.g. [3], Ch. 4, or [23]).

According to the above remarks, the contents of the article is as follows: section 2 is devoted to give an
accurate formulation ofMCFbased approaches, and its further discussion. In this sectionwe also describe how
convolutions weights involved in the non–local approaches are in practice computed. In section 3we describe in
detail our second proposal based on a linear convolution equation. The paper concludes with section 4where a
deep result assessment of our proposals is carried out bymeans of a number of suitable practical experiments.

2.Mean curvatureflow

Let usfix the notation to be used throughout the paper. In fact in the continuous settingwe denote by { }  Mt t T0

a one–parameter set of surfaces in 3 corresponding to a videomini–sequence. Their implicit representation
can be ideally written as the level set ofmaps, (· )y  t, : 3 , 0� t� T, that is

{ ( ) ( ) } ( )y= = Î =  M x y z t t Tx x: , , : , 0 , 0 . 5t
T 3

Alternately, onemay assume that surfacesMt admit an explicit representation, that is there exists
(· · )  u t, , : 2 , 0� t� T, so that

≔ {( ( )) } ( )Î W  M x y u x y t x y t T, , , , : , , 0 . 6t

Notice that in that caseMt stands for the level sets ofψ(x, y, z, t)= z− u(x, y, t), 0� t� T, or equivalently for the
solutions of the equation z= u(x, y, t), 0� t� T, where for the sake of the simplicity of the notationwe avoid the
dependence on t of z.

The representation (6) is suitable for the presentation of our results this is why now and hereafter wemerely
focus on such representation.

2.1. Classicalmean curvaturaflow
According to the explicit representation (6) of a surface the standardCurvature Flow for the family of surfaces
{ }  Mt t T0 is defined as

( ) ( ( )) ( )
( )

( ) ( )= =



= Î W
 

 M u t
u t

u t
t T x yx

x

x
x,

1

2
div

,

,
, 0 , , , 7t ⎜ ⎟

⎛
⎝

⎞
⎠

 

where W Ì 2 stands for the spatial domain, and the operators div, and∇stand for the divergence and gradient
operators, respectively, on plane variables (x, y). Therefore the differential formulation of the standardMCF
reads

( ) ( ( )) ( )
( )

( )¶
¶

= =



Î W
 

 u

t
t u t

u t

u t
t Tx x

x

x
x, ,

1

2
div

,

,
, 0 , , 8⎜ ⎟

⎛
⎝

⎞
⎠



with the initial and boundary conditions

( ) ( ) ( ) ( )= Î W
¶
¶

= Î ¶W u u
u

n
t t Tx x x x x, 0 , , and , 0, 0 , , 90

respectively. In (9) u0 stands for the initial data of the problem, and in p ur framework to the first frame
considered in the restoration process.Moreover∂Ω stands for the boundary ofΩ. Therefore (8)–(9) gives rise to
the parabolic initial and boundary value problem to be solved.

According to the remarks appearing in the introduction, there can appear degenerate solutions of (8). This
occurs when the denominator in (8) vanishes, that is if  =


u 0. Therefore a suitable regularizationmay be seen

as a possible solution. In this regard different regularizations have been proposed in the literature, including the
regularizedmean curvature instead of proposed in [24] and defined as

( ) ∣ ( )∣ ( )ò= W
W

u u d , 10q 

where q> 0, typically q= 1 or q= 2, or e.g. the one proposed by Evans–Spruck in [25]. In the present paper we
focus in the last onewhich, according to the explicit representation of surfaces, can bewriten as

( ) ( ( )) ( )
( )

( )= =


+ 
Î W

 
 M u t D

u t

u t
t Tx

x

x
x, div

,

,
0 , , 11t

2

⎛

⎝
⎜

⎞

⎠
⎟

 

whereD> 0 stands for the diffusion coefficient, and ò> 0 for the regularizing parameter, thought it is expected
to be small. Therefore the parabolic problem associated to (11) reads as
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( ) ( ( )) ( )
( )

( )¶
¶

= =


+ 
Î W

 
 u

t
t u t D

u t

u t
t Tx x

x

x
x, , div

,

,
, 0 , , 12

2

⎛

⎝
⎜

⎞

⎠
⎟



alongwith the initial and boundary conditions (9). The nonlinear parabolic problem (9) and (12) turns out to be
well–posed [25].

Amore general approach toMCF (see [26]) is written as

( ) ( ( )) ( )¶
¶

= Î W u

t
t u t t Tx x x, , , 0 , , 13

where stands for

( ( )) ( ( ) ) ( )
( ( ) )

( )= 



Î W 
 

 u t g u t
u t

f u t
t Tx x

x

x
x, , div

,

,
, 0 , , 14⎜ ⎟

⎛
⎝

⎞
⎠



for a suitable choice of f and g. In particular,MCF (12) consists of taking f (x)= x and g(x)=D (both of them
before regularization).

Note that the equation (12)may be explicitly written as

( )
( ) ( )

( )
( )¶

¶
=

+ - + +

+ +
Î W u

t
t D

u u u u u u u

u u
t Tx x,

2
, 0 , . 15

x yy x y xy y xx

x y

2 2

2 2 3 2

 



In regard to the numerical solution ofMCFmodels, let usmention two recent works, thefirst one involving
thefinite volume discretization of KMikula et al [26], and the second one of Ch. Lubich et al based on thefinite
elementmethod [27, 28]. However since the nature of our approach is originally discrete, we do not longer pay
attention in this paper to the analysis of its numerical solutions.

2.2. Non–local in timemean curvatureflow
TheMCFprocess starts with an original surface corresponding to the initial data of the problem (9) and (12).
Afterward, solutions to the evolution problem (that is as the time scale evolves)provide new surfaces
corresponding to images expected to be a smoothing/filtering/re–construction of the original one.

Our proposed non–local approach consists of considering each videomini–sequence as a set of surfaces
{ }  Mt t T0 evolving over time, andwhose structure depends in somemanner on thememory of the process
further thanmerely the current and previous surfaces, at least short back in time. This idea comes out from the
re–formulation of (12) in integral form simply by integrating it in time. This fact allows us towrite (12) as follows

( ) ( ) ( ( )) ( )ò= + Î W  u t u u s s t Tx x x x, , d , , 0 , 16
t

0
0


where ( (· ))u t, is defined in (11), with boundary conditions as in (9). Note that in (16) the initial condition is
explicitly given by u0(x).

Typical artifacts to be restored are linked to lost pixels/blotches/patches/occlusions, e.g. In this framework
of videomini–sequence, we take into account thememory of the process, that is in the discrete setting a number
of previous frames of the sequence, furthermore the previous one as with (9) and (12). This argument applies
only within a limited time back. In otherwords, this ideaworks only if we assume ‘some time coherence’ at least
in the pixels belonging to a small neighborhood around the damaged ones.

Our first contribution introduces amore general approach beyond (16), always within the assumption of
certain time coherence. In fact, we introduce a convolution kernel in (16)which enable us to handlemore
accurately thememory of the process according to the features of the sequence. Therefore, themathematical
model we proposewrites as the non–linear Volterra equation

( ) ( ) ( ) ( ( )) ( )ò= + - Î W u t u t s u s s t Tx x x x, , d , 0 , , 17
t

0
0
 

where in a classical context ( )t is a priori known.More general formulation of non–linear Volterra equations
might be considered however these are out of the scope of the present paper.

Aswe have advanced in the introduction the convolution kernel ( )t does not play any role in the
continuous setting due to the discrete nature of our approach. In the next section, we give an accurate
description about how the discrete convolution kernel can be computed in practice according to the features of
each single sequence around the damaged area to be restored. This explains why veryweak conditionsmay be
required on ( )t in the continuous setting. So thewell–posedness of (17)may be simply derived from thewell–
posed conditions for (12).

Since the discrete framework is the onewherewewill work on, we now show the discretization of (17),first
in time, then in the spatial variables. Firstly, for the time discretizationwe set h> 0, tj= jh, j= 0, 1,K,N
(T=Nh), (17) becomes the following time discrete non–linear Volterra equation (also known as time discrete
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convolution equation)

( ) ( ) ( ( )) ( )å= + Î W
=

-

-  u u u n Nx x x x, 1 , , 18n
j

n

n j j0
0

1

 

where uj(x) stands for the approximation to u(x, tj), even though in our framework it corresponds to the j–th
frame of themini–sequence. Since the convergence of the numerical scheme is not amatter in this paper, we can
set h= 1 as the unit timewithout loss of generality. Thus, the time step length of the discretization is neither a
matter. On the other hand, the convolutionweights j do not necessarily correspond to ( )tj . Actually, they
arise from aMachine Learning based procedure as we describe in the next section.

The fully discretization of (18) is reached by replacing in the spatial continuous derivatives by a
convenient finite differences scheme.Once again since the stability of the numerical discretization does not
matter in this paper, we adopt a classical second order difference scheme over a uniform spatialmesh of length 1
both in x and y coordinate axis. In particular if we consider the spatialmeshM≔ {(p, q): 0� p� P, 0� q�Q},

Î +P Q, , then the fully discretization of (18) gives rise, for every single time step 1� n�N, to the following
systemof fully discrete non–linear Volterra equations

( ) ( )

å

å

å

= +

= +

= +

Î

=

-

-

=

-

-

=

-

-

 

 

u u

u u

u u

p q M, , 19

n
j

n

n j j

n
j

n

n j j

n
p q p q

j

n

n j j
p q

0,0
0
0,0

0

1
0,0

1,0
0
1,0

0

1
1,0

,
0

,

0

1
,

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

 

 

where

≔
( ( ) ( ) )

·

{( ( ) )( )
( ) · ( ) · ( )

( ( ) )( )} ( )

+ - + -

+ - - +

- - - - - +

+ + - - +

+ +

+ + -

+ + + + + +

+ + -

D

u u u u

u u u u u

u u u u u u u u

u u u u u

2

2

2 . 20

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

n
p q

,
1, , 2 , 1 , 2 3 2

1, , 2 , 1 , , 1

1, , , 1 , 1, 1 , 1 1, ,

, 1 , 2 1, , 1,








The algorithm (20) is fully stated if combinedwith the discrete initial condition

( ) ( )=    u u p q p P q Q, , 0 , 0 , 21p q
0

,
0

and the discrete boundary conditions (extending the domain by reflection as usual)

( ) ( )= = Î- + - +u u u u p q M, , , . 22j
P q

j
P q

j
p Q

j
p Q1, 1, , 1 , 1

Notice that in a numerical context uj
p q, stands for the approximation of u(p, q, j), however, in the present

context it represents the gray value of pixel (p,q) in the frame j.

2.3. Computation of convolutionweights
The computation of convolutionweights is worthy of the current section, wherewe explain how they can be in
practice computed.We are interested in the convolutionweights in (19) rather than the convolution kernel ( )t
itself, which atfirst are not a priori known. The underlying ideawe propose here is based onMachine Learning
methodologies and follows the following steps:

1. Locate the set of damaged pixels { }= ¼L p p p, , , M1 2 l
in a given frame F0. These pixels belong to the patch to

be restored. For the sake of the simplicity of the notationwe avoid the Euclidean notation that is the explicit

components pj= (pj,1, pj,2). Therefore the value uF
pj

0
, 1� j�Ml corresponds to the grey level of damaged

pixel pj in the frame F0.

2. Assume that the patch can be surrounded by a set ofMr undamaged pixels denoted by { }= ¼R q q q, , , M1 2 r
.

Once againwe use an abbreviated notation for these pixels.

3. Assume also that the set of pixels L ∪ R inNR> 0 previous frames are not damaged.

4. Now if we denote F−n the n–th frame back from the current one F0, then we use the set of pixels R over the
frames F0 and ¼- - -F F F, , , N1 2 R

to learn theweights in (19). Here themain idea of the paper applies, that is we
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apply here the local coherence, whichmeans that not damaged pixels satisfy a local equation of type (19)where
theweights have to be determined. In particular this leads to solve aMr×NR systemof equations arising
from the set of pixelsR, withNR unknowns, i.e. the set of weights { } =j j

N
1

R , which reads

( )å= +
=

-u u , 23F
j

N

j F0
1

R

j0  

where

( )= = = = ¼

-

-

-

-

-

-

-

  

u

u

u

u

u

u

j Nu u, , , 1, , . 24F

F
q

F
q

F
q

F
q

F
q

F
q
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F
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F
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q
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j

Mr

0

0
1

0
2

0

1

2

1

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥









Notice that in this context the initial valueu0 stands for the set of values of pixels of the first imagewe take
into account in the discrete evolution process corresponding to the patchwe are workingwith.

5. Since in our frameworkNR<Mr the system of equations (23) gives rise to an overdetermined system and its
solution { } =j j

N
1

r is understood in the sense of Least SquaresMethod.Note thatwe are allowed to apply the
Least SquaresMethod as shownbelow since the equations of system (23) are all of them implicit. In fact, that
systemmay bewritten inmatrix form as

( )= + = =

- - -

- - -

- - -





   



u u , where

,

, . 25F

F
q

F
q

F
q

F
q

F
q

F
q

F
q

F
q

F
q N
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⎦

⎥
⎥
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 

  

  

  








The solution provided by the Least SquaresMethod for the system (25) comes out by solving the associated
normal equations, that is

( )- =u u ,T
F

T
00  

whose solution  stands for thewanted set of weights { } =j j
N

1
R .

6. The restoration of damaged pixels comes through the weights { } =j j
N

1
R computed above. This means that the

same local coherence as for the set of pixelsR applies to the set of lost pixels L according to (19) as follows

( )å= +
=

-v v , 26F
j

N

j F0
1

R

j0  

where

( )= = = = ¼
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7. Therefore the entries of vector vF0
stands the set of restored pixels.

3. A linearVolterra type based approach

The practical experiments carried out in section 4 show that the behavior ofMCF (9) and (12), that isMCF in the
classical sense, provides accurate results in the restoration of damaged pixels. However the non–local in time
MCF (17), ormore precisely in a discrete format (19), does not improve in general such a results. Instead, the
algorithmperformanceworsened ifmore than one frame back is used in the restoration.
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Our experiments have shown that a simpler approach turned out to bemuchmore accurate. In particular,
such approach consists of replacing the operator ( (· ))u t, in (17) by the identity operator ( (· ))u t, . This leads
to the non–local in time equation

( ) ( ) ( ) ( ) ( )ò= + - Î W u t u t s u s s t Tx x x x, , d , 0 , , 28
t

0
0


alongwith the same boundary conditions (9). Again the initial condition u0(x) appears in (28) explicitly.
Moreover a fully discrete formulation of (28), in the samemanner as in (17), leads to solve at single time step
0� n�N, the systemof linear equations

Figure 1. (From the left to the right)Original frame once it has been damaged; Damaged area zoomed;Damaged area zoomed again,
and training pixels (in black). Data of the experiment:#L = 121 (lost pixels),#R = 104 (training pixels).

Figure 2.ClassicalMCF (NR= 1). First row:Original frame; area of interest zoomed; and area of interest zoomed again. Second row:
Restored frame; restored area zoomed; and restored area zoomed again.
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According to the notation in section 2.3, wemust solve now theMr×NR systemof linear equations

( )å= +
=

-u u u , 29F
j

N

j F0
1

R

j0 

Figure 3.Non–localMCFwithNR= 2 (only zoomed frame). Form left to right: Original frame, lost pixels, and restore frame.

Table 1.Non–localMCF (seefigures 2 and 3).

NR 1 2 3 4 5

Error 0.80% 1.21% 1.24% 1.21% 1.79%

Figure 4. From left to the right: Original frame (zoomed); damaged frame (zoomed); and set of removed pixels (inwhite) surrounded
by training pixels (in black). Data of the experiment:#L = 102 (lost pixels) and#R = 228 (training pixels).
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Figure 5. From left to the right: Original frame (zoomed); damaged frame; restorationwith the classicalMCF (NR= 1); and restoration
with non–localMCF andNR= 2.

Figure 6. Linear Volterra equations based approach. First row: original frame, zoomed, and re–zoomed. The following three rows:
restoredwhole frame, it zoomed, and re–zoomed; forNR= 5,NR= 10, andNR= 30 each row respectively. Data of the experiment:
#L = 121 (lost pixels) and#R = 104 (training pixels).
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where
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After computing theweights { } =j j
N

1
R by Least SquaresMethod as we have described in section 2.3, the restored

pixels vF0
are then computed by

( )å= +
=

-v v u , 31F
j

N

j F0
1

R

j0 

Figure 8.The performance of our approachwithNR = 5, 10, 20, and 40.

Figure 7. Linear Volterra equations based approach. First row the original frame (first column), and the zoomed and re–zoomed
frame (second and third columns). The second row shows the performance withNR= 40where the results areworse than forNR= 30
(see table 3).
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The experiments in section 4 show that going back short in timewith (29)noticeably improves the
restoration carried out both by the non–localMCFmodel (19), but also by the classicalMCF, that is ifNR= 1.

Figure 9. From left to the right: Original frame, damaged frame, zoomed damaged part, and training pixels. Data of the experiment:
#L = 105 (lost pixels) and#R = 120 (training pixels).

Figure 10. From left to right:MCFwithNR = 1, 2, 3 and 4 (only zoomed parts).

Figure 11. From left to right: Linear Volterra equations based approachwithNR = 10, 20, 30 and 40 (only zoomed parts).

Table 2.Non–localMCF (seefigures 4 and 5).

NR 1 2 3 4 5

Error 1.08% 1.65% 1.94% 2.52% 2.61%
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4.Numerical experiments

This section is devoted to assess the performance of the proposed approaches, the one based on theMCF, local
and non–local in time, and the one based on linear Volterra type equations. The section is divided into three
subsections corresponding to three different situations:Non–damaged video sequences which have been
artificially damaged in order to accuratelymeasure the quality of performance. Originally damaged video
sequenceswhere only a visual perception of the error is allowed; in particular in the second subsectionwe have
considered oldmovies sequences. Finally, we showhowour approach is applied to the restoration of some parts
of a sequencewhich have been occluded bymoving objects.

Let us point out that in all experiments shown below the absolute gray scale is preserved. This actuallymeans
that original gray scales of eachmini sequence and each small windowof interest have not been re–scaled, e.g. up

Figure 12.Original full frame; zoomed damaged area; and re–zoomed damaged area.

Figure 13.Windowof interest corresponding to figure 12: Set of lost pixels (left); and both sets of training pixels (two right).

Table 3. Linear Volterra equations basedmodel (seefigures 6 and 7).

NR 5 10 20 30 40

Error 0.81% 0.80% 0.67% 0.55% 0.70%

Table 4. Linear Volterra equations basedmodel (seefigure 8).

NR 5 10 20 30 40

Error 0.89% 0.84% 0.81% 0.70% 0.72%
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to cover thewhole range of values (from0 to 255). The linearity of ourmain proposalmakes the final results
independent on any gray level re–scaling.

Moreover, despite the runtime of both implementations depends on the size of the sets of damage and
training pixels, and the number of frame considered, this never has gone beyond a few hundredths of second.
Therefore, since in such case the runtimemay hardly affected by internal CPU’s processes we do not show these
data for our experiments.

Figure 14.Damaged area (first row) and re–zoomed damaged area (second row) forNR = 5, 10, 20 and 30.

Figure 15.Damaged area (first row) and re–zoomed damaged area (second row) forNR = 5, 10, 20 and 30.
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Figure 16.Original full frame; zoomed damaged area; and re–zoomed damaged area.

Figure 17.Windowof interest corresponding to figure 16: Set of lost pixels; and set of training pixels (both sets in black).

Figure 18.Damaged area (first row) and re–zoomed damaged area (second row) forNR = 5, 10, 20 and 30.
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4.1. Testmovies
The sequence of frames considered in this subsection has been artificially damaged in different ways. In
particular, damaged areas adopt different shapes and sizes in order to get a realisticmeasure of the performance
of themethodwe propose, and showwhether the restoration depends on that or not. In Addition, we show the
performance of ourmethods in some color (RGB format) sequences.

The errors of restorations in the present section have been evaluated according to the following:

• Let [ ]= ¼U U Uu , , ,F F
p

F
p

F
p TMl1 2 be the vector of original pixels in the current frame F before being damaged.

Recall that { }= ¼L p p p, , , M1 2 l
stands for the set of damaged pixels according to the notation in section 2.3,

Step 1. Though the inputs ofuF are ranged from0 to 255, we normalize the vector to values from0 to 1merely
by dividing by 255. For the sake of the simplicity of notationwe denote the vector again byuF.

Figure 19. Full original frameswith the area of interest circled.

Figure 20. Full original frameswith the area of interest circled once it has been recovered the occluded part.
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• Let [ ]= ¼v v vv , , ,F F
p

F
p

F
p TMl1 2 be the vector of pixels, again in the frame F, after being restored according to Steps

1–6 of section 2.3.We normalize the vector also here to values from0 to 1, and once again for the sake of the
simplicity of notationwe denote the vector in the samemanner.

• The error ismeasured bymeans of the discrete L2–norm, however since the error is in fact affected by the
number of pixels damaged, we relate the error toMl. In fact the error is computed as follows

Figure 21. Linear Volterra equations based approach. First row:Original frames zoomed; Second row:Occluding pixels; Third row:
Training pixels; Fourth row: Restored frames. All of themperformedwithNR= 5.

Table 5.Errors in the Red channel formethods (23)–(26), and (29)–(31), and
different values ofNR (seefigures 10 and 11).

Non–localMCF

NR 1 2 3 4 5

Error Red

Channel

1.46% 1.69% 1.54% 1.55% 1.53%

Linear Volterramodel

NR 10 20 30 40 50

Error Red

Channel

1.47% 1.12% 0.66% 0.55% 0.56%
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( )
( )=

å -= U v

M
Error . 33

j
M

F
p

F
p

l

1
2l j j

Finally wemultiply Error by 100 as to have the error percentage, once again keeping the same notation.

4.1.1. First experiment
Firstly we consider the artificially damaged frame offigure 1. Infigure 2 the performance of the classicalMCF
(19),NR= 1,may be observedwhere a visual assessment suggests that thismethod provides very accurate results.
However, if one compares those results to the ones provided by non–localMCF (23)–(26)with different values
ofNR> 1, then it is shown that restoration is not longer improved, in fact the larger the number of frameswe
consider, theworse the restoration is.

Moreover figure 3 shows the results provided by non–localMCFmerely withNR= 2 and certainly the
restored image reveals that some artifacts begin to appear, that is restoration is not longer improved if compared
to the classicalMCF. In addition to the visual assessment table 1 shows how the error for different values of
NR= 1, 2,K,5, grows up asNR get larger.

In the same frame a different set of pixels is removed, with a different size and shape (seefigure 4). The results
are neither improved ifNR> 1 (see table 2). Once again rare artifacts begin to appear ifNR> 1 (see figure 5).

4.1.2. Second experiment
Nowwe comment on the results of our approach (29)–(31). Once again, wefirstly consider the damaged frame
infigure 1where the good performance is observed. In particular figure 6 shows the result of the restorationwith
NR= 5, 10 and 30 frames back in the sequence. In that case, beyond the visual assessment the errors in table 3
support numerically such a good performance, at least if one goes back up to some point. In particular in table 3
that the error begins to increase forNr= 40, or even at earlier stages (see alsofigure 7).

In this case we also stress themethod by considering the damaged area infigure 4. In that case the
performance of themethod seems to be not so good, because the shape of the damaged areawalks over amore
non–homogeneous part of the frame (seefigure 8). Nevertheless, ourmethod outperforms the local and non–
localMCFbased ones. Numerical errorsmay be seen in table 4. In case of having such so non–homogeneous
damaged area one alwaysmay split it into several smaller area, and treat them separately.

4.1.3. Third experiment
In the current paragraphwe showhowbothmethods (23)–(26), and (29)–(31) behaves if colored sequences in
RGB format are considered. Here bothmethods apply channel–by–channel, that is in the Red, Green, and Blue
channel separately. Tofix ideas, let us consider the frame and damaged area shown infigure 9. The results of the
restoration based on (23)–(26)withNR= 1, 2, 3 and 4 frames back is shown infigure 10, and the results based on
(29)–(31)withNR= 10, 20, 30 and 40 frames back infigure 11.

It can be seen that themethod (29)–(31) largely outperforms (23)–(26). In fact, table 5 displays only errors in
the Red channel for different values ofNR. In this table error is never smaller withMCFbasedmethods (except
might be in the first case) thanwith (29)–(31). Furthermore, while errors with (29)–(31) fall down asNR

increases, with (23)–(26) errors hardly keep constants.

4.2. Restoration of damagedmovies
Wedevote this subsection to showhow themethod (29)–(31) applies to restore oldmovies that have been
damaged along the archive process, recording, orwhile their conversion to digital format. In view of
performance of bothmethods discussed above, nowwemerely focus on (29)–(31). Furthermore we show the
resulting restoration in two different sequences of a FirstWorldWar documentary film.

Firstly consider the frame infigure 12where the patch to be restored is circled.We here compare the
performance of the algorithmwith twodifferent sets of training pixels:

• Infigure 13we show the set of lost pixel (left image), thefirst set of training pixels (middle image), and a
second set of training pixels (right image).

• Infigures 14 and 15we show the restored framewith thefirst and second set of training sets infigure 13
(middle and right images respectively), both forNR= 5, 10, 20, and 30.

The visual assessment suggests that both sets of training pixels provide similar results, and thatNR= 5 seems
to provided the best performance, so there are not needed a large amount of frames back to provide such good
results.
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Now consider the frame infigure 16where the patch to be restored is circled.We here compare the
performance of the algorithmwith twodifferent sets of training pixels:

• Infigure 17we show the set of lost pixels, and the set of training pixels. In this case we only show the results
with one training set.

• Infigure 18we show the restored frame, forNR= 5, 10, 20, and 30, wherewemust highlight that restoration
starts to beworsened forNR= 30 (or smaller) as expectedwhen the number of frames considered grows up
after some threshold.

4.3. Restoration of occluded objects
This last subsection is devoted to show that themethod (29)–(31)may be also applied to recover areas occluded
bymoving objects. In particular in this experiment we recover a background consisting ofmoving plants in a fish
tankwhere afish comes to appear in the scene.

Infigure 19we show the full frameswherewe apply the recovery of occluded parts in the area enclosed by a
circle, and infigure 20we show the same (full) frames after the removing is done. In this experimentmethod
(29)–(31) has been appliedwithNR= 5.Moreover infigure 21we show thewindowof interest in the frames
considered oncewe have applied the removing andwhere it can be precisely observed the occluding object (afish
entering in the scene), the training pixels surrounding the occluding pixels, and the final result of the recovery.

Itmust be highlighted the good performance of themethod also in this context of occluding objets entering
in a scene.

5. Conclusions

In this paper we have proposed two new approaches to video restoration based on non–local in time
mathematicalmodels. One of them in the framework of non–linear equations and based on the geometric
features of time–spatial structure of a video sequence. The second one arose from a linear Volterra equation and
it is based on the analytic time regularity (so–called here time coherence) of the video sequence.While the first
approach did not improved the results obtained in the local context, the second one provided a very good
performance in very different situations, always exploiting the information provided by several previous frames,
andwithin a negligible runtime. Thismethodmight give rise to automated real–time video restoration
algorithms.
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