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Abstract

We describe a method to calculate the ion density of High Energy Density

(HED) cylindrical plasmas used in Dot Spectroscopy experiments. This method

requires only spectroscopic measurements of the Heα region obtained from two

views (Face-on and Side-on). We make use of the fact that the geometry of the

plasma affects the observed flux of optically thick lines. The ion density can be

derived from the aspect ratio (height-to-radius) of the cylinder and the optical

depth of the Heα-y line (1s2p 3P1 → 1s2 1S0). The aspect ratio and the optical

depth of the y line are obtained from the spectra using ratios measured from the

two directions of emission of the optically thick Heα-w line (1s2p 1P1 → 1s2 1S0)

and the ratio of the optically thick to thin lines. The method can be applied to

mid-Z elements at ion densities of 1019 − 1020 cm−3 and temperatures of a the

order of keV, which is a relevant regime for Inertial Confinement Fusion (ICF)

experiments.
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1. Introduction

Measuring the temperature and density of plasmas in High Energy Den-

sity (HED) experiments is fundamental to understanding the conditions of the

plasma and to design better experimental set-ups. Spectroscopy is a commonly

used method for temperature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and plasma density

measurements, with various different methods being applied depending on the

temperatures and densities involved.

In the high density regime, such as the plasma within an Inertial Confinement

Fusion (ICF) implosion core, one of the most common spectroscopic approaches

for measuring the plasma density is the study of Stark broadening of spectral

lines [12, 13, 3]. However, for plasmas at lower densities, such as the plasma

that fills a hohlraum in indirect drive ICF, the Stark broadening is smaller than

thermal broadening associated with the Doppler effect. The line profile is then

usually Gaussian or Voigt-like, and since the contribution from the Stark effect

must be isolated [14], large uncertainties in the measurement are inevitable.

If diagnosis via Stark broadening is not appropriate, there are some other

approaches to characterzing the plasma density using its continuum emission

[15], fluorescence emission [16], or the study of line ratios. The relative intensity

of lines can provide information about the atomic level population distribution in

a plasma and therefore its density. In 1969, Gabriel and Jordan [17] developed a

method for characterization of the solar corona that uses line ratios from the Heα

complex (1s2l → 1s2). This complex is made up of four lines (which we name

according to Gabriel’s work [18]), namely the resonance or w line (1s2p 1P1 →

1s2 1S0), two intercombination lines, the x line (1s2p 3P2 → 1s2 1S0) and the

y line (1s2p 3P1 → 1s2 1S0); and the forbidden or z line (1s2s 3S1 → 1s2 1S0).

In particular, their method uses the ratio of intensities z/(x+y) to characterize

the electron density of the plasma. Gabriel and Jordan’s method has been

widely used for different regions of the solar corona [19, 20, 21, 22] and given

its great potential, there have also been many efforts to extend it to different

astrophysical plasmas, such as planetary nebulae [23] and stellar winds and
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coronae [24, 25, 26, 27]. However, this method is only valid at relatively low

ion densities (ni < 1012 − 1013 cm−3), as for higher densities the flux from the

z and x lines diminishes to the point of being unobservable, and the w and y

lines are the only remaining He-like components, usually blended with Li-like

satellite emission.

The use of the ratio of these two remaining lines w/y as a density diagnostic

for laser-generated plasmas was first studied by Vinogradov et al. [28] and

was further improved in the following years [29, 30, 31]. After that, the w/y

ratio became a commonly used measurement for measuring the density of laser-

produced plasmas [32, 33, 34, 35] and Tokamaks [36, 37]. Nevertheless, as the

opacity of the w line is ∼ 15 times greater than that of the y line for mid-Z

elements, in HED conditions the w line becomes optically thick whereas the

y line does not. Therefore, opacity effects must be taken into account when

making diagnostic inferences based upon those lines.

While one might expect the presence of line opacity to strictly reduce the line

flux relative to the optically thin limit, Bhatia and co-workers [38, 39, 40] showed

that, under certain conditions, opacity can cause an relative enhancement of

the emission of optically thick lines. The work of Kerr et al. [41, 42, 43] using

the radiation transport code CRETIN [44], showed that this enhancement was

related to the geometry of the plasma and the Line Of Sight (LOS) used to

obtain the spectra. Therefore, for non-spherical plasmas, the enhancement of

optically thick lines depends on the position of the observer with respect to the

plasma. This effect has been observed in astrophysical plasmas [45] and has

applications to charaterizing the geometry of astrophysical bodies from their

line ratios [42, 46]. However, to our knowledge, it has never been used for

density measurements in laboratory plasmas (although a potential experiment

to observe these effects was proposed by Mancini et al. [47]).

Over the past few years there has been an increasing interest in using dot

spectroscopy [4, 5] for diagnosing the temperature in plasmas in ICF hohlraums

[8, 9, 10, 11]. The dots are cylinders of mid-Z materials with a thickness of

∼ 0.1 − 0.3 µm and a diameter of the order of 250 − 800 µm, as this geome-
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try is easy to manufacture. Recently, the dot spectroscopy method has been

used to validate results from radiation hydrodynamics simulations [48] for ICF

hohlraums at the National Ignition Facility [49] (NIF). We focus on the geomet-

ric effects in cylinders of mid-Z elements at ion densities ni ∼ 1019 − 1020 cm−3

and temperatures of the order of keV. This is typical of the range of conditions

in ICF experiments. The choice of mid-Z elements is motivated by the fact that

their Heα and Lyα lines (∼ 4− 8 keV) lie outside the region of emission of the

gold plasma inside the hohlraum (∼ 3 keV). Therefore, the spectral background

in the region of interest is usually negligible.

In the experiments described in Barrios et al. [10, 11], the dots were coated

on top of the CH capsule or on a film inside the hohlraum. As the laser heats

up the system, the CH capsule keeps the dots tamped and they expand in the

axial and radial directions. Early in the expansion, the geometry of the dot

remains cylindrical, given the symmetry of the system, although later in time

its geometry might change, as the assumption of pure planar expansion starts

to break down. We make use of the characteristic way in which the cylindrical

geometry of the dots modifies their spectral pattern in the early stages of the

expansion to diagnose its density.

We present a method for calculating the ion density of cylindrical plasmas

making use of the effects of their geometry in their radiation pattern. This

method requires two measurements of the Heα spectrum (the spectral flux in

the axial and the radial directions), one of which can be the already existent

measurement in the dot spectroscopy method for temperature diagnostic. We

shall assume that the plasma of study is cylindrical and completely uniform

(single temperature and density) and constant in time. Given that for the con-

ditions of study, Doppler broadening is approximately one order of magnitude

greater than Stark broadening 1 [51, 52, 53] we also assume Gaussian lineshapes,

but the method can be extended to different lineshapes, such as a Lorentzian

1This result was verified by the authors using the atomic kinetics code SCRAM [50] and

CRETIN.
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or a Voigt profile. We focus on the w and y components of the Heα complex.

In the conditions of study, it is usually the case that the w line is significantly

optically thick (1−e−τw ∼ 1 near line center) whereas the y line is not. We note

that for the method presented here, it is not necessary that the y line is strictly

optically thin (τy < 1), but it can have optical depth of a few. We assume that

these conditions hold for our case.

We consider for simplicity the case of a single element plasma. This is

not a necessary assumption, as the method is still valid for a multi-species

plasma as long as no lines from one element overlap with the Heα complex of

another. In the case of more than one element being present in the plasma, the

Heα spectrum of each element can be used to obtain the ion density of that

particular element. The total ion density can then be calculated as the sum of

the individual contributions, provided that the assumption of a uniform plasma

holds.

The paper is organized as follows. First we discuss radiation transport in

cylindrical plasmas. Then the expressions for the flux in two directions of emis-

sion are derived. We use these expressions to calculate the line ratios between

the w and y lines for the axial and radial directions and show that they are

functions of the optical depth and geometry of the plasma. We then express the

ion density as a function of these variables. An example is given in section 5 to

illustrate the method. Finally we discuss the limitations of this method when

the geometry is not perfectly cylindrical.

2. Theory for a plasma cylinder

The radiation transfer equation in one dimension, for transfer in the direction

of propagation, shows that the intensity increases from the plasma emissivity

and decreases from its absorption [54][
c−1

∂

∂t
+

∂

∂z

]
I = η − κI, (1)

where c is the speed of light, η represents the emission coefficient or emissivity

of the system (with units of erg/Hz/sr/s/cm3 in the cgs system) and κ its
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Figure 1: Differential element of spectral flux. As the detector is placed further from the

plasma, the angle α becomes smaller, until all the rays reaching the detector are parallel and

with α = 0.

absorption coefficient or opacity (cm−1). I has units of erg/Hz/sr/s/cm2. We

consider instead the time-independent version of this equation as one of our

assumptions is that the conditions are constant and uniform. In experimental

conditions, however, the plasma conditions are likely to evolve over time. In

that case, it is still possible to neglect the time-dependent term as long as the

temporal variations happen on a timescale ∆t such that ∆t� ∆z/c, where ∆z

is the lengthscale of the plasma. As an example, for a plasma 100 µm thick, it

is possible to neglect temporal variations slower than ∼ 0.3 ps, while most ICF

experiments evolve on the nanosecond scale. Dropping the time-dependence of

equation 1, we obtain

∂

∂z
I = η − κI. (2)

If there is no external illumination on the plasma, equation 2 has the solution

I(ν, z) =
η(ν)

κ(ν)

(
1− e−κ(ν)z

)
= S(ν)

(
1− e−κ(ν)z

)
(3)

where S(ν) = η(ν)/κ(ν) is the source function for radiation of frequency ν and

z is the distance that the radiation travels through the plasma. The quantity

κz is the optical depth.

For a single Gaussian-shaped line, the emissivity and opacity coefficients can
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be written as

η(x) = η0e
−x2

, (4)

κ(x) = κ0e
−x2

, (5)

where η0 and κ0 are respectively the emissivity and opacity at line center, and

x is the dimensionless frequency

x =
ν − ν0
νD

, (6)

with ν0 the frequency of the transition at line center and νD the Doppler width.

Therefore, we can write the intensity of a particular line as

I(x, z) =
η(x)

κ(x)

(
1− e−κ(x)z

)
= S0

(
1− e−κ(x)z

)
, (7)

where S0 is the source function at line center. For the sake of clarity, the explicit

inclusion in the notation of an x-dependence is hereafter suppressed.

For practical applications it is usually more appropriate to work with the

spectral flux, as that is the observable measured by a detector. It is given by

F (ν) =

∫
dΩ I(ν) cosα, (8)

where dΩ is the differential solid angle subtended by the source at the detector

and α is defined as the angle between a ray leaving the source and the normal

vector of the corresponding differential surface element at the detector (figure

1). F has units of erg/Hz/s/cm2.

To exploit the symmetries inherent in the cylindrical geometry, we choose to

focus here on the axial flux, or Face-on; and the radial flux, or Side-on. These

correspond to radiation leaving the cylinder normal and parallel to its base,

respectively. Our model consists of a cylindrical plasma at which two detectors

are aimed, one that measures Face-on flux, while the second measures the Side-

on flux, as shown in figure 2 (although this process can be extended to different

positions of the detectors). Both detectors are assumed to be sufficiently far

from the target so that all the rays reaching them are parallel, thus allowing

us to set α ∼ 0. The detectors are also assumed to cover the whole size of the

plasma and to be at the same distance d from the cylinder.
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(a)

(b)

Figure 2: Schematic of the cylindrical plasma and the Face-on and Side-on detectors. (2a)

Shows the whole system and (2b) the top view only, showing one ray (red) travelling to the

Side-on detector. For Face-on detection, all the photons travel the same distance H, and move

perpendicularly to the emitting surface, in this case, the face of the cylinder. For Side-on view,

rays span a range of chord lengths from 0 to 2R. If the azimuthal angle φ is defined as shown,

a photon travels a distance 2R sinφ before leaving the plasma, and exits with an angle π/2−φ

with respect to the surface normal vector.

2.1. Face-on flux

For radiation leaving the plasma in the axial direction equation 7 becomes

I = S0

(
1− e−κH

)
, (9)

where H is the height of the plasma cylinder. The radiation exits the plasma

perpendicular to its surface. Therefore, from equation 8, it follows

F face =
πR2

d2
S0

(
1− e−κH

)
(10)

where R is the radius of the cylinder, πR2 is the emitting surface (the base of

the cylinder) and d is the distance from the detector to the plasma cylinder.
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From equation 10, the frequency-integrated flux of a given spectral line in the

Face-on orientation is

F faceline =
πR2

d2
S0

∫ +∞

−∞
dx
(

1− exp
[
−κ0He−x

2
])
. (11)

To simplify the notation we define Gface as the integral over frequencies for

Face-on flux (which only depends on the product of κ0 and H), that is

Gface =

∫ +∞

−∞
dx
(

1− exp
[
−κ0He−x

2
])
. (12)

And therefore

F faceline =
πR2

d2
S0G

face. (13)

2.2. Side-on flux

For the Side-on view, radiation crossing the cylinder travels a different path

depending on its distance from the center of the circle (see figure 2b). Defining

an azimuthal angle φ (figure 2b), a ray crossing the cylinder travels a length

2R sinφ inside the plasma. However, in this case, radiation does not leave the

plasma perpendicular to the surface, but with an angle π
2 − φ, as shown in

figure 2. Therefore the differential projected surface area seen by the detector

is HR sinφdφ, so the differential flux for the Side-on orientation at a given

azimuthal angle is:

dF side = S0

(
1− e−2κR sinφ

)
sinφ

HRdφ

d2
(14)

Therefore, the flux integrated over the surface is

F side =
HR

d2
S0

∫ π

0

(
1− e−2κR sinφ

)
sinφdφ. (15)

This equation can be written explicitly by solving the integral.

F side =
2HR

d2
S0

[
1− π

2
(L−1(2κR)− I1(2κR))

]
(16)

where Ln is the modified Struve function of order n, and In is the n-th order

modified Bessel function of the first kind [55]. It is interesting to note here that
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in the optically thin limit (κR→ 0) the factor in square brackets in equation 16

reduces to
[
1− exp(−π2κR)

]
. This is equivalent to assuming that all photons

travel the average path length before leaving the plasma (the mean chord for

Side-on view is πR/2). However, this is not valid when the conditions are not

entirely optically thin.

As it is difficult to work with equation 16 given the complicated functions

inside the brackets, we approximate the exact solution by a function of the form

(1− exp[−aκR]), by choosing a value of a such that it minimizes the differences

with the exact solution over a wide range of κR values. We chose a maximum

value of κR of 10 to ensure convergence of the calculations. The optimal value of

a was found to be 1.45. Using this approximation, there is less than 5% error for

all values of κR in this range. The difference between both functions decreases

as κR increases and both functions tend asymptotically to 1. This difference

becomes less than 1% for κR ∼ 5 and for κR = 10 its value is ∼ 0.25%. Both

our approximation and the exact solution are shown in figure 3.

We recast the solution for the Side-on flux as

F side ∼ 2HR

d2
· S0

(
1− e−1.45κR

)
. (17)

and, in a similar way to the Face-on view, the frequency-integrated line flux is

F sideline =
2HR

d2
S0

∫ +∞

−∞
dx
(

1− exp
[
−1.45κ0Re

−x2
])
. (18)

This notation can be simplified in the same way as for the Face-on orienta-

tion, defining Gside as the integral over frequencies for Side-on view

Gside =

∫ +∞

−∞
dx
(

1− exp
[
−1.45κ0Re

−x2
])
. (19)

Therefore

F sideline =
2HR

d2
S0G

side. (20)

2.3. w/y ratio

In this section, we specify the flux corresponding to a particular line (w or

y) by denoting w or y as a subscript. From now on, unless specified otherwise,
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Figure 3: Comparison between the brackets in equation 16 (orange) and 1 − e−1.45κR (blue).

we work with frequency-integrated line fluxes (equations 13 and 20), and drop

the explicit subscript line. We also drop the subscript 0 for the source function,

as we always refer to its value at line center for each line.

For the Face-on orientation, if the w line flux is divided by the flux of the y

line, we obtain
Fw
Fy

∣∣∣∣
face

=
SwG

face
w

SyG
face
y

. (21)

A similar expression is found for the Side-on view, substituting the G inte-

gral,
Fw
Fy

∣∣∣∣
side

=
SwG

side
w

SyGsidey

. (22)

Given that the source functions of both lines are independent of the direction

of emission for uniform plasmas (they are a function of the plasma properties),

if the w/y ratios for both views are divided, the result depends only on the G

integrals for both lines in both views.

Fw/Fy|face
Fw/Fy|side

=
Gfacew

Gsidew

·
Gsidey

Gfacey

. (23)

3. Aspect ratio

In most experiments, it is not possible to obtain direct measurements of

the size of the plasma and the spectral flux in both directions at the same

time. However, the fact that the w line is optically thick allows us to obtain

information about the plasma geometry just from the ratio of the spectral fluxes

11



in two directions, without explicitly measuring the plasma size. In particular,

we calculate the aspect ratio β = H/R. If the w line fluxes for both views are

divided, we obtain
Fw|face
Fw|side

=
πR

2H

Gfacew

Gsidew

. (24)

In the limit of high values of the optical depth, the ratio of the G functions can

be simplified. We use L’Hôpital’s rule once

Gfacew

Gsidew

∼ lim
κ0→∞

H

1.45R

∫ +∞
−∞ dx exp

[
−κ0He−x

2
]
e−x

2∫ +∞
−∞ dx exp

[
−1.45κ0Re−x

2
]
e−x2

, (25)

and then Holstein’s approximation for the resulting integrals [56], thus obtaining

Gfacew

Gsidew

∼

√
ln (1.45κwR)

ln (βκwR)
=

√
ln (1.45 ·Aτ0)

ln (Aβτ0)
, (26)

where τ0 = κyR. The factor A = κw/κy is the ratio of the opacity of the w

and the y lines, given by the ratio of the oscillator strengths of the transitions

and therefore fixed for each element. It can be adjusted for the element of

consideration, and it is independent of temperature and density. We introduce

this factor as it is easier to work with the optical depth of the y line, than the w

line. We show the dependence of the ratio Gfacew /Gsidew with the optical depth

of the y line for different aspect ratios in figure 4.

From equations 24 and 26, we can now obtain the following expression for

the aspect ratio β = H/R

β =
π

2
·
Fw|side
Fw|face

√
ln (1.45 ·Aτ0)

ln (Aβτ0)
(27)

And therefore, equation 23 can be now written explicitly as

Fw/Fy|face
Fw/Fy|side

=

√
ln (1.45 ·Aτ0)

ln (Aβτ0)
·
∫ +∞
−∞ dx(1− exp[−1.45τ0e

−x2

])∫ +∞
−∞ dx(1− exp[−τ0e−x2β])

, (28)

where we have kept the notation τ0 = κyR to indicate that, although κy and

R cannot be calculated separately, their product is an independent variable in

equations 27 and 28. Physically, τ0 corresponds to the optical depth of a y
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Figure 4: Gfacew /Gsidew ratio as a function of the optical depth of the y line for a variety of

aspect ratios. For the values considered in this document (τ0 of the order of a few), this value

is not strongly dependent on τ0, except at low aspect ratios.

line photon (at line center) travelling a distance equivalent to the radius of the

cylinder, R.

Equations 27 and 28 can now be solved together, thus obtaining β and τ0.

4. Density calculation

The optical depth parameter τ0 is related to the ion density of the plasma

by

τ0 = niFσ0R, (29)

where ni is the number density of ions, F is the fraction of ions in the ground

state of the transition (which, for the case of the y line is the He-like ground

state 1s2 1S0) and σ0 is the cross section for photon absorption at line center.

For a line profile φ(x), the cross-section is

σ0 =
πe2

mec
fφ(0), (30)

where f is the oscillator strength of the transition, in this case the y line. The
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ion density ni can be related to the total number of atoms in the plasma, N as

ni =
N

V
=

N

πβR3
. (31)

The quantity N , in turn, can be expressed as the initial mass of the target

divided by the atomic mass, N = M/ma so that

ni =
M

maπβR3
. (32)

Combining equations 29 and 32, the following expression for the ion density

is obtained

ni =

(
maπβ

M

)1/2(
τ0
Fσ0

)3/2

. (33)

Equation 33 allows us to calculate the ion density of a plasma from its aspect

ratio β and the optical depth of the y line at line center τ0. As we have shown

in equations 27 and 28, these two parameters can be calculated from the ratio

of fluxes between the w and the y line for Face-on and Side-on views.

5. A particular example

To illustrate this method, we have built a computational model using the

radiation transport code CRETIN. The characteristics of this model have been

motivated by recent experiments at the OMEGA Laser Facility [57] which aim to

benchmark the optical depth effects on the Heα complex of cylindrical plasmas

[58]. Our model consists of a titanium plasma cylinder, with a radius R =

200 µm and an aspect ratio β = 0.8, thus fixing the height to H = 160 µm. The

temperature of the plasma is 1500 eV and the plasma is in steady state. We

fixed the ion density to be ni = 2.0 × 1019 cm−3. The total number of ions is

then N = V ni = 4.02 × 1014. The Side-on and Face-on spectra obtained from

the simulation are shown in figure 5a, where the positions of the w and y lines

are indicated.

As the temperature of the cylinder is known in the simulation (in practice

it can be determined self-consistently from spectroscopic measurements, as dis-

cussed in section 1), the Li-like structure can be modeled and subtracted from
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Figure 5: Spectra of the He-like complex for the example case. These correspond to the

Face-on and Side-on flux of a Ti cylinder with an aspect ratio β = 0.8 an ion density of

ni = 2 × 1019 cm−3 at T = 1500 eV. Figure 5a shows the total flux including He-like and

Li-like satellites. The Li-like contribution is shown for both cases as the dotted lines. In figure

5b, the satellite contribution has been subtracted and the He-like contribution is shown. We

find only flux from the w and y lines, which can be fitted to two Gaussians to apply to process

described in this document.

the data. This can be done because the Li-like satellite flux is optically thin and

therefore, its spectral distribution is density-independent, and its magnitude is

independent of the viewing orientation in the conditions of interest. The Li-like

structure is shown as the black dotted line in figure 5a. We then obtain the

He-like flux for each view, from which the w and y lines can be extracted. The

He-like lines are shown in figure 5b.

In this particular example, the flux ratios obtained are:

Fw|face
Fw|side

= 2.21, (34)

Fw|face
Fy|face

= 2.68, (35)

Fw|side
Fy|side

= 1.50. (36)

15



We now solve equations 27 and 28 self-consistently with an iterative process.

The results are β = 0.80 and τ0 = 0.61.

From the plasma temperature (1500 eV), we can calculate the cross section

for photon scattering at the center of the y line, obtaining σ0 = 1.70×10−18 cm2.

The fraction F , of ions in the He-like ground, that is, the product of the He-like

ionic fraction and the fractional ground level population, can be estimated from

the known temperature and calculations. Its value is 0.89 at this temperature,

and therefore, the ion density calculated from equation 33 is

ni = 2.0× 1019 cm−3. (37)

In a real experiment, there will be experimental errors in the flux of the w

and y lines in both directions, which will affect the measurement of the w/y

ratio. In addition, as we can see in figure 5a, the apparent flux of the He

lines has an important contribution from the Li-like satellites that needs to be

removed with a model, introducing the potential for additional errors in the line

flux. These sources of error will cause the measured w/y ratios to differ from

the theoretical ones, and will lead to an error on the calculated ion density.

To study the sensitivity of this method to these errors, we allowed the flux

from each line in both views to vary randomly within a 10% of the value from

the simulations. This relatively standard error is estimated assuming that the

temperature of the plasma is known from other spectroscopic measurements,

and that the plasma is uniform. In case the temperature is not known, or there

are non-uniformities in the plasma, the shape of the Li-like satellites will have

a greater uncertainty and therefore, the error will be more important (there

would be additional problems, as the cross-section for photon absorption also

depends on the temperature). With this error included in the calculation, the

ion density obtained is

ni = 2.0± 0.4× 1019 cm−3. (38)

As the simulation had a fixed ion density value of ni = 2.0 × 1019 cm−3,

there is reasonable agreement with the obtained result.
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Figure 6: (6a) Frustum geometry. (6b) Ion density obtained applying this method to CRETIN

simulations for a frustum as a function of the ratio between the radii of its bases. The point

with R2/R1 = 1 corresponds to the cylindrical case shown in section 5.

6. Conclusions and future work

We have introduced a novel method to obtain the ion density in a cylindri-

cal HED plasma. This method only requires spectroscopic measurements of the

Heα region of the spectrum and can be complemented with different spectro-

scopic measurements of the plasma temperature. This is a general method for

HED cylindrical plasmas. In particular, it is applicable to dot spectroscopy ex-

periments in ICF conditions to diagnose the plasma inside the hohlraum, where

the other commonly used diagnostics are difficult to yield.

The dependence of this method on the geometry of the plasma being cylin-

drical, although important, is not critical. If the plasma expands in solid angle

into a frustum (figure 6a), therefore losing its cylindrical geometry, then the

results obtained with this method start differing from the real ion density. The

difference with the real value increases with the ratio R2/R1, where R1 and R2

are the radii of the minor and major bases of the frustum respectively. CRETIN

simulations show that for values of this ratio up to 1.50, the density obtained

with this method is in agreement with the correct value within a factor of 2,

as figure 6 shows. Hence for small deviations of the cylindrical geometry this

method can still be applied.
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Additional experiments at the OMEGA Laser Facility using mid-Z dots to

benchmark the optical depth effects on the spectra as a function of the plasma

geometry will provide an experimental platform to benchmark this method [58]

with a multi-species plasma. We believe that this method could be used in

ICF-related Dot Spectroscopy experiments and HED plasmas.
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