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Objective ADHD diagnosis using Convolutional
Neural Networks over Daily-Life Activity Records

Patricia Amado-Caballero, Pablo Casaseca-de-la-Higuera, Susana Alberola-López, Jesús María
Andrés-de-Llano, José Antonio López Villalobos, José Ramón Garmendia-Leiza, Carlos Alberola-López

Abstract— Attention Deficit/Hyperactivity Disorder
(ADHD) is the most common neurobehavioral disorder
in children and adolescents. However, its etiology is still
unknown, and this hinders the existence of reliable, fast
and inexpensive standard diagnostic methods. Objective:
This paper proposes an end-to-end methodology for
automatic diagnosis of the combined type of ADHD.
Methods: Diagnosis is based on the analysis of 24 hour-
long activity records using Convolutional Neural Networks
to classify spectrograms of activity windows. Results: We
achieve up to 97.62% average sensitivity, 99.52% specificity
and AUC values over 99%. Overall, our figures overcome
those obtained by actigraphy-based methods reported in
the literature as well as others based on more expensive
(and not so convenient) acquisition methods. Conclusion:
These results reinforce the idea that combining deep
learning techniques together with actimetry can lead to a
robust and efficient system for objective ADHD diagnosis.
Significance: Reliance on simple activity measurements
leads to an inexpensive and non-invasive objective
diagnostic method, which can be easily implemented with
daily devices.

Index Terms— ADHD, actigraphy, Deep Learning, Convo-
lutional Neural Network (CNN)

I. INTRODUCTION

ATTENTION-deficit/hyperactivity disorder (ADHD) is one
of the most common neurobehavioral disorder in school

age population [1]. In this cohort, its prevalence is about
7.2% [2] depending on the diagnostic criteria and the studied
population (for instance, in Spain prevalence is 6.8% [3]).
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This diagnostic protocol is currently defined in the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5 [4]) .
However, even though the treatment of ADHD is well-defined
for the known types —inattentive, hyperactive-impulsivity and
combined— it’s not easy either to find a specific etiology or
to define an objective diagnostic method.

ADHD is a disorder defined by a persistent pattern of
inattention and/or hyperactivity-impulsivity, which is more
frequent and severe than that usually observed in subjects of
a similar level of development [4]. Deciding if this pattern
actually constitutes an anomaly with respect to the normal
development of a child is a task that falls entirely on the
observations of parents and teachers as well as on the
interpretation that specialists make out of these observations;
actually results may differ whether parents, teachers or both
are taken as source of information [5].

In light of the above, there is need of reliable and objective
diagnostic procedures for clinical evaluation of ADHD. Over
the years, some studies have tried to find associations between
physical signals and the disorder. MRI (Magnetic resonance
imaging) is frequently used for mental disorders; in the
context of our problem, different studies used this technique
to obtain images of the brain to detect differences between
patients diagnosed with ADHD and control patients. The use
of volumetric images of the brain [6] or the study of iron
levels [7] are two examples of attemtps to make diagnosis
objective. In some studies on ADHD [8] functional magnetic
resonance (fMRI) has also been used to study active areas
of the brain in older people. Differences between healthy
and ADHD patients have also been observed by means of
EEG (electroencephalography) [9]–[12]. However, despite the
efficacy of these methods, both their high costs as well as the
very nature of the pathology question their actual reliability as
effective methods [13].

Some investigations support the hypothesis of the relationship
between ADHD and sleep cycles and present this test as
a possible objective diagnostic method for this pathology
[14] . These studies have used Polysomnography (PSG) EEG,
electrooculography (EOG), electromiography (EMG), electro-
cardiography (ECG), respiratory signals and pulsioximetry
(POX) [15], [16]. Actigraphy measurements have also been
reported as a useful method for the diagnostic of ADHD [17].

Nowadays, hardware advances, mainly with the use of GPUs
and parallel calculations, have triggered a paradigm shift
in scientific research, making it possible to create artificial
intelligence systems that process and learn from vast amounts
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of data (i.e., the deep learning paradigm). In recent works,
deep learning algorithms have been used for feature extraction
in sleep patterns studies [18]–[20]. Some authors have used
deep learning with the data obtained from accelerometers in
order to find patterns in ADHD children [21].

The purpose of this paper is to design, train and deploy a
highly accurate expert system based on a Convolutional Neural
Network (CNN) that is able to diagnose combined ADHD out
of the a 24-hour-long actigraphic record of a child in a regular
school day. This is an affordable and non-invasive measure that
does not interfere with the child’s daily life. As our forthcoming
analysis of the state of the art reveals (see section II), most
of the attempts to create expert systems are carried out in
controlled experiments (including [21]) or, at least, describe
targeted experiences with somewhat limited patient cohorts.

The paper is structured as follows; section II describes
the main contributions in the field; they are schematically
summarized in Tables I–III for quick reference. Section III
describes the materials employed and the methodology applied.
Results are shown in section IV, and are then discussed and
compared with previous proposals in section V. Concluding
remarks are summarized in section VI.

II. STATE OF ART

Depending on the source of information, ADHD diagnosis
could be subjective or objective. It typically has been diag-
nosed from parental and teacher reports as well as medical
questionaries, i.e., subjectively. Over the years, several studies
have proposed different diagnosis methods.

As for the the methodologies of interest in this paper,
attempts for objective diagnostic procedures can be classified
according to:
• Non-actimetric methods: They propose the use of MRI and

EEG for diagnosis. In the first case, several studies have
achieved positive results in the classification of subtypes
of ADHD. In the case of EEG, promising results have
been obtained regarding the differentiation of patients. As
previously stated, they are expensive methods and although
interesting results have been reported, the nature of the
pathology questions whether they are a cost-effective
diagnostic option.

• Actimetric methods: Their main difference with respect to
other methods is their lower cost. Described results show
effectiveness since fairly good results are obtained.

Tables I–III present a summary of the most relevant —to the
best of our knowledge— ADHD studies in the recent past
(since 2011). Earlier contributions can be found in [17]. Table
I focuses on non-actimetric studies whereas Tables II and
III respectively focus on rhythmometry and measurements of
activity. The tables have been structured in terms of Materials,
Methods and Results & Conclusions in an attempt to make
them self-contained. Results are those reported by the authors
in the cited papers. In what follows, we focus on those studies
that use different types of machine learning/deep learning
algorithms.

The study presented by Riaz et al. [22] used a Support Vector
Machine (SVM) to classify data obtained from the repository

NeuroBureau ADHD-200 [35] . These data consist of a specific
type of fMRI known as Resting State fMRI (rsfMRI or R-
fMRI) that evaluates regional interactions occurring when an
explicit task is not being performed. The achieved classification
accuracy was 0.818. Oztoprak et al. [12] analyzed ERP (Event-
related potentials) from EEG signals during a Stroop-type
task to identify ADHD patients. They employed a SVM
classifier with recursive feature elimination fed with high
resolution time-frequency domain features. They achieved
100% accuracy using a test group of 10 subjects, whereas the
overall accuracy over the train set was 0.995. Sun et al. [23]
used radiomics for ADHD diagnosis using MRI. This method
relies on the extraction of a large amount of features from
medical imaging, to obtain useful information for diagnosis.
The achieved accuracy was 0.737 using cross-validation with
random forests.

Relevant publications using machine learning over actimetry
can also be mentioned. The study by Muñoz et al. [21] used
two accelerometers placed on the wrist and ankle respectively.
Activity data along 6 school hours in a group of small children
(22 patients, 11 ADHD and 11 healthy) was analysed using
a CNN. The obtained accuracy from the wrist device was
0.8750, whereas the one from the ankle was 0.9375. Sensitivity
values were 0.6 and 0.8, respectively. In [32], Mahony et
al. used gyroscopes for motion characterization as well as
accelerometers. Classification of the best performing features
using SVMs, yielded 0.9512 accuracy, 0.9444 sensitivity, and
0.9565 specificity.

According to this analysis, our proposal can be grounded
on these three main ideas:
• Actimetry seems more convenient for the study of ADHD,

since it guarantees an objective and non-intrusive diag-
nostic method, of lower cost and more comfortable for
the patient.

• The methods based on actimetry in recent years are pre-
senting results comparable to those presented in previous
studies using MRI and EEG.

• Previous results obtained with actigraphy show good
figures but cohorts seem somewhat limited and/or ex-
periments require a controlled scenario.

III. MATERIALS AND METHODS

A. Materials

Our subject group includes children with ages between 6
and 15 years who were monitored in regular daily activity
for a period of approximately 24 hours. The group was
composed of 148 subjects, of which 73 had been diagnosed
as ADHD combined type according to the DSM-5 criteria.
None of them had taken medication at the time of the study.
The other 75 subjects are healthy subjects who make up
the control group. Hereinafter, we will denote by cases the
group of ADHD patients and by controls the group of healthy
subjects. The study was carried out in accordance with the
Declaration of Helsinki and was approved by the Área de
Salud de Palencia Research Ethics Committee (REC number:
15/SS/0234). Subjects provided their informed consent before
the recordings.



3

TABLE I: State of the art on ADHD assessment based on non-actimetric sources. Results are those reported by the authors.
Medical Imaging

Ref. Materials: Methods: Results and Conclusion:
[22] NeuroBureau ADHD-200 Resting State fMRI (rsfMRI o R-fMRI) Accuracy = 0.818, Sensitivity=1, Specificity = 0.75

[?], [23] 83 paired children by sex and age di-
agnosed as non-treatment (40 with in-
natentive ADHD and 43 with combined
ADHD) and 87 control subjects

Anatomical MRI and diffusion tensor Images No overall differences were found between the children with ADHD
and the control subjects in the total brain volume or in the total volume
of gray and white matter. Accuracy = 0.737 (discrimination of patients)
and Accuracy = 0.801 (different subtypes)

Biomedical Signals

Ref. Materials: Methods: Results and Conclusion:
[12] Between 37 and 44 children in ADHD

group and 32 and 38 children on healthy
group.

ERP measurements in the EEG signals during the
performance of a Stroop type task.

Accuracy = 0.995 (training set) Accuracy = 1 (10 test subjects)

TABLE II: State of the art on ADHD assessment through circadian activity rhythm. Results are those reported by the authors.
Rythmometry

Ref. Materials: Methods: Results and Conclusion:
[24] 9 normally developed children aged 6–

11 years old registered during 6 days
with actigraphy.

Hierarchical multivariate regression between actig-
raphy registry and Strength and Difficulties Ques-
tionaire (SDQ) to evaluate the effect of sleep on
SDQ.

Sleep accounts for 18% of the variance in conduct problems. Only
the actual time of sleep is significant within the model (p < 0.05).
Children that sleep 1 hour less than the average, are in risk of
behavioral troubles.

[25] 37 children affected of combined kind of
ADHD were registered with actigraphy
during 3 days.

Comparison between actigraphy measures and re-
sults of the ADHD–RS (ADHD Rating Scale),
filled by parents during 6 months.

The peak time of the COSINOR method correlates with inattention
symptoms; specifically ρ = 0.349, with significance p = 0.057.

[26] 10 adults diagnosed of ADHD (com-
bined and intent subtypes) treated with
Methylphenidate (MPD). 1st week with-
out MFD, and 2nd, 3rd and 4th week
with increasing dose of MPD.

Actigraphy registries were recorded for 4 weeks
both at daytime and at night. Saliva melatonin
was also measured every day. Patients also filled
a ADHD–RS questionary. Authors do not specify
what actigraphic variables are measured.

There is a correlation between MFD dose and melatonin level in saliva
and results in ADHD–RS, however these results were not found for the
actigraphic analysis. Author states that the use of different actigraphy
variables justify the discrepancy between this word and literature.

Actigraphic signals were acquired with the ActiGraph
GT3x device [36], placed on the dominant wrist of each
patient. This device measures the acceleration on each of
the three Cartesian axes, registering a sample every second
(operating frequency is fs = 1 Hz). The aggregate signal
r = ||(x, y, z)|| =

√
(x2 + y2 + z2) will be the measurement

used as the input signal, i.e., a 1D signal is used per patient.
The actual measurement is a count [37], as provided by the
commercial device.

B. Methods

We process the signals following the procedure shown in
Fig. 1. Specifically, we adjust the number of samples up to a
maximum of 24 hours per patient; taking into account that the
actimeter worked at fs = 1 Hz, this gives rise to a maximum
of 86400 samples. Then, we divide the signal into two different
subsets based on the activity periods (day time and night time
activities) and they will feed two independent networks; we
aim to identify differences between cases and controls on the
basis of differences in both activity periods [38].

For each activity subset, we split the signal in windows with
the same size. The window length is set to detect differences in
more impulsive actions (i.e., with a short duration) and in more
steady patterns (i.e., with a longer duration), following [17]; an
in-between behaviour will also be inspected. Specifically, for
each patient we will analyze windows of short-term activity
(60 seconds), medium-term activity (5 minutes) and long-term
activity (30 minutes). We have also used 66.67% window
overlap in each of the cases.

1) Preprocessing: CNNs are especially efficient in the
detection of patterns in images so 1D signals have to be

Aggregate

Signal

Samples of

24 hours

Max/patient

Day/Night

activity

Day subset

Night

subset

Fig. 1: Stages of the adequacy of the records of information, prior to
preprocessing

appropriately conditioned to feed those networks. Specifically,
the use of spectrograms as input data to a CNN has been shown
to be effective for signals obtained through an actigraphic signal
sensor [39]. We adhere to this approach, with the following
specificities:

• Data normalization: Each data set has been normalized
by dividing by the maximum value encountered in the
registry.

• Identification of low activity windows: Visual inspection of
the signal record shows the presence of [in]activity periods
in which the actimeter registers null or too small values;
these low activity windows could bias the network or give
rise to inefficient training. So, discarding them is advisable.
To this end, we studied the power distribution within
the training data and set a threshold of minimum power
per window to avoid the abnormally high bins typically
located on the left end of the distributions. Windows
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TABLE III: State of the art on ADHD assessment through activity measurement. Results are those reported by the authors.
Free Activity 1/2: 24 hours

Ref. Materials: Methods: Results and Conclusion:
[17] 31 children affected of ADHD (com-

bined subtype) and 32 healthy children
aged 6 years old registered during 24
hours with actigraphy.

Activity is analyzed through nonlinear methods:
central tendency measure and symbolic dynamics.
Features resulting from this analysis are combined
to construct a classifier.

Best classifier reaches an accuracy level of 0.9048 (sensitivity =
0.9677, specificity = 0.8438, AUC≈0.95).

[27] 31 children affected of ADHD (com-
bined subtype) and 32 healthy children
aged 6 years old registered during 24
hours with actigraphy.

Activity is analyzed through a the central tendency
measurement for vector signals. Features resulting
from this analysis are combined to construct a
classifier.

Best classifier reaches an accuracy level of 0.9206 (sensitivity =
0.9355, specificity = 0.9062, AUC=0.9516).

Free Activity 2/2: Sleep Quality Assessment

Ref. Materials: Methods: Results and Conclusion:
[28] 26 patients affected of ADHD and 56

normally developed children aged 7–11
years old were registered during 5 days
with actigraphy.

Actigraphy sleep report and Multiple Sleep La-
tency Tests (MSLT) were obtained to assess both
the daytime and nighttime sleep pattern.

Longer sleep latency and longer sleep restlessness (both measured
through actigraphy) were positively correlated to longer mean sleep
latency at the MSLT.

[29] 24 patients affected of ADHD and in-
somnia aged 19–to–65 years old were
monitored through actigraphy for two
weeks.

Both sleep quality and circadian rhythm were reg-
istered through actigraphy. A backward stepwise
regression was carried out to identify the relation-
ship between the parameters of both analysis.

ADHD symptoms correlate with delayed sleep time and increased
sleepiness (p < 0.05).

[30] 41 children affected of ADHD (21 of
inattentive subtype, 2 impulsive, and 18
combined), aged 6–to–13 years old, and
41 aged–paired controls (±6 months),
with and without psychiatric comorbidi-
ties.

Sleep quality assessment through actigraphy. Only ADHD patients affected of psychiatric comorbidities showed
statistically significant differences with respect to the control group.
Longest sleep latency (p < 0.001), smaller total sleep time (p <
0.001) and sleep efficiency (p < 0.01), higher nocturnal motor
activity (p < 0.001) and wake after sleep onset (p ' 0.05).

Activity Performing a Specific Task

Ref. Materials: Methods: Results and Conclusion:
[31] 20 ADHD patients and 15 healthy con-

trols aged 18–24 years old.
Motor activity is evaluated when patients are per-
forming different tasks demanding working mem-
ory.

ADHD patients have more movement than controls when they are
developing tasks demanding working memory (p = 0.034).

[21] 22 patients, 11 ADHD and 11 healthy
subjects

Two accelerometers on the wrist and ankle re-
spectively to analyse data obtained in 6 school
hours and a CNN to classify 5s-windows of
2D (horizontal and vertical) activity patterns as
ADHD or controls. Final diagnosis is obtained by
a combined likelihood measure obtained from the
CNN output.

Accuracy = 0.8570 , Sensitivity = 0.6 and Specificity = 1 for the wrist
and Accuracy= 0.937, Sensitivity =0.8 y Specificity=1 for the ankle.
No specifics on the differences between ADHD and controls activity
patterns were provided.

[32] 19 ADHD patients and 24 healthy con-
trols aged 6–11 years old.

Activity of subjects were monitored through two
inertial movement sensors placed on waist and the
non–dominant ankle during the visit to the psychi-
atrist (1 hour approximately). A set of features
reported in literature were extracted in several
scenarios

Best results are achieved for a SVM–based classifier with 10 features;
accuracy = 95.12%, sensitivity = 94.44% and specificity = 96.65%.

[33] 11 ADHD (combined kind) patients and
11 healthy controls between the ages of
8 and 12 years old. Actigraphy device
placed on their non dominant wrist and
ankles.

Activity was measured while patients were per-
forming several tasks demanding attention and
control.

ADHD patients move significantly more than healthy controls for both
kinds of tasks. No differences in activity level were observed between
the inhibition and noninhibition experimental tasks for either group.

[34] 5 ADHD patients and 11 healthy con-
trols aged 3–6 years old. Patients were
recorded in their sleep through a video
camera; in addition, PSG registries were
simultaneously acquired to determine
the sleep–stage at each moment.

Automatic analysis of video was performed to
assess the gross body moments to further extract
the gross body movement rate and the rest period.

ADHD patients move more during every stage of sleep, specially
during the REM stage.

below this threshold were set aside. The threshold has
been empirically set to 0.022, and it is common for both
day and night time as well as for short, medium and long
term activity windows.

• Generation of spectrograms: We pursue to create spectro-
gram images that are visually smooth, have no discontinu-
ities and allow for a correct visualization of the areas with
frequency peaks [39]. In our particular case, we will have
a unique CNN architecture for the three activity terms (as
described in Section III-B.2), which means that all the
input images will have the same size regardless of the
size of the activity term (short/medium/long) and period
(day/night). Specifically, the spectrogram will consist of a
129× 55 matrix. Table IV shows the parameters used; we

create a matrix of V rows and k columns; columns are
created out of the signal points within a sliding window
of length V that overlaps with the previous window in O
points; hence, window shift is V −O. For this parameter
choice k = L−V

V−O + 1 = 55. Then the spectrogram
function in Matlab [40] performs a DFT with length 129
on each column.

Signal length(L) Sliding window Size (V ) Overlap size (O)
60 6 5

300 30 25
1800 180 150

TABLE IV: Window parameters selection in seconds (and, equivalently,
samples) for the spectrogram image generation.
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2) CNN Architecture: The network used in the paper is
depicted in Fig. 2; it consists of 3 convolutional layers with
32, 64 and 128 filters respectively, all followed by an activation
layer (ReLU) and a normalization layer (BatchNormalization);
the network also contains two pooling layers, a fully-Connected
layer and a softmax layer. This architecture was achieved
after an empirical validation stage; we started with a single
convolutional layer and then the network was trained and
validated. The process was repeated with an increasing number
of convolutional layers until no significant improvements were
obtained. A similar methodology was followed to select both
the number and the dimensionality of the filters, where an
appropriate balance between training duration and performance
was sought. With this methodology, we came up with a solution
that has also been reported by other authors as their design
choice [41]–[44].

Random cross validation with ten different folds was used
for training. Training was performed in two different ways (see
Fig. 3):
• Training for each activity term: We have trained separately

with images corresponding to the periods of short, medium
and long-term activity, as previously defined.

• Training according to activity period: we have indepen-
dently trained the network to find patterns in the signals
pertaining to night or daytime activity.

Consequently, we have a unique network architecture but
we end up with 6 different parameter settings (see Fig. 3). In
each case, 70% of the patients constitute the training set and
the rest the Test Set. Experiments have been run in Matlab,
with the default parameters for the weights and learning rate,
and 75 epochs in each training.

3) Final Classifier: The network in Fig. 2 is a binary
classifier (Case/Control) for each input image (activity window).
However, we pursue the overall classification of each patient,
the record of which consists of large number of such images
(windows). The final hard decision is accomplished as follows
(see schemeatic of this pipeline in Fig. 4.:
• Select an activity term (short/medium/long). For this term,

feed the network trained for day time activity with all
the images that result from that period, following the
procedure described in section III-B.2. Proceed similarly
with the night activity subset.

• Calculate the fraction of spectrograms classified as Control
and Case in the daytime interval. Repeat this calculation
for the night time interval.

• For each patient, these two figures are used as the input
to a two-dimensional binary classifier. This is where the
final hard decision is made. To this end, we use a support
vector machine (SVM) classifier with radial basis function
(RBF) [45].

• As for performance evaluation, we repeat the same process
in the 10 folds used in the training and for the different
sets of window sizes.

IV. RESULTS

In this section we first show some illustrative results on
spectrograms. Then, we show classification performance figures

as well as scatter diagrams of the samples used and its
associated labels. This second part is twofold; specifically,
we first report results with a classifier built on a 70 − 30%
train/test proportion. Then, and with the aim of checking
classifier robustness, we repeat the experiments with a 20−80%
train/test proportion.

A. Spectrograms
Following the parameter selection shown in table IV we give

rise to the different images used for the CNN input. Figs. 5,
6 and 7 respectively show examples of short-term, medium-
term, and long-term spectrograms for one ADHD patient and
one control. A high variability in the temporal patterns can
be observed in all figures, since this depends on the specific
activity the subject is carrying out on a particular moment.
Regarding frequency patterns there is also high variability in
the spectral content at different time stamps, both for the patient
and control. We intend to illustrate with this particular example
the difficulty of identifying a group-specific spectral signature
by visual inspection. This highlights the need of a powerful
feature extractor, such as our CNN, to automatically identify
appropriate signatures so that differences between ADHD and
controls can be obtained.

B. Global Patient Classification
Table V shows the performance of the classification system

in terms of the following figures of merit, which have been
calculated from the True and False positive (TP and FP) and
negative (TN and FN) rates: 1) Upper part (from left to right)1

⇒ accuracy, sensitivity, specificity, and area under the Receiver
Operating Characteristic –ROC– curve (AUC); 2) Lower part
(from left to right)2 ⇒ positive and negative predictive values
(PPV and NPV) and likelihood ratios (LR+ and LR-). An
ADHD patient correctly diagnosed as such is considered a
TP whereas a control diagnosed as ADHD is a FP. A FN in
classification is obtained for a non-diagnosed ADHD patient
whereas a correctly identified control yields a TN.

To compare the performance of our spectrogram-based 2D
CNN (CNN 2D-3 in Table V) with other approaches only
relying on time representations of the signal, we repeated the
experiments with two 1-dimensional CNN variants. The first
one (CNN 1D-3), keeps the layer structure of the 2D CNN
proposed (see Fig. 2) but with 1D temporal windows as inputs.
The second one (CNN 1D-6) presents an increased complexity
by duplicating the number of convolutional layers in CNN 1D-
3. The comparative results are also shown in Table V, where a
higher performance of the 2D CNN (CNN 2D-3 in the table)
can be observed for all figures of merit.

To gain additional insight into the classification regions
defined by the binary two-dimensional classifier, we show in
Figs. 8 through 10 scatter diagrams along the 10 folds for the
short through long activity terms. The scatter diagrams represent
the percentage of windows classified as NON-ADHD for day

1Sensitivity=TP/(TP+FN), Specificity=TN/(TN+FP),
Accuracy=(TP+TN)/(TP+TN+FP+FN), for AUC see [46].

2PPV=TP/(TP+FP), NPV=TN/(TN+FN),
LR+=TP/FP, LR-=TN/FN [47].
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Fig. 2: Structure of the Convolutional network used for training

TABLE V: Results obtained for the global classifier (70 − 30%, train/test) for the proposed 2D CNN with inputs in the time-frequency
domain (CNN 2D-3). A comparison is provided with two 1D CNNs in the time domain: CNN 1D-3 has the same number of convolutional
layers (3); CNN 1D-6 has 6 convolutional layers. Results show the mean and standard deviation (mean ± std) of the 10 folds described
in Section III-B.3. For LR+, as there is a significant number of folds with 100 % specificity (yielding infinite LR+), minimum values are
presented as a worst case scenario. Best results are boldfaced.

Window
Size

CNN
Type Acc. Sens. Spec. AUC

CNN 2D-3 0.9643± 0.0302 0.9429 ± 0.0514 0.9857± 0.023 0.9980± 0.029
1800 s CNN 1D-3 0.5571± 0.0999 0.3762 ± 0.2158 0.7381± 0.1128 0.5755± 0.1359

CNN 1D-6 0.5595± 0.0834 0.5143 ± 0.203 0.6048± 0.2177 0.6002± 0.1157
CNN 2D-3 0.9857 ± 0.0166 0.9762± 0.0337 0.9952± 0.0151 0.9993± 0.0022

300 s CNN 1D-3 0.8476 ± 0.1072 0.8619± 0.1132 0.8333± 0.1669 0.9184± 0.1006
CNN 1D-6 0.9286 ± 0.0745 0.9286± 0.1476 0.9286± 0.1059 0.9971± 0.0041
CNN 2D-3 0.9691 ± 0.0252 0.9524± 0.0502 0.9857± 0.023 0.9918 ± 0.0117

60 s CNN 1D-3 0.8476 ± 0.1072 0.8619± 0.1132 0.8333± 0.1669 0.8317 ± 0.2001
CNN 1D-6 0.9167 ± 0.0393 0.9048± 0.055 0.9286± 0.0683 0.9619 ± 0.0321

Window
Size

CNN
Type PPV NPV LR+ LR-

CNN 2D-3 0.9854± 0.0235 0.9474± 0.0483 18 0.0580 ± 0.055
1800 s CNN 1D-3 0.5727± 0.1666 0.5532± 0.0825 0.4286 0.8451 ± 0.2811

CNN 1D-6 0.5834 ± 0.1253 0.5596 ± 0.0851 1.3012 0.8030 ± 0.2563
CNN 2D-3 0.9955± 0.0144 0.9777± 0.0312 21 0.0238 ± 0.033

300 s CNN 1D-3 0.8532 ± 0.1293 0.8614 ± 0.1101 1.5455 0.1657 ± 0.1571
CNN 1D-6 0.9405 ± 0.0836 0.9456 ± 0.101 13 0.0768 ± 0.1476
CNN 2D-3 0.9859± 0.0227 0.9560 ± 0.0448 20 0.0483 ± 0.050

60 s CNN 1D-3 0.8923 ± 0.1254 0.7905 ± 0.144 1.3548 0.2152 ± 0.1966
CNN 1D-6 0.9311 ± 0.0596 0.9094 ± 0.0482 12.667 0.1025 ± 0.0577

Activity

Periods

60s-300s-

1800s

Training

Images

129x55

DAY

NIGHT

CNN 1

CNN 2

ADHD

NON-ADHD

ADHD

NON-ADHD

Fig. 3: Training process of the diagnostic system

(x–axis) and night (y–axis) periods, so cases are expected to
show smaller values than controls. These were then used as
inputs to the final SVM for patient diagnosis (note that the %

of ADHD windows could have been used indistinctively as it
can be directly obtained from the % of NON-ADHD windows,
and the point clouds would have exchanged positions). Colors
in the samples indicate whether the classification was correct or
incorrect for that specific patient. The number of misclassified
patients is significantly low, especially when 300s windows are
employed (see Fig. 9). Specificity in this case is particularly
high, with only one false positive (control identified as ADHD).
The number of false negatives is also low (only 5 non-diagnosed
patients).
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Training
ADHD

NON-ADHD

ADHD

NON-ADHD

DAY

NIGHT

No.

ADHD

No.

NON-ADHD

No.

ADHD

No.

NON-ADHD

%

CASE

% CONTROL

%

CASE

% CONTROL

SVM

Fig. 4: Training Process for global classification

C. Classifier for small training set

When it comes to training a CNN, one of the factors to take
into account is network robustness; a robust system should be
able to find patterns in the training set even though it is smaller
than the test set. To evaluate how the network behaves under
these circumstances, table VI shows performance results for
10 folds with a splitting of 20% - 80% respectively for training
and testing.

For this train/test proportion we also show the corresponding
scatter diagrams associated to the 10 folds (Figs. 11 through 13
for short through long terms, respectively) . Clearly, the figures
show a higher overlap degree with respect to the previous cases,
but a high degree of separability between the two point clouds
still remains.

V. DISCUSSION

Results in Section IV suggest that actigraphy is a useful
tool for ADHD diagnosis. Specifically, table V reveals that
the cascade of a CNN and a SVM classifier gives rise to
high classification figures for this application domain, also
providing strong evidence from a medical point of view [47].
Medium-term activity windows have provided better results
than the other two, and this leads us to interpret that medium
term activities may be more versatile to find discriminative
patterns for this problem. In addition, the results obtained using
a training set of 20% of the whole dataset instead of 70%,
reflects that the system is robust and efficient. In terms of
accuracy we have reached figures on and above 0.90 for the
20% training case, as table VI shows; this loss of accuracy is
approximately 8.59%, which does not seem excessive despite
the small data fraction used for training; the values of LR+/LR-
still provide high evidence on the suitability of the test.

Regarding the decision criterion, Figs. 8 and 13 provide
interesting insight on how the classifier works; specifically, the
boundary seems more directly related to the percentage value
of day-time activity as opposed to that at night time. Clearly
both activity percentages play a role, so a two dimensional
classifier will work better than its one dimensional counterpart
but,as indicated, day time activity seems a more discriminative
dimension.

In Section II we have enumerated different studies that have
faced the problem of ADHD diagnosis. Specifically, in [17] a
classical pattern recognition approach was followed, obtaining
0.8571 accuracy, 0.9500 sensitivity, and 0.7727 a specificity.

According to our results, we can state that the method here
proposed has better figures, getting an accuracy, to sum up,
equal to 0.9857. These figures are obtained, in addition, with a
larger sample, so our results are better as well as more robust
than those we reported a few years ago.

Muñoz et al. report in their study [21] the use of CNN
with actigraphs; however, shorter exam times have been tried,
namely, only 6 school hours have been analyzed. In the case
of Mahony et al [32] inertial measurement units (IMUs) with a
SVM are used (details of both studies are summarized in table
III). Comparing with our method, it should be noted that our
study cohort is larger than the one used in both; in addition,
our approach does not pose any restriction in children activity
since our measures are taken in an average school day with
routine activity while in [32] the authors propose a laboratory
experiment. Moreover, we have obtained better accuracy figures
than those reported in these references, as pointed out in Table
V (recall from section II that accuracies reported in those
references were 0.9375 and 0.9512 respectively); we stress
that we do not need any sort of controlled environment and/or
specifically designed experiment. We therefore avoid any bias
caused by the experiment itself or, to say the least, biases are
greatly diminished with our measurement procedure.

One of the main characteristics of using deep learning
for any application and, in particular, for classification of
spectrograms, is the implicit feature extraction and selection
procure accomplished during the training stage; this has the
direct consequence that the classifier is not limited to the
features used as input by the designer —which are, in turn,
selected after a somewhat tedious procedure [17]— but the
classifier extracts and selects features on the fly, leading to an
overall better performance since the mentioned limitation is
avoided. The other side of the coin is the clinical interpretation
of the activation of the network layers, which is not at all
obvious. This is a path that should be explored in future works.
In addition, the comparison in Table V has revealed that 2D
processing in the Fourier domain yields better results than
performing 1D processing directly in the signal domain for a
similar CNN architecture, and even for a more complex one
doubling the number of convolutional layers. The number of
trainable parameters in this latter 1D CNN was approximately
50% that of the proposed spectrogram-based 2D CNN, but
training such network required a significantly higher amount
of time (approximately 4x). It may be arguable that a deeper
1D CNN network may reach comparable results in the signal
domain as long as the number of free parameters is comparable
as well. However, this approach does not seem worth taking
considering the required training time, on one hand, and the
low computational cost of periodogram calculation, on the
other.

Regarding other data acquisition techniques, MRI and EEG
have traditionally been used in the search for an objective
diagnosis procedure of ADHD. Recent studies that merge the
use of these techniques and SVM classifiers have obtained
interesting results. These methods, however, are accompanied
with a high complexity to obtain the data, not to mention their
associated costs. Our approach, on the other side, obtained
high performance figures with an affordable wristwatch. We
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ADHD CONTROL

Fig. 5: Spectrograms obtained for an ADHD patient and a control (60s window).

ADHD CONTROL

Fig. 6: Spectrograms obtained for an ADHD patient and a control (300s window).

ADHD CONTROL

Fig. 7: Spectrograms obtained for an ADHD patient and a control (1800s window).

TABLE VI: Results obtained for the global classifier (20− 80%, train/test). Results show the mean and standard deviation (mean ± std) of
the 10 folds described in Section III-B.3. For LR+, as there is a significant number of folds with 100 % specificity (yielding infinite LR+),
minimum values are presented as a worst case scenario.

Window
Size Acc. Sens. Spec. AUC

1800 s 0.8784±0.045 0.8172±0.119 0.9397±0.0447 0.9755±0.0087
300 s 0.9103±0.0216 0.8552±0.0502 0.9655±0.023 0.9837±0.0066
60 s 0.9078±0.0325 0.8776±0.0368 0.9379±0.057 0.9696±0.017

Window
Size PPV NPV LR+ LR-

1800 s 0.9371± 0.0426 0.8464 ±0.0762 7.57 0.1908 ± 0.1163
300 s 0.9623± 0.0228 0.8715±0.0395 5.10 0.1495 ± .0506
60 s 0.9371± 0.0554 0.8852 ±0.0291 10.40 0.1308 ± 0.0377
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Fig. 8: Scatter diagram of the day vs. night percentage of NON-ADHD
windows obtained from the CNN output (60s window, 70%-30% train-
test split).

Fig. 9: Scatter diagram of the day vs. night percentage of NON-ADHD
windows obtained from the CNN output (300s window, 70%-30%
train-test split).

therefore consider that our method is a competitive candidate
that could be used complementary to those methods, maybe
as a useful and simple screening tool.

Despite the satisfactory results presented in this study,
limitations in terms of the children study group must be
taken into account. Our analysis has been done in a somewhat
heterogeneous children sample, with a large age span and with
no gender splitting (this was also the case in [17]). This is the
reason why we have provided three different methodologies for
diagnosing ADHD (according to the activity term) as opposed
to a single decision rule. While the three methods are strongly
supported by evidence [47], future research may reveal whether
any of the three is more appropriate for any of the subgroups

Fig. 10: Scatter diagram of the day vs. night percentage of NON-
ADHD windows obtained from the CNN output (1800s window,
70%-30% train-test split).

Fig. 11: Scatter diagram of the day vs. night percentage of NON-
ADHD windows obtained from the CNN output (60s window, 20%-
80% train-test split).

that may result from making the sample more homogeneous
in terms of specific pathology, age and gender.

VI. CONCLUSION

This work reinforces the idea that combining deep learning
techniques together with actimetry makes it possible to create a
robust and efficient system for the objective ADHD diagnosis.
Our results show comparable or even higher performance
figures (accuracy, sensitivity and specificity for a case/control
study) than other traditional methods, even though these
methods make use of targeted experiments in a controlled
environment. Additional parameters frequently used in the
evaluation of diagnostic methods show strong evidence of
the appropriateness of our methods. As previously discussed,



10

Fig. 12: Scatter diagram of the day vs. night percentage of NON-
ADHD windows obtained from the CNN output (300s window, 20%-
80% train-test split).

Fig. 13: Scatter diagram of the day vs. night percentage of NON-
ADHD windows obtained from the CNN output (1800s window,
20%-80% train-test split).

finding clinical meaning to the features identified by the
network is a matter of utmost importance, which requires
further research.
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