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ABSTRACT

An Active Queue Management (AQM) scheme is design to control congestion in data net-
works, which includes anti-windup to deal with control signal saturation. More precisely, a
methodology is proposed to design advanced AQM systems capable of regulating queue
size even in the presence of significant disturbances. Hence, we first provide sufficient
conditions for stabilization for the equivalent class of systems, which are derived in terms
of LMI: this makes possible to derive optimization solutions that ensure performance and
stability for a large domain of initial conditions. This approach is validated with a numerical
example that illustrates the methodology, and the improvements with respect to previous
congestion control solutions.
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1 Introduction

Novel AQM algorithms are already playing a key role in data networks to cope with the in-
creasing user demands: Voice IP (VoIP) and video streaming are already pushing current
data networks to the congestion limits, as packet size and session duration vary significantly.
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A significant research is being devoted to develop more efficient AQM techniques: The sim-
plest is Drop Tail, that drops packets arriving at a router when its buffer is full, which leads
to performance degradation due to excessive time-outs and restarts (Hollot, Misra, Towsley
and Gong, 2002). As an improvement, the Random Early Detection (RED) (Floyd and Ja-
cobson, 1993; Misra, Gong and Towsley, 2000) randomly drops/marks packets arriving at the
router before it is full to avoid busty traffics on the feedback signal (Hollot et al., 2002). However,
the low-pass filter used, which limits the closed-loop bandwidth (Hollot et al., 2002). Conse-
quently, variants of RED have been proposed for better congestion control: for example, (Ott,
Lakshman and Wong, 1999; Wang, Li, Hou, Sohraby and Lin, 2004). Random Exponential
Marking (REM) (Athuraliya, Low, Li and Yin, 2001) uses both the queue length and the input
rate as a congestion indication. In parallel, a fluid model of TCP dynamical behavior was de-
rived in (Misra et al., 2000), which makes possible to design controllers using traditional Control
Theory approaches, such as PI (Hollot, Misra, Towsley and Gong, 2001), PD (Sun, Chen, Ko,
Chan and Zukerman, 2003) or PID (Yanfie, Fengyuan and Chuang, 2003): this approach is
augmented here do deal with saturations in the control signals. Most of these techniques do
not take into account input saturation, but in AQM the control action is the discarding proba-
bility, frequently saturates, as it is a nonnegative number smaller than one. Accordingly, any
practical AQM should take into account this, as input saturations deteriorate the performance
and create instabilities.
Thus, this paper concentrates on the augmentation of congestion controllers with anti-windup
schemes, to deal with saturation due to inherent variations in traffic. Some anti-windup tech-
niques have been proposed in (Bender, 2013; El Fezazi, El Haoussi, Tissir and Tadeo, 2015;
El Fezazi, El Haoussi, Tissir, Husain and Zakaria, 2016; El Fezazi, Lamrabet, El Haoussi, Tis-
sir, Alvarez and Tadeo, 2016; Tarbouriech, Da Silva and Garcia, 2004; Tissir, 2014), where the
emphasis is on the transient performance caused by the saturation. The approach here is in-
spired by these previous results, but system discretization due to periodic sampling is explicitly
taken into account. Moreover, as stability during saturation is a central issue, the anti-windup
compensation is designed to enlarge the domain of initial conditions that mathematically en-
sure that the closed-loop system trajectories remain bounded. The mathematical objective is
then to design a controller capable of regulating the queue size at the router around a desired
value guaranteeing the stability, explicitly taking into account link capacity disturbances and
time-varying delay, using the discrete-time equivalent of the linearized TCP congestion window
model, and incorporating an anti-windup compensator. The proposed synthesis methodology
is based on Lyapunov functionals and LMI conditions that guarantee closed-loop stability of the
TCP/AQM system and minimization of the L2−gain of the disturbance to the system output.
Then, the design of anti-windup controller is performed using LMIs.
It must be pointed out that the results are developed starting from a discrete-time state space
model of TCP/AQM based on the dynamic models developed by (Misra et al., 2000) of the
Transmission Control Protocol (TCP), which is derived using the assumptions that the data
traffic is equivalently represented by a fluid flow and the packet losses can be described by a
Poisson process. These assumptions have been shown to be valid in practice, as TCP has
been designed to be fair, and the packet losses are multiple.
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At the end of the paper, some simulation results will be presented to show the effectiveness of
the proposed method, and a comparison is made with other recent methods.

2 Problem Formulation

This section presents the problem and discusses some AQM models.

2.1 Dynamic Model of an AQM Router

In this paper, the network in Figure 1 is considered, with multiple server machines connect
to multiple client machines in a computer network. The network consists of n senders, n
receivers, and 1 bottleneck routers, which transports packets from senders to receivers. Large-
scale networks can be simplified as in Figure 1 in case of designing congestion controllers,
where one router is bottleneck in the network, running TCP flows.

Figure 1: Network topology used.

A model for this network was developed using fluid-flow and stochastic differential equation
analysis in (Misra et al., 2000)). Assuming that the AQM scheme implemented at the router
marks packets using Explicit Congestion Notification (ECN) (Yan, Gao and Ozbay, 2005) to
inform the TCP sources of impending congestion, and ignoring the TCP timeout mechanism,
the model that relates average values of the network variables is described by the following
coupled, nonlinear differential equations:

Ẇ (t) =
1

RTT (t)
− W (t)W (t−RTT (t))

2RTT (t−RTT (t))
p(t−RTT (t))

q̇(t) = −C(t) + N(t)

RTT (t)
W (t) (2.1)

where
W (t) is the average TCP window size (packets);
q(t) is the average queue length (packets);
RTT (t) is the round trip time = q(t)

C(t) + Tp (secs);
C is the link capacity (packets/secs);
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Tp is the propagation delay (secs);
N is the number of sessions;
p ∈ [0 1] is the probability of packet marking/dropping.

As explained by (Misra et al., 2000), the first differential equation in (2.1) describes the TCP
window control dynamic and the second equation models the bottleneck queue length, from an
accumulated difference between packet arrival rate and link capacity. The congestion window
size W (t) increases by one every RTT when no congestion is detected, and is halved when
congestion is detected.
To derive the anti-windup mechanism (2.1) is linearized around the equilibrium point (that de-
pends on the nominal probability of packet marks). This nominal probability p0 fulfills p0 =

2N2

(q0+TpC0)2
, and at the equilibrium point I = (W0 =

RTTC0
N , q0 = C0(RTT −Tp), p0 = 2

W 2
0
). In the

TCP/AQM network, each value of I is positive and the probability p0 is less than or equal to 1.
If we define δC = C − C0 with C = W, q, p, C, then, we can expressed the linearized version of
(2.1) as follows

δẆ (t) =
−N

RTT 2C0

(
δW (t) + δW (t−RTT (t))

)
− 1

RTT 2C0

(
δq(t) + δq(t−RTT (t))

)
−RTTC

2
0

2N2
δp(t−RTT (t)) +

RTT − Tp
RTT 2C0

(
δC(t) + δC(t−RTT (t))

)
δq̇(t) =

N

RTT
δW (t)− 1

RTT
δq(t)− Tp

RTT
δC(t)

RTT (t) =
δq(t)

C0
+RTT (2.2)

2.2 TCP/AQM System Modelling in state space

Rewriting (2.2) in state space form yields

ẋ(t) = A0x(t) +A1x(t− τ(t)) +B0u(t− τ(t)) +B1w(t)

y(t) = Cycx(t)

z(t) = Czcx(t) (2.3)

in which

x(t) =

[
δW (t)

δq(t)

]
, A0 =

[ −N
RTT 2C0

−1
RTT 2C0

N
RTT

−1
RTT

]
, A1 =

[ −N
RTT 2C0

−1
RTT 2C0

0 0

]
,

B0 =

[ −RTTC2
0

2N2

0

]
, B1 =

[
RTT−Tp

RTT 2C0

RTT−Tp

RTT 2C0−Tp

RTT 0

]
, w(t) =

[
δC(t)

δC(t−RTT (t))

]
,

u(t) = δp(t), Cyc =
[
0 1

]
, y(t) = δq(t), Czc =

[
0 1

C0

]
, z(t) = RTT (t)−RTT

where the states variables are then the congestion window and queue sizes, and the input
represents the marking probability.
As the AQM controller is by nature a discrete-time system, a discretized model of (2.3) assum-
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ing periodic sampling is

x(k + 1) = Ax(k) +Adx(k − d(k)) +Bu(k − d(k)) +Bww(k)

y(k) = Cyx(k)

z(k) = Czx(k) (2.4)

where A = eA0T , Ad =
∫ T
0 eA0sA1ds, B =

∫ T
0 eA0sB0ds, Bw =

∫ T
0 eA0sB1ds, Cy = Cyc , and

Cz = Czc and d(k) is a positive integer representing the time delay of the system (that by
nature is time-varying) and satisfies dm ≤ d(k) ≤ dM where dm and dM are known positive
finite integers.
The disturbance vector w(k) is assumed to be limited in energy, that is, w(k) ∈ L2. Hence for
some scalar δ, the bounds on the disturbance w(k) are the following:

‖w(k)‖22 =
∞∑
k=0

wT (k)w(k) ≤ δ−1 <∞ (2.5)

An anti-windup compensator is going to be proposed that shows graceful performance degra-
dation of the overall system in the presence of saturation. To this end, we reformulate the
problem into a state tracking problem, since the output is the combination of internal states.
In order to regulate (2.4) around a desired working point, we assume an controller, stabilizing
in absence of control bounds of the form:

xc(k + 1) = Acxc(k) +Bcy(k)

yc(k) = Ccxc(k) +Dcy(k) (2.6)

As a consequence of the saturation, the interconnection with (2.4) is given by u(k) = sat(yc(k)),
where sat(yc(k)) = sign(yc(k))min{|yc(k)|, u0}.
The following anti-windup compensator is proposed to mitigate the performance degradation
induced by the saturation, ensuring asymptotic stability of the closed-loop system:

xa(k + 1) = Aaxa(k) +Baψ(yc(k))

ya(k) = Caxa(k) +Daψ(yc(k)) (2.7)

Note that, ψ(yc(k)) corresponds to a decentralized dead-zone nonlinearity:

ψ(yc(k)) = yc(k)− sat(yc(k)) (2.8)

Considering the anti-windup compensator, the controller (2.6) is rewritten as follows

xc(k + 1) = Acxc(k) +Bcuc(k) + ya(k)

yc(k) = Ccxc(k) +Dcuc(k) (2.9)

It follows that the augmented system corresponding to the closed-loop system (2.4)-(2.6)-(2.7)
can be represented by the following equation

ξ(k + 1) = Aξ(k) + Adξ(k − d(k))− Bψ(Kξ(k − d(k))) + Bdψ(Kξ(k)) + Bww(k)

z(k) = Czξ(k) (2.10)
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where we define the following matrices:

ξ(k) =

⎡⎢⎣ x(k)

xc(k)

xa(k)

⎤⎥⎦ , A =

⎡⎢⎣ A 0 0

BcCy Ac Ca

0 0 Aa

⎤⎥⎦ , Ad =

⎡⎢⎣ Ad +BDcCy BCc 0

0 0 0

0 0 0

⎤⎥⎦ ,

B =

⎡⎢⎣ B

0

0

⎤⎥⎦ , Bd =

⎡⎢⎣ 0

Da

Ba

⎤⎥⎦ , Bw =

⎡⎢⎣ Bw

0

0

⎤⎥⎦ , K =
[
DcCy Cc 0

]
, Cz =

[
Cz 0

]
As mentioned before, we aim to ensure a large set of initial states. For this, an estimate of
domain attraction will be used:

Ξ =
{
φi(k), −dM ≤ k ≤ 0 : max ‖φi(k)‖ ≤ κ

}
, i = 1, . . . ,m

In mathematical terms, we are interested in the synthesis of the anti-windup compensator (2.7)
(i.e. in computing matrices Aa, Ba, Ca, andDa), which ensures that the closed-loop trajectories
of the system remain bounded for any disturbance satisfying (2.5). Moreover, it should ensure
an upper bound for the L2−gain between the disturbance w(k) and the regulated output z(k)
defined as follows (Chaibi, Tissir, Hmamed and Idrissi, 2013; El Fezazi, Tissir, El Haoussi,
Alvarez and Tadeo, 2017; El Haoussi and Tissir, 2007; Tissir, 2009)

‖Fzw‖2∞ =
‖z(k)‖22
‖w(k)‖22

=

∑∞
k=0 z

T (k)z(k)∑∞
k=0w

T (k)w(k)
< γ (2.11)

where Fzw is the closed-loop transfer function from w(k) to z(k). This ratio would be minimized
for a given set of expected network parameters.

3 Main Results

We first derive some delay-dependent conditions for stability of the TCP/AQM system with the
proposed anti-windup compensators. These conditions are given in terms of the existence of
solutions of some LMIs, based on Lyapunov functionals. This method provides a computable
criteria to check the stability for time-varying delays in the general case of dynamic system.
For the developments below the following is required:
For a matrix G we define the polyhedral set

S =
{
ξ(k) ∈ �n; |(K(i) −G(i))ξ(k)| ≤ u0(i)

}
The following lemma will be used later in this paper

Lemma 3.1. (Tarbouriech et al., 2004) If ξ(k) ∈ S, then the following relation is verified for any
diagonal positive matrix T

ψT (Kξ(k))T
[
ψ(Kξ(k))−Gξ(k)

]
≤ 0

Remark 3.1. Lemma 3.1 allows a direct formulation of conditions in LMI form; moreover, the
obtained anti-windup synthesis conditions can be applied to stable or unstable systems, being
less conservative when the open-loop system is unstable.

Finally, for a positive scalar μ the trajectories of the system must not leave the set

ε(P, μ) =
{
ξ(k) ∈ �n; ξT (k)Pξ(k) ≤ μ−1

}

International Journal of Ecological Economics & Statistics

42



3.1 Stability Results

Theorem 3.2. If there exists positive definite symmetric matrices P̂ , Q̂, R̂, and appropriately
sized matrices T̂1, T̂2, Ĝ1, Ĝ2, Ŷ1, Ŷ2, Ŷ3, Ŷ4, Ŷ5, Ŷ6 such that the LMIs (3.1)-(3.3) are verified

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 Π16 Π17 Π18

∗ Π22 Π23 Π24 Π25 Π26 Π27 0

∗ ∗ Π33 Π34 Π35 Π36 0 0

∗ ∗ ∗ Π44 0 0 Π47 0

∗ ∗ ∗ ∗ Π55 0 Π57 0

∗ ∗ ∗ ∗ ∗ Π66 Π67 0

∗ ∗ ∗ ∗ ∗ ∗ Π77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, Q̂ < R̂, (3.1)

[
P̂ P̂KT

(i) − ĜT
1(i)

∗ μu20(i)

]
≥ 0,

[
P̂ P̂KT

(i) − ĜT
2(i)

∗ μu20(i)

]
≥ 0, (3.2)

μ− δ ≤ 0, (3.3)

where

Π11 = −P̂ + Q̂+ (dM − dm)R̂− Ŷ1 − Ŷ T
1 , Π12 = Ŷ1 − Ŷ T

2 , Π22 = −Q̂+ Ŷ2 + Ŷ T
2 ,

Π13 = Ŷ1 − Ŷ T
3 , Π23 = Ŷ2 + Ŷ T

3 , Π33 = Ŷ3 + Ŷ T
3 , Π14 = −Ŷ T

4 , Π24 = ĜT
1 + Ŷ T

4 ,

Π34 = Ŷ T
4 , Π44 = −2T̂1, Π15 = ĜT

2 − Ŷ T
5 , Π25 = Ŷ T

5 , Π35 = Ŷ T
5 , Π55 = −2T̂2,

Π16 = −Ŷ T
6 , Π26 = Ŷ T

6 , Π36 = Ŷ T
6 , Π66 = −I, Π17 = P̂AT , Π27 = P̂AT

d ,

Π47 = −T̂1BT , Π57 = T̂2B
T
d , Π67 = B

T
w, Π77 = −P̂ , Π18 = P̂CT

z , Π88 = −γI

Then, there exists an anti-windup compensator (2.7) which ensures that the trajectories of the
system (2.10) converge asymptotically to the origin and are bounded for all initial conditions in
the ball

κ2 ≤
(
μ−1 − δ−1

)/{
λ(P̂−1) + (dM + dm)λ(P̂−1Q̂P̂−1)

+
(dM − dm + 1)(dM + dm)

2
λ(P̂−1R̂P̂−1)

}
(3.4)

with λ the maximal eigenvalue and κ = max ‖φ‖.

Proof. Consider the following Lyapunov functional

V (k) = V1(k) + V2(k) + V3(k)

= ξT (k)Pξ(k) +

k−1∑
l=k−d(k)

ξT (l)Qξ(l) +

−dm+1∑
l=−dM+2

k−1∑
m=k+l−1

ξT (m)Rξ(m) (3.5)
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Computing the difference of the Lyapunov functional gives

ΔV1(k) = ξT (k + 1)Pξ(k + 1)− ξT (k)Pξ(k), (3.6)

ΔV2(k) =
k∑

l=k+1−d(k+1)

ξT (l)Qξ(l)−
k−1∑

l=k−d(k)

ξT (l)Qξ(l)

= ξT (k)Qξ(k)− ξT (k − d(k))Qξ(k − d(k)) +

k−1∑
l=k+1−dm

ξT (l)Qξ(l)

−
k−1∑

l=k+1−d(k)

ξT (l)Qξ(l) +

k−dm∑
l=k+1−d(k+1)

ξT (l)Qξ(l), (3.7)

ΔV3(k) =

−dm+1∑
l=−dM+2

[
k∑

m=k+l

ξT (m)Rξ(m)−
k−1∑

m=k+l−1

ξT (m)Rξ(m)

]

= (dM − dm)ξT (k)Rξ(k)−
k−dm∑

l=k+1−dM

ξT (l)Rξ(l) (3.8)

As ∀Q < R, one can easily see that

−
k−1∑

l=k+1−d(k)

ξT (l)Qξ(l) ≤ −
k−1∑

l=k+1−dm

ξT (l)Qξ(l), (3.9)

k−dm∑
l=k+1−d(k+1)

ξT (l)Qξ(l) ≤
k−dm∑

l=k+1−dM

ξT (l)Rξ(l) (3.10)

Then, from (2.10) and (3.6)-(3.10), it follows that

ΔV (k) ≤
[
Aξ(k) + Adξ(k − d(k)) + Bdψ(Kξ(k))− Bψ(Kξ(k − d(k))) + Bww(k)

]T
P
[
Aξ(k)

+Adξ(k − d(k)) + Bdψ(Kξ(k)) + Bww(k)− Bψ(Kξ(k − d(k)))
]

+ξT (k)(−P + (dM − dm)R+Q)ξ(k)− ξT (k − d(k))Qξ(k − d(k)) (3.11)

Using the Newton-Leibniz formula, for any appropriately dimensioned matrices Y1,...,6 the fol-
lowing holds:

[
ξT (k)Y1 + ξT (k − d(k))Y2 +

k−1∑
j=k−d(k)

yT (j)Y3 + ψT (Kξ(k − d(k)))Y4

+ψT (Kξ(k))Y5 + wT (k)Y6

][
− ξ(k) + ξ(k − d(k)) +

k−1∑
j=k−d(k)

y(j)
]
= 0 (3.12)

where y(j) = ξ(j + 1)− ξ(j).
Then, applying Lemma 3.1 and taking into account (3.11)-(3.12), the following inequality holds

ΔV (k)− wT (k)w(k) +
1

γ
zT (k)z(k) ≤ ηT (k)(Υ + LTPL)η(k) (3.13)
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where

Υ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ11 Υ12 Υ13 Υ14 Υ15 Υ16

∗ Υ22 Υ23 Υ24 Υ25 Υ26

∗ ∗ Υ33 Υ34 Υ35 Υ36

∗ ∗ ∗ Υ44 0 0

∗ ∗ ∗ ∗ Υ55 0

∗ ∗ ∗ ∗ ∗ Υ66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
T

A
T
d

0

−B
T

B
T
d

B
T
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, η(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ(k)

ξ(k − d(k))∑k−1
j=k−d(k) y(j)

ψ(Kξ(k − d(k)))

ψ(Kξ(k))

w(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

Υ11 = −P +Q+ (dM − dm)R− Y1 − Y T
1 +

1

γ
C
T
z Cz, Υ12 = Y1 − Y T

2 ,

Υ22 = −Q+ Y2 + Y T
2 , Υ13 = Y1 − Y T

3 , Υ23 = Y2 + Y T
3 , Υ33 = Y3 + Y T

3 ,

Υ14 = −Y T
4 , Υ24 = GT

1 T
T
1 + Y T

4 , Υ34 = Y T
4 , Υ44 = −2T1, Υ15 = GT

2 T
T
2 − Y T

5 ,

Υ25 = Υ35 = Y T
5 , Υ55 = −2T2, Υ16 = −Y T

6 , Υ26 = Υ36 = Y T
6 , Υ66 = −I

Then, it is clear that if

Υ+ LTPL < 0 (3.14)

then

ΔV (k)− wT (k)w(k) +
1

γ
zT (k)z(k) < 0 (3.15)

Accordingly, the following condition is obtained by applying the Schur complement to (3.14)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ11 Υ12 Υ13 Υ14 Υ15 Υ16 Υ17

∗ Υ22 Υ23 Υ24 Υ25 Υ26 Υ27

∗ ∗ Υ33 Υ34 Υ35 Υ36 0

∗ ∗ ∗ Υ44 0 0 Υ47

∗ ∗ ∗ ∗ Υ55 0 Υ57

∗ ∗ ∗ ∗ ∗ Υ66 Υ67

∗ ∗ ∗ ∗ ∗ ∗ Υ77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.16)

where

Υ17 = A
TP, Υ27 = A

T
d P, Υ47 = −B

TP, Υ57 = B
T
d P, Υ67 = B

T
wP, Υ77 = −P

Pre- and post-multiplying (3.16) by Δ = diag{P−1, P−1, P−1, T−1
1 , T−1

2 , I, P−1}, applying the
Schur complement and taking the following changes of variables

P̂ = P−1, Ω̂ = P̂ΩP̂ , Ω = Q,R, Y1, Y2, Y3, Λ̂ = ΛP̂ , Λ = G1, G2, Y6,

T̂1 = T−1
1 , T̂2 = T−1

2 , Ŷ4 = T̂1Y4P̂ , Ŷ5 = T̂2Y5P̂ .

we obtain the inequality (3.1) of Theorem 3.2.
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Since (3.1) holds, the condition (3.15) is satisfied. Now, summing up (3.15) from 0 to ∞ with
respect to k yields

V (∞) < V (0) +
∞∑
k=0

(
wT (k)w(k)− 1

γ
zT (k)z(k)

)
(3.17)

Under the zero initial condition V (0) = 0 and by noting that V (∞) ≥ 0, we have (2.11) which
implies that system (2.10) has its restricted L2−gain from w(k) to z(k) less than γ.
The LMIs in (3.1) and (3.2) ensure that the trajectories are contained inside the ellipsoid ε(P, μ),
∀k, once ε(P, μ) ⊂ S. This is verified by the following conditions[

P K
T
(i) −GT

1(i)

∗ μu20(i)

]
≥ 0,

[
P K

T
(i) −GT

2(i)

∗ μu20(i)

]
≥ 0

These matrices give the ellipsoidal inclusion LMIs (3.2) by pre- and post-multiplied by Δ
′
=

diag{P̂ , I}. Moreover, from the Lyapunov functional (3.5), it follows that

V (0) ≤
{
λ(P ) + (dM + dm)λ(Q) + (dM − dm + 1)

dM + dm
2

λ(R)
}
‖φ‖2 = β (3.18)

Then, we have

ξT (k)Pξ(k) ≤ V (k) ≤ V (0) + ‖w(k)‖22 ≤ β + δ−1 ≤ μ−1

Hence, for all k the trajectories of the system do not leave the set ε(P, μ), concluding the
proof.

We focus now on guaranteing the stability of the following system, which can be seen as a
particular case of system (2.10).

x(k + 1) = Ax(k) +Adx(k − d(k)) +Bu(k) +Bww(k)

y(k) = Cyx(k)

z(k) = Czx(k) (3.19)

Then, the augmented system is given by

ξ(k + 1) = Aξ(k) + Adξ(k − d(k)) + (Bd − B)ψ(Kξ(k)) + Bww(k)

z(k) = Czξ(k) (3.20)

The following corollary gives a condition to stabilize system (3.19)

Corollary 3.3. If there exists positive definite symmetric matrices P̂ , Q̂, R̂, and appropriately
sized matrices T̂2, Ĝ2, Ŷ1, Ŷ2, Ŷ3, Ŷ5, Ŷ6 such that the LMIs (3.21)-(3.22) are verified⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π15 Π16 Π17 Π18

∗ Π22 Π23 Π25 Π26 Π27 0

∗ ∗ Π33 Π35 Π36 0 0

∗ ∗ ∗ Π55 0 Π57 − T̂2B
T 0

∗ ∗ ∗ ∗ Π66 Π67 0

∗ ∗ ∗ ∗ ∗ Π77 0

∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, Q̂ < R̂, (3.21)
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[
P̂ P̂KT

(i) − ĜT
2(i)

∗ μu20(i)

]
≥ 0, μ− δ ≤ 0 (3.22)

Then, there exists an anti-windup compensator as defined in (2.7) which ensures that the
trajectories of the system (3.20) converge asymptotically to the origin and are bounded for
every initial condition in the following ball

κ2 ≤
(
μ−1 − δ−1

)/{
λ(P̂−1) + (dM + dm)λ(P̂−1Q̂P̂−1)

+
(dM − dm + 1)(dM + dm)

2
λ(P̂−1R̂P̂−1)

}
(3.23)

with κ = max ‖φ‖.

Remark 3.2. In deriving Theorem 3.2, the slack variable Y1,...,6 were introduced in order to
offer additional degrees of freedom for the optimization. It can be seen from the above Proof
that ΔV (k) remains unaffected by equation (3.12), so these matrices lead to more flexible LMI
conditions in (3.1), reducing possible conservatism in Theorem 3.2 and the subsequent results,
as will be shown in the numerical examples.

3.2 Implementation Constraints

The control signal for the network is given by

u(k) = sat(Kξ(k)) = sat
( [

K1 K2 K3 K4

]
⎡⎢⎢⎢⎢⎣
δW (k)

δq(k)

xc(k)

xa(k)

⎤⎥⎥⎥⎥⎦
)

(3.24)

As the used AQM are based on state feedback, and having in mind that the state δW (k) =

W (k) − W0, is not directly available at routers in real networks, it is necessary to take this
constraint into account. Some authors have proposed to use an observer to estimate this
state (Chen, Hung, Liao and Yan, 2007; Manfredi, Di Bernardo and Garofalo, 2009) whereas
others expressed W (k) − W0 as a function of the rate mismatch at routers, which can be
estimated (Zhang, Ye, Ma, Chen and Li, 2007). The approach in this paper uses the following
approximation:

W (k)−W0 =
RTT

N

(NW (k)

RTT
− C0

)
=
RTT

N

(
flow rate− C0

)
(3.25)

Furthermore, as in (Athuraliya et al., 2001), it must be pointed out that the rate of mismatch
is the rate at which the queue length grows when the buffer is nonempty. Therefore, we can
approximate it by δq

T where 1
T is the sampling frequency. Hence, (3.24) becomes

δp(k) = sat
( [

0 K1
RTT
NT +K2 K3 K4

]
ξ(k)

)
Finally, it must be pointed out that to implement our AQM controller (3.1), we first discretize
(2.3).
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3.3 Anti-windup Optimization

3.3.1 Minimization of γ

As (Bender, 2013), in order to minimize γ where μ−1 = δ−1 a solution should be given for the
following problem where the initial condition is null

min γ

subject to (3.1)− (3.3) (3.26)

3.3.2 Maximization of κ

Now, we consider the free-disturbance case (w(k) = 0). In practice the bounds on the time-
varying delay dM and dm can be known. In order to ensure the stability of system (2.10) by
using the Theorem 3.2, the admissible initial conditions must verify (3.4). Note that the smaller
the maximal eigenvalues of P̂−1, P̂−1Q̂P̂−1, and P̂−1R̂P̂−1, the larger κ for which (3.4) is
verified. Hence, the problem of finding Aa, Ba, Ca, and Da is transformed into the maximization
of the region of stability that can be achieved by minimizing these maximal eigenvalues. With
this aim, consider the following auxiliary LMIs as in (El Fezazi, El Haoussi, Tissir, Alvarez and
Tadeo, 2017; El Haoussi, Tissir and Tadeo, 2014) where P̃ = P̂−1, Q̃ = Q̂−1, and R̃ = R̂−1[

σ1I I

I P̂

]
≥ 0,

[
σ2I P̃

P̃ Q̃

]
≥ 0,

[
σ3I P̃

P̃ R̃

]
≥ 0 (3.27)

Consequently, the condition (3.4) implies that

κ2
{
σ1 + (dM + dm)

(
σ2 +

dM − dm + 1

2

)
σ3

}
≤ μ−1 (3.28)

Then, we construct a feasibility problem as follows

min tr
(
P̂ P̃ + Q̂Q̃+ R̂R̃

)
subject to (3.1)-(3.3),(3.27),(3.28),

[
P̂ ∗
I P̃

]
≥ 0,

[
Q̂ ∗
I Q̃

]
≥ 0,

[
R̂ ∗
I R̃

]
≥ 0 (3.29)

Based on the above conditions, the proposed controller can be designed for given dM and dm
by using the following cone complementarity algorithm:

Step 3.1. Choose a small δ and set
(
P̂ , P̃ , Q̂, Q̃, R̂, R̃, σ1, σ2, σ3

)
0
=
(
P̂ , P̃ , Q̂, Q̃, R̂, R̃, σ1, σ2, σ3

)
that satisfies the constrained minimization (3.29). Then, fix Δ where δ = δ +Δ.

Step 3.2. Solve the following LMI minimization problem in the matrix variables P̂ , P̃ , Q̂, Q̃, R̂,
and R̃

min tr
(
P̂ P̃0 + Q̂Q̃0 + R̂R̃0 + P̂0P̃ + Q̂0Q̃+ R̂0R̃

)
subject to LMIs in (3.29)

Step 3.3. Substitute the new matrix variables into (3.29). If the result is feasible, then set
δ = δ +Δ and repeat Step 2; otherwise, δ = δ −Δ is the desired estimate: Stop.
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4 Simulations

In order to demonstrate the effectiveness and applicability of proposed design methodology,
two examples are derived, with simulations provided to compare with existing works. The first
one aims at studying the conservativeness. In the second example, some Matlab simulations
are provided to compare the proposed controller with previous controllers.

Example 4.1. Consider the closed-loop system (3.20) with parameters for which control values
are saturated at ±10 where

A =

[
0.8 0

0 0.97

]
, Ad =

[
−0.1 −0.1

0 −0.1

]
, B =

[
1

0

]
, Cy =

[
1 0

0 1

]
,

Ac =

[
0.0718 0.0389

−0.0502 −0.0012

]
, Bc =

[
−0.0213 0.0001

0.0621 0.0080

]
,

Cc =
[
0.0184 0.0213

]
, Dc =

[
−0.0228 −0.0087

]
Using the cone complementarity algorithm, the results obtained in Corollary 3.3 ensures the
asymptotic stability; the estimated domain of attraction for different delay ranges are shown in
Table 1, which can be compared with the results in (Negi, Purwar and Kar, 2012).

Table 1: Values of κ obtained for several delay ranges.
Method Reference (Negi et al., 2012) This paper

1 ≤ d(k) ≤ 3 0.5151 2.3

1 ≤ d(k) ≤ 4 0.3852 1.5

1 ≤ d(k) ≤ 5 0.2918 1.1

1 ≤ d(k) ≤ 6 Infeasible 0.9

It is clear that the obtained stability radius κ is significantly larger than those obtained in (Negi

et al., 2012). The corresponding matrices of (2.7) are Aa = 0.3, Ba = 0.3, Ca =

[
0.7

0.7

]
, and

Da = 0.5.

Example 4.2. In this section we illustrate our methodology based on a TCP/IP router queue
model borrowed from (Bender, 2013), given in the form of (2.3). The nominal parameters are
RTT = 0.2467, C0 = 3750, q0 = 175, andN = 60. Then, we can deduce thatW0 =

RTTC0
N , p0 =

2
W 2

0
, and Tp = RTT − q0

C0
. Finally, the matrices of (2.6) are Ac = 0, Bc = 1, Cc = 8.4969× 10−6,

and Dc = 1.6996× 10−5. We assume that control values are saturated at u0 = p0.
Then, applying the stability results presented in Theorem 3.2 and using the algorithm proposed
in (3.26). For 0.1 ≤ d(k) ≤ 0.5, μ = 1, and T = 0.1, the corresponding matrices of (2.7) and
prescribed scalar γ are Aa = 0.2, Ba = 0.03, Ca = 0.05, Da = 0.1, and γ = 0.01, respectively.
The performance in reference queue tracking and disturbance rejection has been investigated
through simulations. Two well-known AQM methods, RED and REM, were also simulated for
comparison, with the parameters listed in Table 2. The transfer function for RED (Floyd and
Jacobson, 1993) is CRED(s) = LRED

KRED
s+KRED

. For REM, the end-to-end marketing probability
is p � (loge ωREM )

∑
ρ(kT ) where the update of the price ρ(kT ) in period T follows equation
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(Athuraliya et al., 2001)

ρ((k + 1)T ) = max
{
ρ(kT ) + η

(
b((k + 1)T )− 0.99b(kT )− 1.75

)
, 0
}

Table 2: Controllers parameters.
Controllers Parameters value

RED LRED = 1.86× 10−4, KRED = 0.005

REM ωREM = 1.001, η = 0.001

Thus, using the algorithm proposed in (3.26) and the initial values ξ0 = [10 − 10]T , the queue
size regulation and deviations of drop probability are shown in Figure 3, when the Gaussian
noise in Figure 2 is used as disturbance to check their effect.

Time (s)
0 5 10 15

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 2: Random disturbance.

The simulation results show the performance of the proposed controller: it manages to main-
tain the queue length at the target value despite the inherent time-varying dynamics. On the
contrary using a standard RED controller the queue length is far from the desired value, pre-
senting a sluggish response, resulting in degraded utilization, losses, and high variance of
queuing delay. Moreover, REM presents high variations, which in turn results in high and fluc-
tuant values of the RTT, affecting the performance of the network and aggravating the quality
of services. The drop rate (given by the rate probability) is smaller with the proposed controller
than with standard RED and REM.

5 Conclusion

An AQM approach for congestion control has been discussed, that incorporates explicitly anti-
windup to incorporate the effect of saturation of the control signal. The approach is based on a
discrete-time TCP flow model with link capacity disturbance and time-varying delay: a sufficient
condition for stability is proposed, which is then incorporated into an optimization algorithm to
design anti-windup that ensure stability for the largest set of admissible initial states. Some
simulation results are presented to demonstrate the effectiveness of the proposed approach.
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Figure 3: Variation over average value of queue (left) and discard probability (right).
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