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Abstract

The combined analysis of geological targets by complementary spectroscopic

techniques could enhance the characterization of the mineral phases found on

Mars. This is indeed the case with the SuperCam instrument onboard the Per-

severance rover. In this framework, the present study seeks to evaluate and

compare multiple machine learning techniques for the characterization of car-

bonate minerals based on Raman-LIBS (Laser-Induced Breakdown Spectros-

copy) spectroscopic data. To do so, a Ca-Mg prediction curve was created by

mixing hydromagnesite and calcite at different concentration ratios. After their

characterization by Raman and LIBS spectroscopy, different multivariable

machine learning (Gaussian process regression, support vector machines,

ensembles of trees, and artificial neural networks) were used to predict the

concentration ratio of each sample from their respective datasets. The results

obtained by separately analyzing Raman and LIBS data were then compared

to those obtained by combining them. By comparing their performance, this

work demonstrates that mineral discrimination based on Gaussian and ensem-

ble methods optimized the combine of Raman-LIBS dataset outperformed

those ensured by Raman and LIBS data alone. This demonstrated that the

fusion of data combination and machine learning is a promising approach to

optimize the analysis of spectroscopic data returned from Mars.
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1 | INTRODUCTION

In recent years, several spectroscopic methods have been
used to characterize the geology of Mars, including
Raman spectroscopy and Laser-Induced Breakdown
Spectroscopy (LIBS).1–5 On the one hand, Raman spec-
troscopy provides molecular information about the crys-
tallographic structure of the target, thus allowing the
discrimination of the mineral phases that compose it. On
the other hand, LIBS provides information about its ele-
mental composition thanks to its characteristic emission
spectrum. Taking advantage of their complementarity,
the SuperCam instrument onboard the NASA/Mars 2020
Perseverance rover is the first instrument operating in
space that is capable of performing simultaneous Raman
and LIBS analysis on the same target.6 SuperCam
emerges as an evolution of ChemCam from the Curiosity
rover.1 The instrument combines five different tech-
niques in the same instrument: Time-Resolved Raman
and Luminescence (TRR/L), LIBS, Visible-Infrared Spec-
troscopy (VISIR), Remote Micro-Imaging (RMI), and
sound recording.7–10

Since its landing on Mars in February 2021, the analy-
sis performed by SuperCam contributes to the fulfillment
of the main scientific objectives of the Mars2020 mission
by searching for biosignatures on the rocky surface of
Mars.11 To this end, it aims at characterizing the geologi-
cal units found at the landing site and searching for
molecular biosignatures that are potentially preserved
within the mineralogical matrix.

In this regard, it must be underlined that the selected
landing site (Jezero Crater) hosts one of the largest geo-
logical units of carbonates identified on Mars.12–14 Know-
ing that Jezero was formerly an open basin paleolake,15 it
could be inferred that the carbonates detected at Jezero
are alteration products generated from the long-term
interaction of primary rocks with liquid water. Assuming
the Jezero's paleolake could have harbored life in the
past, carbonate deposits would represent one of the prior-
ity scientific targets were to search for organic biosigna-
tures. As detailed in the final report of the Mars
Biosignature Working Group,16 carbonates possess
(together with sulfates, silica, phyllosilicates, and hema-
tite), the key mineralogical features that are relevant for
the preservation of biosignature at the geological time
scale.17 Indeed, through a complex combination of
organic–inorganic interactions,18 the mentioned mineral
phases are able to shelter organic molecules from the
alteration processes triggered by the arch outer environ-
ment, as has been already detected in Jezero crater, with
associations between organic molecules and sulfates.19

This hypothesis is supported by a broad variety of studies
in which the organic remains of ancient forms of life

have been successfully detected within relevant terrestrial
analog materials,20 as is the case of stromatolitic
carbonates.21–23

Since it landed on Mars, the SuperCam instrument
successfully detected carbonates at different locations of
the Jezero Crater.17 However, the limitations in the
acquisition of Raman spectra, or the atmospheric contri-
bution on the emission lines of C detected by LIBS and
the mixture with other mineral phases on the other,
makes the correct discrimination of the mineral phases
detected by SuperCam challenging. To overcome this
issue, the SuperCam team is working on the combination
of complementary spectroscopic data collected from the
same spot of interest as a way to ensure a reliable dis-
crimination of carbonate phases on Mars.24,25 Learning
from terrestrial applications, the present work aims at
evaluating the advantages provided by multiple machine
learning methods (Gaussian process regression [GPR],26

support vector machines [SVMs],27 ensemble of trees,28

and artificial neural networks [ANNs]29,30) in the proper
discrimination of carbonate phases detected on Mars.
After separately analyzing Raman and LIBS datasets, the
chemometric models were also applied to combined
Raman-LIBS data, to evaluate the advantages provided
by a collaborative science approach between both
techniques.

Additionally, it was found interesting to use this
experiment not only to evaluate the different perfor-
mances of the mentioned machine learning algorithms
but also to evaluate the different performances that could
come from the use of different variables to feed those
models. Different works from our research group have
used different approaches for the dimensional reduction
of data that could be grouped in two: principal compo-
nent analysis (PCA31) or extraction of spectral parame-
ters. In the first case, we use the training data set to
calculate the set of Principal Components that describe
certain level of the variance of the whole system. This
methodology includes a higher description of the input
spectra but is also sensitive to not useful information, as
is an unsupervised method. On the other hand, selection
of spectral parameters as the intensity of certain emission
lines in LIBS, or the fitting and extraction of parameters
for the fitted bands in Raman spectra,32 can be methods
to reduce dimensionality but more focused in relevant
data fixed by operator (is a supervised method), although
at a cost of losing information that operator deems not
useful.

Attending exclusively to the combined use of data
sets, it is important to evaluate differences between both
techniques. On one hand, LIBS spectra covering a typical
range of 600 nm at a resolution of 0.1 nm give us a total
of 6,000 variables, while this would be significantly lower
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for the case of a typical Raman instrument. Previous
examples of data combination based on concatenation of
spectra prior to dimensional reduction assigned inher-
ently a higher weight to LIBS data, as there were more
variables available from LIBS, and some of them pre-
sented a higher variance associated. Using similar
methods for data combination could lead to a bias from
origin towards the performance and capabilities of LIBS,
while losing to some point the complementarity of both
techniques. In this work we used an independent dimen-
sional reduction per technique, and the combination is
done afterwards by creating a combined data set that
is later reduced in its number of variables to adequate its
size to the dimensionality of the individual data sets. This
selection of the final variables is aided by feature selec-
tion algorithms as Maximum Representativity minimum
Redundancy (MRMR)33 that provides scores to every
input variable in terms of how well or how confusing is
related to an objective target.

2 | EXPERIMENTAL METHOD:
MATERIALS AND EQUIPMENT

2.1 | Carbonate samples

For this work, a set of binary carbonate mixtures was pre-
pared by using commercial carbonates from sigma Aldrich
(reagent grade, >99%) of calcite (CaCO3) and hydromagne-
site (Mg5 [OH (CO3)2]۰4H2O) powdered standards as Ca
and Mg endmembers. As for the Mg endmember, hydro-
magnesite was preferred over conventional magnesite due
to its higher relevance for current astrobiology research on
Mars. Indeed, through the analysis of CRISM data,
recently identified several locations at the Mars 2020's
landing site exhibit spectroscopic features that are compat-
ible with the presence of hydromagnesite.12 As multiple
studies found the precipitation of hydromagnesite in
aquatic environments to be often biologically induced,34–36

this mineral phase represents a primary geological target
for astrobiology research at the Jezero Crater.

The calibration set was prepared by mixing both pow-
dered minerals in the proportions shown in Table 1. The
samples were then milled using an agate mortar to achieve
homogeneity and reduce their grain size. Each mixture
was finally compacted into a 1.5 cm diameter pellet (with
a few mm thick) by using a 10-ton manual press.

2.2 | Analytical instruments

Raman analyses were performed by using a custom-built
spectrometer developed by the ERICA research group

(University of Valladolid). The instrument consists of the
following commercial components: a 532 nm BWN-OEM
excitation laser with 50 mW output power, a dual-track
grating transmission spectrometer with an Andor
Newton detector cooled at �50�C, a Raman head (BWTEK
BAC100-532E) and a spectral range of 100 to 4000 cm�1.
Using this setup, 20 Raman spectra were acquired per
sample at different points with an acquisition time
adjusted to 75% of the total dynamic range of the sensor
and 10 accumulations per point, thereby achieving a total
of 260 Raman spectra. Data were acquired by means of
the Andor Solis control software.

Concerning elemental analyses, LIBS data were col-
lected using a custom-built setup equipped with a Nd:
YAG (second harmonic) pulsed laser with a maximum
pulse energy of 120 mJ and maximum operating fre-
quency of 30 Hz, although 2 Hz was used for the data
acquisition. The laser was focused on the sample using a
convergent lens of 55 mm diameter and 75 mm focal.
The light was collected at a distance of a few centimeters
using a catadioptric condenser from Andor, and it was
delivered to an echelle spectrometer attached to a
1,024 � 1,024 pixels intensified CCD. The instrument
covers a total range from 200 to 950 nm, although effi-
ciency in the UV and IR sides of this range is severely
impaired. In the time resolving side, the detector includes
a Digital Delay Generator and is externally triggered by
the Q-switch of the pulsed laser. LIBS spectra were
acquired using 80% of the maximum laser power (96 mJ),
setting a delay time between the laser pulse and the
acquisition of 2 μs and gate width (this is the time win-
dow of light acquisition through the intensifier) of 10 μs.

TABLE 1 Weight ratio of calcium carbonate and

hydromagnesite in each binary mixture tablet.

Calcite (wt%) Hydromagnesite (wt%)

100 0

99 1

95 5

90 10

75 25

62.5 37.5

50 50

37.5 62.5

25 75

10 90

5 95

1 99

0 100
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After discarding the first two shots, 20 accumulations per
spot were taken, with 20 spots per sample in the case of
pellets with extreme concentrations between both com-
pounds (100–0, 99–1, 95–5, 5–95, 1–99, and 0–100) and
40 spots for mixtures with intermediate concentrations of
both compounds (90–10, 75–25, 62.5–37.5, 50–50, 37.5–
62.5, 25–75, and 10–90).

3 | DATA ANALYSIS

3.1 | Selection of spectral parameters

The first step of data analysis consisted of the selection of
key spectral indicators for both Raman and LIBS data-
sets. To do so, the characteristic LIBS and Raman spectra
collected from the sample mixtures described in
Section 2.1 were first pre-processed (baseline correction
and intensity normalization) using the SpectPro soft-
ware.37,38 Afterwards, the same software was used to
evaluate the correlation between the dependence of char-
acteristic spectral features (peak position, intensity, etc.)
with the concentration ratio between calcite and hydro-
magnesite in the sample mixture. In order to optimize
the results in the subsequent chemometric model train-
ing, parameter selection was carried out through two dif-
ferent approaches. The first step was a data treatment, as
described in the introduction, based on PCA.39 Reducing
the dimensionality of the system to the first six PCs, we
described the system with fewer variables while explain-
ing 99.9% of the variance for Raman data and 98.7% for
the LIBS data. The selected PCs for each data set were
the selected variables for the different individual models
trained.

The second method for variable reduction involved
preprocessing of the spectral characteristics. Concerning
LIBS data, the emission lines that did not present self-
absorption, did not show overlaps, and show good corre-
lations ratio between their normalized intensities and
concentrations were chosen as key spectral parameters.
In total, 10 characteristic emission lines were selected,
5 of the Ca and 5 of the Mg, as can be seen in Figure 1.

As represented in Figure 2, the characteristic Raman
spectra of calcite present the main peak at 1,086 cm�1

and secondary peaks at 150, 282, and 712 cm�1. Simi-
larly, the spectra of hydromagnesite present peaks at
230, 327, 725, and 1,118 cm�1. Given the similarity
between the Raman spectra of the two mineral phases,
the reduction of Raman parameters was carried out using
an appropriate spectral feature selection algorithm. In
total, 10 spectral characteristics (intensity, position, width
at mid-height, Lorentzian/Gaussian, and area) of the
main peak of calcite and hydromagnesite were selected.
Once the LIBS and Raman spectral parameters were
selected, these characteristics were sequentially classified
using the Minimum Redundancy Maximum Relevance
(MRMR) algorithm to identify the six parameters that
best described the spectra for each technique.

3.2 | Machine learning methods for data
analysis

The identification and classification of spectroscopic data
to achieve chemometrics for planetary missions have
been one very active topic of research for years.40–43 Dif-
ferent approaches using multivariate data analysis and
machine learning algorithms have demonstrated good

FIGURE 1 LIBS spectra characteristic of Ca and Mg where the characteristic spectral emissions of these two elements are marked and

have been used as inputs to the analytical models developed.
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performance extracting quantitative information from
spectroscopic sources.31,32,44–48 In this work, once Raman
and LIBS variables were selected, we evaluated different
models generated using a set of machine learning algo-
rithms for regression, then evaluating and comparing the
goodness of such models. Specifically, four different tech-
niques based on machine learning methods have been
tested: GPR, SVMs, ensemble of trees, and ANNs with an
iteration limit set at 1,000 variables per layer. The tool
used for the training and evaluation of these methods
was the Regression Learner from Matlab™.

For the definition of the test set, we held out a 20% of
the data, using the 80% left for training and validation.
The validation method selected was the k-folding, in
which we separate the training set in k folds, performing
the training in k-1 folds and then using the one left for
validation, changing afterwards the selected fold to be left
out if training. During training, all methods used have
been Bayesian optimization type, using 30 iterations and
the expected improvement per second plus acquisition
function.

Focusing on data analysis, the different techniques
were applied for individual Raman and LIBS data,
obtaining eight different models for each technique with
their corresponding statistical parameters, which are R2

of the training dataset and the root mean square error
(RMSE) of validation and prediction sets (RMSEV and
RMSEP respectively). These parameters were used as
tools to describe, in the case of R2 the goodness of the fit
metric and in the case of, RMSEP the best performing
model in the test set.

The combination of data for the joint evaluation
based on both techniques was carried out using a concat-
enation algorithm, considering all the input variables
selected for each individual technique obtained when

performing the dimensional reduction. The combination
was made both including both the PCA data and the
selected spectral parameters. This combination ensured
that the resulting dataset contained complete and bal-
anced information on both techniques. Due to the
expanded number of variables in the resulting input vec-
tor compared to each individual dataset, we employed
the MRMR algorithm to identify the most relevant char-
acteristics. This algorithm assigned scores to each input
variable based on its connection to the analysis objective.
To avoid potential biases caused by differences in analyti-
cal fingerprints and different analysis points, we com-
bined all LIBS entries with each Raman entry for each
concentration sample, as was done in previous data com-
bining studies.31 The reduction process yielded six new
parameters for the combinations of PCA and spectral
parameters in each case, representing the combined
information from both techniques. Specifically, MRMR-
based reduction demonstrated that three of these param-
eters were associated with LIBS information while the
other three originated from information obtained
through Raman analysis. This comprehensive approach
allowed us to effectively integrate the strengths of both
LIBS and Raman spectroscopy and obtain valuable
insights for the joint analysis of the samples under study.

4 | RESULTS AND DISCUSSION

4.1 | Raman model

The chemometric analyses of the Raman dataset, using
both input sets, the one based on PCA and the one based
on spectral parameters, is presented in an actual versus
predicted plot (Figure 3), focusing on the calcite quantity

FIGURE 2 Raman spectra of binary mixtures with 100% calcium carbonate, 100% hydromagnesite, and tablet spectra with 50% CaCO3

and 50% Mg5 [OH (CO3)2]۰4H2O.
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prediction. Starting with the GPR, both for the PCA-
based model fitting parameters-model provided an equal
coefficient R2 value (0.99) and a similar RMSEP percent-
age (4.10 vs 4.16; see Table 2). Looking more in detail,
both models performed the worst in the middle region of

the prediction curve. In fact, the highest dispersion
occurs for samples with a calcite concentration ratio
between 40% and 60%. The model performed significantly
better for high calcite concentrations, while for low con-
centrations, the dispersion is slightly increased.

FIGURE 3 Estimation of the target

concentration in wt‰ for selected Raman test

samples. Each model is generated according to the

multivariate analytical method used, both for the

data processed by PCA and the preselection of

spectral parameters. (A) GPR, (B) ensemble of

trees, (C) SVM, and (D) ANN.
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On the other hand, the models trained using SVM
(Figure 3B) presented a R2 coefficient of 0.98 and 0.99,
respectively. Like the previous model, the error in the
estimation of results remain wider for intermediate con-
centrations. Additionally, unlike the previous model,
when preprocessing with PCA was performed, the disper-
sion of the data increased at the two ends of the predic-
tion curve. In contrast to this result, when SVM was used
on the spectral parameters, these variations at concentra-
tion extremes were not observed. As a result, this
approach allows a perfect distinction between samples
with a concentration of calcite-hydromagnesite below
5 wt% for high calcite concentrations.

Regarding the results for ensemble, the value of R2

was of 0.99. Figure 3C shows how this model presents
results with lower dispersion. Particularly noteworthy
was the measurement for 50 wt% of calcite, which
showed a significant reduction in the dispersion com-
pared to previous models. However, the dispersion at the
extremes was more significant than in both GPR models
obtained using GPR.

Regarding the ANN models, the regressions had R2 of
0.99. The reduced concentration dispersion for high cal-
cite concentrations allowed, similar to GPR, the distinc-
tion between 5 wt% of calcite in both models. For very
low calcite concentrations, the dispersion for the PCA-
based model was quite significant, making it impossible
to identify this compound when its concentration was
less than 10 wt%. When using the fitting parameters-
based model, low contents of calcite became detectable,
although the use of these spectral features complicated
the detectability of calcite in intermediate regions with
concentrations around 25–40 wt%, something achievable
in the model trained from PCs.

Across the eight trained models, a consistent overesti-
mation was observed at one of the data point where the
intended target concentration was 50 wt%, as the esti-
mated values centered around 80 wt%. This overestima-
tion pattern persisted uniformly for Raman test data.
However, it is worth noting that this discrepancy did not
impact the final outcome significantly. The statistical
analysis remained in good agreement with the expected
value for the complete dataset, underscoring the overall
resilience of the models despite the recurrent anomaly at
that specific point.

4.2 | LIBS model

Compared to Raman results, all LIBS models exhibited
very similar performance in regression (R2 is 0.99 in all
cases; see Table 2). As displayed in Figure 4, all models
ensured low dispersion of data at both high and low con-
centrations of calcite, except for the GPR and SVM models
when using PCA, where distinguishing low Ca concentra-
tion became difficult. Additionally, high concentrations of
calcite were also challenging to discriminate using the
spectral parameters data set. Overall, in the intermediate
region of the prediction curves, the dispersion of the
results has increased compared to the curves obtained
with Raman, with the dispersion of the test data often
overlapping, diminishing confidence in our models.

The regression metrics presented by each of these
models are shown in Table 2. Evaluating the degree of
variation in the test data, it can be observed that, for
ANN models, they provided the worst results in the test
set as they had the highest value of RMSEP compared to
the rest of the models. For the GPR and ensemble of trees

TABLE 2 Parameters in the

regression metric for the different

models for both processing (PCA and

fitting parameters) based on the

machine learning method used for the

Raman, LIBS, and combination dataset.

Regression metrics in machine learning

PCA

Raman LIBS Combination

R2 RMSEP (%) R2 RMSEP (%) R2 RMSEP (%)

Gaussian 0.99 4.10 0.99 3.31 0.99 3.65

SVM 0.98 5.35 0.99 2.95 0.98 5.03

Ensemble of trees 0.96 4.09 0.99 3.50 0.99 3.32

Neuronal networks 0.98 4.56 0.99 4.03 0.99 3.57

Spectra parameters

Raman LIBS Combination

R2 RMSEP (%) R2 RMSEP (%) R2 RMSEP (%)

Gaussian 0.99 4.16 0.99 2.81 1 1.67

SVM 0.99 4.34 0.99 3.16 1 2.42

Ensemble of trees 0.99 4.00 0.99 3.34 0.99 2.96

Neuronal networks 0.99 4.17 0.99 4.17 1 1.93
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models, the best results were obtained with the use of
PCA, while in the models obtained by SVM and ANN,
the spectral parameters data set yielded better results.
Even though the difference in dispersion in the LIBS

models for the intermediate concentration regions was
higher, the regression metrics have shown that the
models trained using LIBS data generate, globally, better
results than those obtained by Raman.

FIGURE 4 Estimation of targets

concentration in wt‰ for test samples selected

for LIBS data. Each model is generated

according to the multivariate analytical

method used, both for the data processed by

PCA and the preselection of spectral

parameters. (A) GPR, (B) ensemble of trees,

(C) SVM, and (D) ANN.
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4.3 | Combined Raman-LIBS model

The results derived from the application of the machine
learning methods to the combined Raman-LIBS dataset
are represented in Figure 5. The combination of Raman

and LIBS parameters provided a data set with more vari-
ables that were not redundant, as those variables come
from different techniques and different physical pro-
cesses. The increase in the variables used to analyze the
data causes the uncertainty of sample classification to

FIGURE 5 Estimation of targets

concentration in wt‰ for test samples

selected for data combination. Each model is

generated according to the multivariate

analytical method used, both for the data

processed by PCA and the preselection of

spectral parameters. (A) GPR, (B) ensemble

of trees, (C) SVM, and (D) ANN.
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decrease, this resulting in a general improvement in all
the trained models. Beyond the expected statistical effect,
this result underlined the complementarity of the infor-
mation provided by Raman and LIBS techniques upon
the prediction capability of the developed models. To pre-
vent the possible improvement from the fact that we had
more input variables available, we used, as described,
MrMR algorithm to select the top six variables from this
combined set. The algorithm selected three from each
data set in the top six, indicating the complementarity of
the techniques.

Analyzing in detail each of the resulting models, the
predictions obtained for both the GPR and ANN methods
(Figure 5A,D) provide improved results with a wide con-
fidence interval across the entire concentration range. In
both models, it was possible to distinguish with a high
degree of accuracy between samples ranging from 1–99
to 0–100 wt%. Within this range, and only when the cal-
cite concentration in the mixtures was very high (95–99–
100 wt%), we can say that the GPR-based technique using
spectra parameters presents more accurate and precise
values. However, the GPR model exhibits more signifi-
cant dispersion for intermediate concentrations over
ANN-based models.

The SVM and ensemble of trees models based on the
combined Raman-LIBS data analysis provided greater
data dispersion for extreme concentrations compared to
the previous models, except for the SVM model trained
with spectra parameters, where extreme values also gen-
erated results with good discrimination power. In partic-
ular, the graph represented in Figure 5C (ensemble
model with PCA) tends to underestimate the concentra-
tion of calcite above 90 wt%. Overall, all models exhibited
less dispersion than those obtained from LIBS data with
the same number of input parameters to be used. It is
worth noting that, when studying through PCA parame-
ters, all models showed a fairly scattered test result for a
concentration of 50 wt% calcite, similar to what was
observed with the Raman-trained models. This dispersion
completely disappeared when using filtered and selected
spectral parameters, as observed in Figure 5.

4.4 | Comparison of results

The regression metrics obtained from the application of
the machine learning methods to Raman, LIBS, and com-
bined Raman-LIBS datasets for both preprocessing
approaches are shown in Table 2. The results are repre-
sented as the mean in the concentration prediction for
each set of samples used for testing, depending on the
actual theoretical value of the concentration of each mix-
ture. Data analyses were performed for each individual

spectroscopic technique as well as for the combination of
both data sets. Summary metrics for the goodness of fit
of the different models are shown in Table 2, where R2 is
shown as a goodness of the regression fitting on the train-
ing set. The root mean square error of prediction
(RMSEP) has also been calculated to assess which model
performed best in the test set that would give a hint of
the expected accuracy using new data.

By combining the detailed results presented in Sec-
tions 4.1, 4.2, and 4.3 with the regression metrics pro-
vided in Table 2, it can be inferred that the content
prediction model based on the combined Raman-LIBS
dataset was always superior to that achieved solely by
Raman data when using spectral feature selection after
filtering characteristic parameters. However, when mea-
surements were performed using only PCA parameters,
the ensemble of trees and ANN models were slightly bet-
ter than those obtained solely from LIBS. The data com-
bination yielded improved results when employing GPR
and ANN based on spectral parameters. In these cases,
the regression coefficient was close to unity, while the
RMSEP value is below 2%.

5 | CONCLUSIONS

In this work, several chemometric methods have been
used to develop models for the analysis of Raman, LIBS,
and combined Raman-LIBS data for the evaluation of the
quantification capabilities in mineral binary mixtures.

Despite the apparent higher dispersion exhibited by
the models trained for LIBS compared to those of Raman,
the RMSEP calculated for the Raman models is greater
than that of LIBS or the combined data, indicating that
the concentration values estimated by these methods bet-
ter fit real values with higher precision. It is also impor-
tant to highlight that the detection limit and behavior of
the LIBS models improved for extreme concentration
values. Consequently, the LIBS models effectively distin-
guished samples with 0 and 1 wt% of calcite. Indeed,
Raman effect is fainter than the emission lines of an
induced plasma, and while we used different spectral
lines from LIBS, this could not be the case for Raman for
different reasons. First, the high difference in SNR from
the main band to secondary bands makes that in lower
concentrations, these bands would be confusing for the
training of models. On the other hand, in the scope of
this work, more focused on planetary exploration instru-
ments, these instruments show a limited Raman range
closer to the Rayleigh, as SHERLOC, or have lower SNR
that impairs the detection of secondary bands.

Furthermore, the use of the same number of input
variables in every case allowed us to infer that the models
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using spectral parameters generated better results than
PCA-based models, ensuring a lower RMSEP and R2

close to unity in all cases. In this particular case, it looks
like the selection by operator of the informative parame-
ters to be used outperforms the statistical definition of
variables through PCAs.

When analyzing the combined Raman-LIBS PCA
dataset, the results of all machine learning methods
improved significantly over all the models based on
Raman data alone. Data combination also displayed
improved results over LIBS dataset when Ensemble and
ANN are used. In detail, the RMSEP obtained in both
models is around 3%, this being slightly lower than the
RMSEP values obtained from the analysis of LIBS
(between 3.5 and 4%) or Raman (from 4 and 4.5%) data-
sets alone.

On the other hand, models trained using preproces-
sing with spectral parameters demonstrate how the com-
bination of Raman-LIBS data significantly improves
upon the data obtained from each individual technique,
achieving an RMSEP better than 2% and an R2 equal to
unity for models trained with Gaussian and neural net-
works. This result concurs with the previous observation
on the PCA based versus the spectral parameters-based
models, in this case on the combined data set. Combined
models could harness the best aspects of all variables,
having information from different techniques and physi-
cal effects, and the combined models outperformed those
based on individual datasets. PCA or spectral parameters
variables can be, at the end, reiterative beyond one point,
in the case of PCA, as we increase the number of PCs, we
reduce the variance associated with the new variables
added to the input set, introducing information that can
be confusing or just redundant. The use of variables from
the two techniques introduces more information that is
not redundant or confusing to the models, as is demon-
strated. Presented results demonstrate that the Raman-
LIBS data combination can enhance the quantification of
mineral abundance in binary mixtures, if the appropriate
machine learning method is employed.

Models performing best in the middle range of con-
centrations are the ones performing worst for the extreme
values. As such, an ensemble of trees models, assigning
weights to the prediction of each model depending on the
calculated concentration, could offer a good compromise
for the whole range of concentrations. This aspect will be
further evaluated in a future work, where blended
models could be used parting from predictions of differ-
ent models, as has been done for SuperCam.47

It is important to note that this research focused on
the study of mineral phases that are relatively easy to dis-
tinguish by both techniques. As such, the advantages pro-
vided by the combination of Raman and LIBS dataset

should further improve when analyzing more complex
mineralogical compositions (e.g., including the presence
of polymorphs, or solid solutions). For all this reasons,
the decision to utilize both techniques with an equal
number of parameters for each allowed us to leverage
their complementary strengths and obtain a more com-
prehensive and accurate understanding of the studied
samples.

As this work proved that the prediction based on
combined spectroscopic data enhances the mineral ratio
inferred by machine learning methods, the potential
application of such chemometric tools to the Raman-
LIBS data the SuperCam instrument is collecting on Mars
should be further explored. Beyond the Mars 2020 mis-
sion, and given the future development based on Raman
spectroscopy, the use of machine learning to combine
spectroscopic data of Raman with different techniques
could also find a reliable application to forthcoming plan-
etary missions, as is the case of the ESA Rosalind
Franklin mission.
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