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A B S T R A C T

The combined action of different equipment connected to an electrical installation is capable of causing un-
expected changes in the load kinds inside the installation; these load variations are responsible for some elec-
trical failures. In this paper a methodology to classify and to identify the load kinds in industrial environments is
presented. Energy power quantities (EPQ) and current values are used to establish indexes in order to use them
as features for a C-means algorithm and perform the load classification. The experimentation is done in a
healthcare facility gathering electrical data in different electric distribution boards. The results obtained from
the classification method show variations in the load behavior along the day. Furthermore, some classes can be
used to recognize equipment in the electrical installation for further inspection or failure detection.

1. Introduction

Electrical installations in residential and non-residential buildings
supply the energy to electrical loads that cause events in the electrical
signal [1–3] producing interference among elements that eventually
force disconnections from the grid. These events are directly related to
harmonic content, reactive loads and load distribution [4–6]; causing
signal waveform distortion, power factor reduction and imbalanced
lines. Consequently, electric bills can be increased and the production
lines could be affected. Therefore, the data analysis of electrical signals
is fundamental when the electrical installation performance is affected
by the different elements connected to it, and it is necessary to develop
methodologies for the electrical signals analysis in order to monitor the
load performance and take actions accordingly.

Some published works are focused on the analysis of electrical sig-
nals from residential buildings to forecast the power consumption or to
detect events in the electrical installation. For instance, some works are
centered in the use of non-intrusive methods to monitor events in
current signals, as in Cominola et al. [7] that developed an energy
disaggregation hybrid algorithm for load monitoring in order to im-
plement customized energy demand management strategies. Factorial
hidden markov models and iterative subsequence dynamic time
warping are used on real power consumption data sets for the energy
disaggregation. On the same path in [8], Taha et al. presented a study of

two-dimensional load signature for non-intrusive identification. They
use power consumption information to cluster switching events and to
implement wave-shape features for improving the predictions in non-
intrusive load monitoring. Whereas Huang et al. [9] proposed a new
method to improve the current waveform discrimination for non-in-
trusive appliance load monitoring. Their purpose is to decompose the
current waveform into active and nonactive current to discriminate
loads with similar indexes. The study cases in their work validate the
method reducing the likeness of similar appliances. In another example
focused on home applications, Corinne et al. [10] developed a non-
intrusive expert system for assistance in smart homes based on elec-
trical device identification. This work uses algorithmic approach to
analyze load signatures represented by active power, reactive power
and line-to-neutral, this way the proposed system can recognize erratic
behaviors. Nguyen et al. [11] proposed a real-time NIALM system, in-
tegrating a Field-programmable gate array aimed to give consumers
pertinent information about their residential power consumption. In
this work a Cumulative Sum is presented for the event detection and a
K-means algorithm for the event clustering. Abubakar et al. [12] per-
form a review of techniques and tools for the energy monitoring, in-
cluding intrusive load monitoring and non-intrusive load monitoring,
furthermore, they include analysis in measuring, communication and
recognition devices, besides optimization tools and control devices. In
their study, they reveal some issues to be attended as the load
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monitoring and load management with the aim of being able to re-
cognize as many kinds of loads as possible. Gillis and Morsi [13] pre-
sented a semi-supervised and wavelet design technique for NILM to
improve the process of learning the load pattern, they used co-training
in two machine learning classifiers to reduce contaminant signals and
automate the process of learning the load pattern. Bonfigli et al. [14]
proposed a NILM algorithm for home appliances using factorial hidden
markov models with reactive an active power measures in addition of
additive factorial approximate maximum a posteriori for the load dis-
aggregation, their algorithm can output the disaggregated profiles in
the active and reactive power components. Buddhahai et al. [15] pre-
sented a NILM for energy disaggregation implementing label classifi-
cation, they used basic electrical parameters as current, active power
and reactive power from a load distribution in a house to be analyzed
through machine learning process and finally deliver a predictive per-
formance for appliance loads.

On the other hand, some researches are centered on computing the
energy power quantities (EPQ) as the active power aimed to forecast
the power consumption in residential and non-residential buildings in
order to reduce power consumption. For instance, Roger and Ian [16]
developed energy consumptions benchmarks using energy signatures
derived from daily energy consumption. The aim in this work is to
produce control charts and diagnostic information for air-conditioned
buildings; the results show that the daily signatures can generate robust
energy consumption benchmarks compared to monthly or weekly en-
ergy signatures. For non-residential buildings, Vaghefi et al. [17] de-
veloped a data driven to forecast the power consumption with one day
of anticipation. Machine learning is used to analyze historical power
consumption data to make predictions about future patterns. They
conclude that the controllable loads such as lighting, heating, ventila-
tion and air conditioning can be used to lower a fraction of total power
consumption. [18], Yulkseltan et al. analyzed the electrical consump-
tion of three years from Turkish power market using a linear regression
model in order to predict the demand over daily and weekly horizons.

The large quantity of data derived from the monitoring of different
processes can be confusing and difficult to analyze. For this reason,
artificial intelligence is recently used to cluster elements with simila-
rities in data sets [19–21]. According to the aforementioned works,
several studies are aimed at classifying electrical events and to re-
cognize load patterns with artificial intelligence methodologies. For
instance, Rafferty et al. [22] presented a method for detection and
classification of multiple events in an electrical power system in real-
time. Moving window is used to provide thresholds for event detection
in real events recorder from the U.K. power system and a principal
component analysis is used to discriminate between the events found.
[23], Ming et al. developed a method to classify partial discharge events
in gas insulated load break switches using probabilistic neural networks
and fuzzy C-means as a sorter. This work is available to diagnose dif-
ferent defect models. Likewise, but improving the aforementioned
method, Abubakar et al. [24] presented a technique for classifying
partial discharge patterns using ensemble neural network learning with
six neural network models. This technique improves the classification
performance in comparison with a single neural network using the same
testing and data sets. Similarly, Ali et al. [25] proposed a hybrid al-
gorithm for power quality (PQ) disturbances detection using variational
mode decomposition and S-transform to improve the accuracy in fea-
ture extraction. Finally, their proposed method uses support vector
machines to classify the PQ events.

The aforementioned works are mostly focused onto data analysis in
residential electrical installations for monitoring events in current sig-
nals to forecast the power consumption and to recognize patterns in the
power consumption information. Moreover, the data window for the
data processing is too large and the low power events are ignored,
especially in non-residential buildings where the connection to plug
loads is uncontrollable. At the same time, the relationship of the dif-
ferent load kinds with the equipment in an electrical installation

remains unexplored.
This paper proposes a methodology based on a high resolution

machine learning sorter, capable of processing data with a ten-second
data window to identify low-power events and to classify the load kind
present in non-residential electrical installations, no matter the number
of elements connected to the installation. The events can be related to
the loads presented in the line through the power consumption indexes
to assist the management decisions based on the load performance of
the electrical installation. The proposed methodology consists in com-
puting EPQ from acquired data and to find events in the signal through
statistical processes; afterwards, a C-means algorithm classifies the
events accordingly to their load kind and EPQ. Finally, the classified
events are located in a daily timeline with a ten-second resolution in
order to show the load performance along the day. The methodology is
validated using a test bench with resistive, capacitive and inductive
loads. The experimentation is carried out in a healthcare facility in the
region of Castilla y Leon (Spain).

2. Theoretical background

The recommended definitions for the measurement of electric
power quantities (EPQ) are defined in the international standard [26],
in order to quantify the flow of electrical energy under sinusoidal,
nonsinusoidal, balanced and unbalanced conditions. The cluster ana-
lysis (C-means algorithm) allows classifying groups of data with similar
characteristics according to the given features.

2.1. Electric power quantities

The active power (P) of any electrical installation in a time period t
is given by

∫=
+

P
kT

p t dt1 ( )
τ

τ kT

(1)

where T is the cycle time, k is a positive integer number, τ is the mo-
ment when the measurement starts and p(t) is the product of voltage v
(t) and current i(t).

The apparent power (S) is the amount of active power that can be
supplied to a load under ideal conditions and is given by

=S V I· (2)

where V is the root mean square (RMS) value of the voltage and I is the
RMS value of the current.

The reactive power (Q) is given by

= −Q S P2 2 (3)

The total harmonic distortion (THD) is an indicator of non-linear
loads connected to the electrical installation and is given by
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where IH is the current RMS value of the harmonic frequency, I1 is the
RMS value of the fundamental frequency

Power factor (PF) is defined as the relation between P and S powers
as follows

=PF P
S (5)

2.2. C-means algorithm

C-means is a cluster technique for data classification based on the
minimization of the objective function (Jm) as follows
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where D is the number of data points, N is the number of clusters, m is
the fuzzy partition matrix exponent, xi is the ith data point, cj the center
of cluster, and µij is the degree of membership for the jth given data
point, this value is stored in a fuzzy partition matrix (µ) as follows

=

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

μ

μ μ μ
μ μ μ

μ μ μ

j

j

i i ij

11 12 1

21 22 2

1 2 (7)

where the sum of the membership values for all clusters is one.

3. Methodology

The main purpose of this work is to classify the different load kinds
present in non-residential electrical installations and to relate them to
the elements connected to the installation in a given time. Fig. 1 depicts
the proposed methodology. The voltage and current signals used in this
work are acquired in a continuous way during 24 h at 8 Ksps. The sig-
nals are processed daily in time stamps of ten seconds to compute Irms,
Vrms and EPQ as P, Q, THD and PF. In this work C-means is used as a
cluster method because it is an unsupervised method for exclusive
clustering, where each element in a group of data is grouped with the
elements of its own cluster according to a membership degree, this

membership degree can be used as a feedback to make sure that the
elements in a group are highly related with the rest in the same group
and adjust the clustering parameters in consequence.

Once the data are acquired, the first part of the methodology con-
sists in defining three different configuration parameters: the number of
standard deviations for the event detection (DN); the maximum number
of classes to be created (NC); and the membership degree of the ele-
ments in the μ matrix (MD). Afterwards, it is necessary to process the
current and voltage data to compute their RMS values and store them in
two vectors; then, a rolling window method is used to find events in the
current signal according to the standard deviation (σ) as follows
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where u is the mean of the window data, N and M are the window size
and the data size respectively.

A current RMS (Irms) value is recognized as an event when the
difference between the value of one sample and another next to it is
more than DN times the sample standard deviation. Once the current
events are located, the electric power quantities (EPQ) as P, Q, S, PF and
THD are computed for each event and stored in data vectors.

The EPQ values are used to define the features by implementing the
C-means algorithm for the load classification. For this work three dif-
ferent features are used, first one (F1) is a proposed EPQ weighing as a
load kind indicator as shown in (9)

=F Q
S PF

S· 1 ·
m

θ1 (9)

where Sθ is the angle sign between the voltage and current signal and
Q/Sm is a ratio to normalize the reactive power Q as an indicator of the
presence of inductive and reactive loads and the maximum value that
the apparent power can take Sm; this feature is used to identify the load
kind at the event analyzed. Second feature (F2) is the THD computed
until the 25th harmonic from the acquired current data according to (4)
from each found event; according to the aim of the methodology, it is
important to mention that THD gives information about the presence of
non-linear loads in the signal, for this reason is chosen as a feature for
the C-means algorithm. The last feature (F3) is an Irms index used due
to the currents signal can be affected for the load kind and is given by

=
−

F Irms
Irms Irms

Δ
3

max min (10)

where Irmsmax is the maximum value of the Irms vector and Irmsmin is
the minimum value of the Irms values in the time stamp, ΔIrms indicates
the change in the Irms magnitude between one element and the pre-
vious one. About the used features, F1 provides information about the
load kind in the time when the installation is analyzed, F2 gives in-
formation of the presence of non-linear loads in the signal, and in F3 the
current is the signal that can change owing to the load kind.

Besides the extracted features, in order to implement the C-means
algorithm it is necessary to define the number of classes to be created.
For this propose the C-means algorithm is run several times in-
crementing the number of classes to be originated until the degree of
membership of the elements in the µ matrix be higher than MD. The
cases in which this requirement is not accomplished are stored as in-
cidences. When the membership degree is reached, the number of
classes resulted are chosen for the classification. However, if the C-
means algorithm reaches NC and MD is not achieved, the number of
classes with fewer incidences is chosen to be used for the event clas-
sification.

Finally, the classification is executed and the classes obtained by the
C-means algorithm are shown in a 3D graph and in a day time line.
Furthermore, the classes are shown according to their behavior features
to relate them to the equipment connected to the installation, besides

Fig. 1. Methodology.
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that, a time line shows the time percentage taken for each class in each
hour of the 24 h monitoring period.

Resuming the proposed methodologies, rolling window can search
values of interest in a data vector, for this work, it is used to find events
in the current signal in concordance to the standard deviation of the
signal. The energy power quantities give information about the elec-
trical installation condition; in this work the power quantities provide
the information of the load behavior in a given time. C-means is an
unsupervised cluster method to divide a data set in similar groups of
data and in this case is used to group different types of loads according
to the proposed features.

4. Experimentation

The experimentation is carried out in two different stages: the first
in a laboratory test using one test bench with known loads in order to
validate the methodology and the C-means classification. The second
one is made in a healthcare facility to prove the methodology in a real
non-residential environment. For the data acquisition task, a proprie-
tary equipment able to acquire signals from seven simultaneous chan-
nels at 8000 samples per second with a 16-bit resolution is used. Four
channels are dedicated to 1A–1000A current measurements in several
available ranges and three to 100 V–600 V voltage measurements. The
requirements to apply this method are any system with 2.3 GHz two-
core processor and at lease 4 Gb of RAM memory. DN is used in the
events searching process, as a gain for the standard deviation value to
store the maximum number of found events, in this case, a DN=0.5 is
proposed, but this value can be changed according to the current value
in the installation. NC is the highest number of classes can be created,
and accordingly to the experimentation the creation of maximum eight
classes increment the membership degree in the elements of each class,
for this reason, a NC=8 is proposed. MD is the minimum wanted
membership degree for the elements in each class, in this case,
MD=0.8 is proposed which represents a membership degree of 80%.
The aforementioned values maximize the number of found events and
classes in the C-means algorithm. The current and voltage data acqui-
sition is done in a ten-minute time stamp with an 8 kilo samples per
second of sampling frequency.

4.1. Laboratory test for methodology validation

For the methodology validation, a laboratory test bench shown in
Fig. 2 consisting of three balanced star-connected to a 50 Hz, 230Vac is
used. The loads are purely resistive of 71Ω, purely capacitive of 75 µF,
and mostly inductive of 560mH. The test is done using current and
voltage clamps for the data acquisition in the test bench to process it
according to the aforementioned methodology in order to prove if the
classification made by the C-means sorter is congruent with the loads
presented in the test bench.

4.2. Health care facilities

The data acquisition for the experimentation is done in a healthcare
facility in the region of Castilla y Leon (Spain); this facility is a modern
hospital construction with a round of 600 beds. The electrical in-
stallation has a three-phase configuration, but the lines feed different
kinds of areas with different elements connected to the installation, for
this reason the analysis is done with single phase measurements to
obtain individual loads for each line. Data acquisition is done in a few
load distribution boards in order to record the maximum number of
load variations due to the action of switching power supplies, plug
loads and medical equipment. A proprietary data acquisition system
(DAS) is installed at the main board labeled as CG3. From this board,
there are fourteen secondary boards connected from which the sec-
ondary boards CS301 and CS321 are chosen for monitoring. A second
DAS system is connected to the secondary board CS301 that feeds some
halls, electric plugs and warehouses; and a third DAS is connected to
the secondary board CS321, which feeds commune zones and halls. The
equipment installation is shown in the Fig. 3. For this work the input
parameters are DN=0.5, NC=8 and MD=80.

To process the acquired data, one day of samples is divided in ten-
second time stamps to obtain approximately 8640 samples with 80,000
values each one. The rolling window method according to (8) and the
EPQ are applied and computed from these samples, respectively. Fur-
thermore, the THD is computed following (4) until the 25th signal
harmonic.

5. Results

The obtained results are presented firstly with the methodology
validation from the acquired data at the laboratory test bench. Finally
the results from the data analysis in the healthcare facility in the gen-
eral board CG3 and the secondary boards CS301 and CS321 are pre-
sented.

5.1. Test bench for methodology validation

Fig. 4 shows the classification results obtained for the validation
process. Fig. 4(a) depicts the classes generated for the loads used in the
test bench, where the centroids for the classification are represented
with mark (x) in different colors (one color for each class), and the lines
are the coordinates of the centroids in the (F1, F2) plane. In Fig. 4(a) the
F1 axis depicts the load kind where the negative side is for capacitive
loads and the positive side for inductive loads. F2 axis is the harmonic
content percentage and the F3 axis is the Irms difference between one
event and the other before it. The red elements in the negative F1 side
are capacitive loads, the green ones in the positive side are the in-
ductive loads and the orange ones closer to the zero value are the re-
sistive loads. Fig. 4(b) shows the signal waveform for the three different
kinds of loads, where the current signals have the same color that the C-
means classification in Fig. 4(a) and the voltage signals are presented in
black. In Fig. 4(b) the current signal (red) shows the delay regarding theFig. 2. Test bench for the validation test.

Fig. 3. DAS installation in board CS631.
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voltage signal (black) corresponding to the capacitive load, whereas the
current signal (green) is lagging the voltage (black) corresponding to
the inductive load, and the current signal for the resistive load (orange)
is overlapping the voltage and cannot be viewed.

5.2. Healthcare facility

The results obtained in the healthcare facility are divided into two
sections, the first section shows the results obtained by the C-means
classification and the second one the relationship between the gener-
ated classes and the equipment connected to the electrical installation
in the analyzed boards.

5.3. Data analysis

Fig. 5 depicts the events located in the current signal according to
(8) in the 24 h lapse of data acquisition. The red line in Fig. 5(a)–(c) is
the threshold value of the standard deviation median value of the all
signals and the blue lines are the standard deviation values for each ten-
second time stamp. Fig. 5(a) shows the main board CG3, Fig. 5(b) and
(c) show the secondary board SB301 and the secondary board CS321,
respectively.

The resulting classes from the C-means classification are shown with
different colors in a 3D graph, where, the F1 axis depicts the load kind
in which the negative side is for capacitive loads and the positive side
for inductive loads. F2 axis is the harmonic content percentage and the
F3 axis is the Irms difference between one event and the other before it.
Moreover the centroid for each class is represented with a mark (x) and

projected in the (F1, F2) plane with a vertical line. Besides the 3D graph,
the results are shown in time lines where the classes are represented
with the same color as the 3D graph and the Irms value are shown in
black, and one chart where the class behavior is illustrated according to
the used features.

The main board CG3, Fig. 6(a), has four classes with high percen-
tage of resistive loads. However, these classes are differentiated from

Fig. 4. Results for the validation process: (a) test bench generated classes, and
(b) three different kind of loads, capacitive, resistive and inductive.

Fig. 5. Events detected, the blue lines are the RMS values for each time stamp
and the red line is the all signal standard deviation value: (a) main board CG3,
(b) secondary board SB301, and (c) secondary board CS321. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Results for the CG3: (a) C-means classification, and (b) classes along the
time.
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each other due to their THD and Irms values, respectively. The high
THD in class C2 and C3 are due to the action of switching power sup-
plies in the commune zones and the medical bay. The class C1 and C4
are differentiated by the Irms value. The time chart for the CG3 Fig. 6(b)
shows that from the 7 to the 19 h the classes are more variable at the
time.

For the secondary board CS301, Fig. 7(a), the elements are more
dispersed and the number of generated classes is higher than the main
board CG3. The class C6 shows elements with the presence of inductive
loads and the rest of classes show elements with resistive loads but with
different percentage of harmonic content. The time chart for the sec-
ondary board CS301 in Fig. 7(b) shows the change from resistive to
inductive loads at the 6:00 and 21:00 h approximately; besides 8:00 and
23:00 h the loads return to be resistive. According to the electric
blueprints this behavior is surely caused by the action of some AC
motors connected in the warehouse areas.

The secondary board CS321, Fig. 8(a), is one with the most dis-
persed elements for the classification and in consequence the created
classes are larger. The inductive loads present in C5 and C8 can be
related to the activity of cleaning and maintenance equipment used in
the common zones. C1 and C6 are the classes with more presence of
THD, and C3 is a class with balanced loads and very low harmonic
content. The time chart in the secondary board CS321 from Fig. 8(b) is
more homogenous due to the data dispersion and the generated classes.
However, it is possible to identify four principal time groups.

5.3.1. Classes and equipment relation
Fig. 9 shows the behavior of each generated class according to the

features used in the C-means classification. An ID number over the bars

shown in Fig. 9(a)–(c) is generated as electric signature for each class
through the feature median values summation. Furthermore, Fig. 9
shows the time percentage for each hour in the 24 h lapse of data ac-
quisition.

The classes in the main board CG3 from Fig. 9(a) show a similar
level of F2 and F1 with different variations in F3. The positive increases
in F3 indicate the rise in the use of devices connected to the main board,
and the negative increase is in accordance with the devices dis-
connection. Fig. 9(d) shows high activity from 7 h to 20 h; this is in
concordance with the working hours in cardiology, medical con-
sultants, and common zones. According to the behavior shown in
Fig. 9(a) and the activity in Fig. 9(d), the classes C2 and C3 must be
associated with the use of specialized medical equipment, C1 with
computer equipment and C4 with vending machines and lights.

For the secondary board CS301 in Fig. 9(b), the classes from C1 to
C5 show very high levels in F2 and values close to zero for F1; this
behavior is narrowly related to the usage of switching power supplies.
The F1 increment in the class C6 suggest the presence of inductive loads
connected to the use of AC motors. In Fig. 9(e) the classes C1 and C5
show the connection and disconnection of equipment from 6 h to 18 h.
Furthermore the inductive loads presence are divided in two periods
one from 5 h to 6 h and another from 21 h to 23 h; this can be correlated
to the functions of the maintenance personal in the warehouses.

Fig. 9(c) shows high variations in F2 and F3 between some classes.
For the C1 and C6 classes the increment in F2 must be linked to the
action of the electric ballast in halls and hallways. The classes C5 and
C8 can be associated with the equipment used for the cleaning task in
the halls and common zones. Furthermore, C2 and C4 classes show the
on-off function of vending machines in the halls. In Fig. 9(f) it is pos-
sible to identify the working hours for the personal from 8 h to 18 h

Fig. 7. Results for the CS301: (a) C-means classification, and (b) classes along
the time.

Fig. 8. Results for the CS321: (a) C-means classification, and (b) classes along
the time.
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where the presence of different classes is evident. From 1 h to 7 h and
from 18 to 24 h the increment in the usage of lights is also evident.
Moreover, from 15 h to 17 h the very high presence of the class C5
suggests the closing in some areas for the maintenance or cleaning
tasks.

The present method uses an unsupervised C-means algorithm for
data clustering, as a difference of others using neural networks or
support vector machines for data classification. In comparison with
neural networks as the competitive learning, the clustering results are
similar in the location of the centroids for the generated groups, how-
ever, competitive learning does not have a membership degree as a
feedback about the similitude between the elements in one group, and
the members for each centroid are not identified, the Fig. 10 shows the
clustering results for the secondary board CS301 using neural networks.
On the other hand, support vector machine is a supervised method and
needs to be trained with a data set that contains the expected results.
Furthermore, in the present methodology the continuous voltage and
current signals acquisition, and the proposed features to classify the
identified events, gives the method the possibility of identifying the
load behavior along the day.

6. Conclusions

In this paper a novel non-intrusive methodology is presented to
classify the loads found in an electrical installation. The proposed
methodology allows identifying low power events due to the time
stamp size. With the EPQ integration, it is possible to classify the load
kinds in an electrical installation for a given period of time. Moreover, it
is possible to relate the classes resulted from the C-means classification
with equipment in the installation and assign them an electric sig-
nature. Additionally, due to the variations in the dispersion of the se-
lected features in each secondary board, the C-means algorithm results

an ideal tool to make the clustering according to the different degrees of
membership.

For the cases analyzed in this work the main board presents a higher
percentage of resistive loads. However, in the analysis made over the
secondary boards the presence of inductive loads is evident, especially
in the secondary boards connected to areas with plug loads such as
common zones in medical bays and public access halls. Besides ana-
lyzing the behavior of the generated classes, it is possible to identify the
on-off action of several devices connected to the installation.

In contrast to most recently published works, the proposed metho-
dology can be applied in non-residential buildings. The event

Fig. 9. Class behavior and class percentage: (a) CG3 class behavior, (b) CS301 class behavior, (c) CS321 class behavior, (d) CG3 class percentage per hour, (e) CS301
class percentage per hour and (f) class percentage per hour.

Fig. 10. Results for the CS301 with Neural Network Competitive Learning.
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classification is focused on the load kinds in the installation and related
with the equipment connected to it. The use of a proprietary data ac-
quisition system allows the acquisition of a great deal of raw current
and voltage data to be processed.

Some limitations presented in this work could be the manual adjust
of the entry parameters DN and NC, for a future work, it could be in-
teresting to implement an algorithm for the self-adjustment of these
parameters.

Acknowledgments

The authors want to thank the Administration Board of Sanidad de
Castilla y Leon (SACYL) for providing the access to the healthcare fa-
cilities. This project was supported in part by the National Council of
Science and Technology (CONACYT), Mexico, under scholarship
487612; SEP-CONACyT 222453-2013 grant, FOMIX QRO-2014-C03-
250269 grant, and FOFIUAQ-FIN201613 grant.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.ijepes.2018.06.040.

References

[1] Lovett T, Lee JH, Gabe-Thomas E, Natarajan S, Brown M, Padget J, et al. Designing
sensor sets for capturing energy events in buildings. Build Environ 2016;110:11–22.
http://dx.doi.org/10.1016/j.buildenv.2016.09.004.

[2] Basu K, Debusschere V, Douzal-Chouakria A, Bacha S. Time series distance-based
methods for non-intrusive load monitoring in residential buildings. Energy Build
2015;96:109–17. http://dx.doi.org/10.1016/j.enbuild.2015.03.021.

[3] Di Giorgio A, Pimpinella L. An event driven Smart Home Controller enabling con-
sumer economic saving and automated Demand Side Management. Appl Energy
2012;96:92–103. http://dx.doi.org/10.1016/j.apenergy.2012.02.024.

[4] Senra R, Boaventura WC, Mendes EMAM. Assessment of the harmonic currents
generated by single-phase nonlinear loads. Electr Power Syst Res 2017;147:272–9.
http://dx.doi.org/10.1016/j.epsr.2017.02.028.

[5] Sainz L, Balcells J. Harmonic interaction influence due to current source shunt fil-
ters in networks supplying nonlinear loads. IEEE Trans Power Deliv
2012;27:1385–93. http://dx.doi.org/10.1109/TPWRD.2012.2187314.

[6] Gwon G-H, Kim C-H, Oh Y-S, Noh C-H, Jung T-H, Han J. Mitigation of voltage
unbalance by using static load transfer switch in bipolar low voltage DC distribution
system. Int J Electr Power Energy Syst 2017;90:158–67. http://dx.doi.org/10.1016/
j.ijepes.2017.02.009.

[7] Cominola A, Giuliani M, Piga D, Castelletti A, Rizzoli AE. A hybrid signature-based
iterative disaggregation algorithm for non-intrusive load monitoring. Appl Energy
2017;185:331–44. http://dx.doi.org/10.1016/j.apenergy.2016.10.040.

[8] Hassan T, Javed F, Arshad N. An empirical investigation of V-I trajectory based load
signatures for non-intrusive load monitoring. IEEE Trans Smart Grid 2014;5:870–8.
http://dx.doi.org/10.1109/TSG.2013.2271282.

[9] Huang TD, Wang WS, Lian KL. A new power signature for nonintrusive appliance
load monitoring. IEEE Trans Smart Grid 2015;6:1994–5. http://dx.doi.org/10.
1109/TSG.2015.2415456.

[10] Belley C, Gaboury S, Bouchard B, Bouzouane A. Nonintrusive system for assistance
and guidance in smart homes based on electrical devices identification. Expert Syst
Appl 2015;42:6552–77. http://dx.doi.org/10.1016/j.eswa.2015.04.024.

[11] Nguyen TK, Dekneuvel E, Jacquemod G, Nicolle B, Zammit O, Nguyen VC.
Development of a real-time non-intrusive appliance load monitoring system: an
application level model. Int J Electr Power Energy Syst 2017;90:168–80. http://dx.
doi.org/10.1016/j.ijepes.2017.01.012.

[12] Abubakar I, Khalid SN, Mustafa MW, Shareef H, Mustapha M. Application of load
monitoring in appliances’ energy management – a review. Renew Sustain Energy
Rev 2017;67:235–45. http://dx.doi.org/10.1016/j.rser.2016.09.064.

[13] Gillis JM, Member S, Morsi WG. Non-intrusive load monitoring using semi-su-
pervised machine learning and wavelet design 2017;8:2648–55.

[14] Bonfigli R, Principi E, Fagiani M, Severini M, Squartini S, Piazza F. Non-intrusive
load monitoring by using active and reactive power in additive Factorial Hidden
Markov Models. Appl Energy 2017;208:1590–607. http://dx.doi.org/10.1016/j.
apenergy.2017.08.203.

[15] Buddhahai B, Wongseree W, Rakkwamsuk P. A non-intrusive load monitoring
system using multi-label classification approach. Sustain Cities Soc
2018;39:621–30. http://dx.doi.org/10.1016/j.scs.2018.02.002.

[16] Hitchin R, Knight I. Daily energy consumption signatures and control charts for air-
conditioned buildings. Energy Build 2016;112:101–9. http://dx.doi.org/10.1016/j.
enbuild.2015.11.059.

[17] Vaghefi A, Farzan F, Jafari MA. Modeling industrial loads in non-residential
buildings. Appl Energy 2015;158:378–89. http://dx.doi.org/10.1016/j.apenergy.
2015.08.077.

[18] Yukseltan E, Yucekaya A, Bilge AH. Forecasting electricity demand for Turkey:
modeling periodic variations and demand segregation. Appl Energy
2017;193:287–96. http://dx.doi.org/10.1016/j.apenergy.2017.02.054.

[19] Du Z, Fan B, Jin X, Chi J. Fault detection and diagnosis for buildings and HVAC
systems using combined neural networks and subtractive clustering analysis. Build
Environ 2014;73:1–11. http://dx.doi.org/10.1016/j.buildenv.2013.11.021.

[20] Mostafavi N, Farzinmoghadam M, Hoque S. Urban residential energy consumption
modeling in the Integrated Urban Metabolism Analysis Tool (IUMAT). Build
Environ 2017;114:429–44. http://dx.doi.org/10.1016/j.buildenv.2016.12.035.

[21] Benmouiza K, Tadj M, Cheknane A. Classification of hourly solar radiation using
fuzzy c-means algorithm for optimal stand-alone PV system sizing. Int J Electr
Power Energy Syst 2016;82:233–41. http://dx.doi.org/10.1016/j.ijepes.2016.03.
019.

[22] Rafferty M, Member S, Liu X, Laverty D, Mcloone IS. Real-time multiple event de-
tection and classification using moving window PCA. IEEE Trans Smart Grid
2016;7:1–12. http://dx.doi.org/10.1109/TSG.2016.2559444.

[23] Su M-S, Chia C-C, Chen C-Y, Chen J-F. Classification of partial discharge events in
GILBS using probabilistic neural networks and the fuzzy c-means clustering ap-
proach. Int J Electr Power Energy Syst 2014;61:173–9. http://dx.doi.org/10.1016/
j.ijepes.2014.03.054.

[24] Abubakar A, Abubakar Mas’Ud A, Stewart BG, McMeekin SG. Application of an
ensemble neural network for classifying partial discharge patterns. Electr Power
Syst Res 2014;110:154–62. http://dx.doi.org/10.1016/j.epsr.2014.01.010Review.

[25] Abdoos AA, Khorshidian Mianaei P, Rayatpanah Ghadikolaei M. Combined VMD-
SVM based feature selection method for classification of power quality events. Appl
Soft Comput 2016;38:637–46. http://dx.doi.org/10.1016/j.asoc.2015.10.038.

[26] Fluke Corporation, Three-Phase Power Quality and Energy Analyzers, Fluke Co.,
Everret, WA, USA, 2012. doi: https://doi.org//10.1109/IEEESTD.2010.5439063.

E. Guillén-García et al. Electrical Power and Energy Systems 104 (2019) 21–28

28

http://dx.doi.org/10.1016/j.ijepes.2018.06.040
http://dx.doi.org/10.1016/j.buildenv.2016.09.004
http://dx.doi.org/10.1016/j.enbuild.2015.03.021
http://dx.doi.org/10.1016/j.apenergy.2012.02.024
http://dx.doi.org/10.1016/j.epsr.2017.02.028
http://dx.doi.org/10.1109/TPWRD.2012.2187314
http://dx.doi.org/10.1016/j.ijepes.2017.02.009
http://dx.doi.org/10.1016/j.ijepes.2017.02.009
http://dx.doi.org/10.1016/j.apenergy.2016.10.040
http://dx.doi.org/10.1109/TSG.2013.2271282
http://dx.doi.org/10.1109/TSG.2015.2415456
http://dx.doi.org/10.1109/TSG.2015.2415456
http://dx.doi.org/10.1016/j.eswa.2015.04.024
http://dx.doi.org/10.1016/j.ijepes.2017.01.012
http://dx.doi.org/10.1016/j.ijepes.2017.01.012
http://dx.doi.org/10.1016/j.rser.2016.09.064
http://refhub.elsevier.com/S0142-0615(18)30594-5/h0065
http://refhub.elsevier.com/S0142-0615(18)30594-5/h0065
http://dx.doi.org/10.1016/j.apenergy.2017.08.203
http://dx.doi.org/10.1016/j.apenergy.2017.08.203
http://dx.doi.org/10.1016/j.scs.2018.02.002
http://dx.doi.org/10.1016/j.enbuild.2015.11.059
http://dx.doi.org/10.1016/j.enbuild.2015.11.059
http://dx.doi.org/10.1016/j.apenergy.2015.08.077
http://dx.doi.org/10.1016/j.apenergy.2015.08.077
http://dx.doi.org/10.1016/j.apenergy.2017.02.054
http://dx.doi.org/10.1016/j.buildenv.2013.11.021
http://dx.doi.org/10.1016/j.buildenv.2016.12.035
http://dx.doi.org/10.1016/j.ijepes.2016.03.019
http://dx.doi.org/10.1016/j.ijepes.2016.03.019
http://dx.doi.org/10.1109/TSG.2016.2559444
http://dx.doi.org/10.1016/j.ijepes.2014.03.054
http://dx.doi.org/10.1016/j.ijepes.2014.03.054
http://dx.doi.org/10.1016/j.epsr.2014.01.010Review
http://dx.doi.org/10.1016/j.asoc.2015.10.038

	Identification of the electrical load by C-means from non-intrusive monitoring of electrical signals in non-residential buildings
	Introduction
	Theoretical background
	Electric power quantities
	C-means algorithm

	Methodology
	Experimentation
	Laboratory test for methodology validation
	Health care facilities

	Results
	Test bench for methodology validation
	Healthcare facility
	Data analysis
	Classes and equipment relation


	Conclusions
	Acknowledgments
	Supplementary data
	References




