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a b s t r a c t

As the number of wastewater treatment plants (WWTPs) has increased, the economics

associated with their management have become more relevant. The efficiency assessment

is therefore a useful tool for cost reduction. For this purpose, Data Envelopment Analysis

(DEA) is a highly suitable technique, since it is a holistic approach that aggregates perfor-

mance indicators into a single index. However, one of the most common criticisms of DEA

models is that information on uncertainty estimates is not provided. To overcome this

limitation, we assess efficiency by using a DEA model with statistical tolerances for both

inputs and outputs. This model is applied to a sample of Spanish WWTPs. The results show

that WWTP efficiency scores change when data modifications are incorporated. In addition,

we verify that not all WWTPs have the same sensitivity with respect to changes in the inputs

and outputs. Moreover, WWTPs are ranked in terms of efficiency, allowing the identification

of facilities with the best practices, which will serve as a reference for minimizing operating

costs at other plants. This empirical application illustrates that the combination of the DEA

model with uncertainty assessments provides more robust results, leading to more reliable

conclusions than traditional DEA. From a policy perspective, the incorporation of uncer-

tainty in the DEA model with tolerances allows future performance of the WWTPs to be

predicted and ranked, demonstrating the usefulness of this approach.
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1. Introduction

Environmental quality and sustainable development have

been increasingly recognized as real social needs, which has

led to the development of regulation instruments and

legislation for environmental protection by industrialized

countries. Thus, Directive 91/271/EEC concerns the collection,

treatment, and discharge of urban wastewater. The objective

of the Directive is to protect the environment from the adverse

effects of wastewater discharge. This Directive has resulted in

a dramatic increase in the number of wastewater treatment

plants (WWTPs) in all European Union Member States over the

last two decades.
* Corresponding author. Tel.: +34 963828398; fax: +34 963828370.
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Despite the environmental benefits associated with the

wastewater treatment process (Hernández-Sancho et al.,

2010), it involves high costs for all society (Molinos-Senante

et al., 2010). For example, in Spain the total cost of sewage

services is estimated at 1415.3 million euros per year, or

roughly 0.2% of GDP. Likewise, the cost of the recovery rate of

this service is estimated to be around 85% (MARM, 2011).

As a consequence, WWTP managers are under ever

increasing pressure to tighten control and improve the

pollutants removal efficiency, especially when discharged

into sensitive areas, while at the same time restricting costs.

Efficiency is directly linked to cost containment and cost

reduction (Zhang et al., 2011). The surprising fact is that, while

the measure of efficiency is a long-standing issue of study in
d.
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the field of economics, its implementation in the field of

wastewater treatment remains very low. A review of the

efficiency literature indicates that most existing studies

remain limited in scope and methodology, in comparison to

other related areas such as water supply (Worthington, 2011).

The most widely used approach to assess the economic

efficiency of WWTPs is the definition of indicators or ratios,

which relates the efficiency of pollutant removal, energy

consumption, and other operational variables of WWTP

operational costs (Stemplewski et al., 2001; Benedetti et al.,

2008; Galletti and Landon, 2009; Zhao et al., 2010). These

indicators are only useful in assessing a partial or a specific

area of operation. Hence, the use of these ratios to make

inferences about the overall operational performance of

WWTPs should be treated with caution (Zhong et al., 2011).

In fact, the use of these indicators could potentially lead to

incorrect policy implications (Alexander, 2009).

The information gap in the literature about this subject is

evident, and there is a clear need for the use of advanced

techniques for the measurement of efficiency in WWTPs. For

example, the holistic approach of the Data Envelopment

Analysis (DEA) technique has been applied to multiple fields of

research (Gattoufi et al., 2004). DEA is a non-parametric

technique that is able to estimate the production function with

minimal prior assumptions. An attractive feature of DEA is

that it can easily handle multiple outputs/inputs situations,

even in the absence of price data. DEA is perfectly suited to our

application when a WWTP is viewed as a firm that carries out a

productive process, the outputs of which are the pollutants

removed from wastewater and the inputs are the operational

and maintenance costs of the facility. Moreover, DEA is a

powerful tool that may easily aggregate performance indica-

tors into a single performance index (Boscá et al., 2009).

Furthermore, to improve the decision making process is not

sufficient with identify efficient WWTPs but also they should

be ranked in terms of efficiency.

While DEA has many advantages in comparison to other

methodologies, it has one particular shortcoming that may

lead to ambiguity in the interpretation of its results. The

drawback is that estimates from conventional DEA analysis

do not provide information on the uncertainty of estimates.

As mentioned before, DEA is a nonparametric technique;

therefore, it does not allow for any statistical inferences. The

role of uncertainty is important because the conclusions

derived from the efficiency analysis of the tested units are

highly sensitive to data errors and the influence of external

factors on the selected variables (Sin et al., 2011). To

overcome this problem, regression analysis and bootstrap

are the most applied methods. A third alternative to address

data uncertainty is by using chance constrained DEA

models. This programming was first incorporated to DEA

models by Olesen and Petersen (1995). Other authors have

analyzed the sensitivity of the results to changes in the

variables by using superefficiency techniques (Andersen and

Petersen, 1993). It should also be noted that the possibility of

applying fuzzy mathematical programming for the treat-

ment of the uncertainty has also been investigated (León

et al., 2003).

As an alternative to these processes, a DEA model with

statistical tolerance (also called DEA with uncertainty
assessment) has been developed by Bonilla et al. (2004). In

this model, the definition of certain tolerance levels for the

selected inputs and outputs in the problem allows a variation

interval to be obtained for each of the efficiency scores.

Although bootstrap and DEA with uncertainty assessment

obtain similar results, the greater simplicity and execution

speed of the tolerance method is advantageous through

allowing inputs and/or outputs to be subjected to possible

modifications (Bonilla et al., 2004). The DEA with tolerances

model allows narrowing uncertainty and making predictions

about the efficiency of the units if inputs and outputs change.

In relation to this second utility, Hernández-Sancho et al.

(2011) show that seasonally operational treatment plants are

less efficient than non-seasonally ones, which affects the

possibilities of water reuse. Therefore, in cases where

regenerated water is reused, the prediction of efficiency

changes is very important, particularly when there is

variability in the data.

This paper has three related objectives with respect to

evaluating the operation of WWTPs in Spain. First, we evaluate

the techno-economical efficiency for a sample of WWTPs by

applying the DEA technique based on the assumption of

variable returns to scale (VRS). Second, we aim to narrow the

uncertainty of the results by assessing the stability of the

efficiency analysis results by employing the methodology

shown in Boscá et al. (2006). According to this methodology,

the efficiency and tolerance study completes the deterministic

efficiency analysis because the possible variation in the

efficiency level is obtained when the selected input and

output values vary. Third, we aimed to rank the assessed

WWTP units by using the methodological approach suggested

by Boscá et al. (2011), which allows ranking units according to

their efficiency scores. We consider the utility of identifying

the comparative strengths and weaknesses of WWTPs

towards the adoption of efficient measures which in turn

would reduce the costs of operation.

2. Methodology

2.1. DEA efficiency assessment

Traditionally, efficiency has been subject to extensive study

and use from an economic perspective. The application of

ratios between outputs and inputs has been, and continues to

be, a method that is regularly used for measuring the

efficiency of different Decision Making Units (DMUs). Never-

theless, actual situations are usually more complicated, and

require more sophisticated methods (Boscá et al., 2011).

The DEA methodology developed by Charnes et al. (1978) is

a non-parametric method based on linear programming for

the estimation of production frontiers. Subsequently, this

technique has been used for measuring comparative efficien-

cy in a wide range of applications. In particular, this technique

is one of the most powerful methods for analyzing series of

production units, with multiple inputs and outputs. In this

kind of study, the relative efficiency for each Decision Making

Unit (DMU) is calculated by comparing its inputs and outputs

in relation to the rest of the units (Bonilla et al., 2002). Basically,

DEA evaluates the performance of peer DMUs, allowing the



1 Methodology for the calculation of a suitable tolerance level for
each input and output is described in Appendix 1.

2 For environmental efficiency processes where there are inputs,
outputs and undesirable outputs, the total number of problems to
be solved is 36 (729).

e n v i r o n m e n t a l s c i e n c e & p o l i c y 1 8 ( 2 0 1 2 ) 3 4 – 4 436
construction of a surface over the data that permits the

observed behavior of a unit to be compared against the best

observed practices (Lin et al., 2011). Thus, the DMUs that

determine the envelope are referred to as efficient units, and

those that are excluded are considered as inefficient units.

Thus, when a DMU reaches the maximum output given a

vector of inputs (output-oriented DEA), or uses a minimum of

inputs to produce a given output (input-oriented DEA), it is

placed on the production frontier (Charnes et al., 1996).

Further details on DEA are provided by Färe et al. (1985), Coelli

(1999), and Cooper et al. (2004).

For convenience, we adopt the input minimization as-

sumption, because WWTPs aim to achieve an effluent level

that meets discharge criteria at the lowest possible cost. In any

case, the orientation of the model is not a relevant issue, since

both provide some measure of resource efficiency, just from

different perspectives (Chiu et al., 2011).

Based on previous works (Hernández-Sancho and Sala-

Garrido, 2009; Hernández-Sancho et al., 2011), the operating

and maintenance costs of WWTPs are known to be affected by

economies of scale, since these authors demonstrate that the

largest plants run more efficiently than smaller plants.

Therefore, DEA based on the assumption of variable returns

to scale (VRS) is considered to be the most appropriate form of

model to apply in this situation.

According to the model DEA-VRS, given j = 1, 2, . . ., n DMUs

or WWTPs, each of which uses a vector of m inputs xj = (x1j, x2j,

. . ., xmj, ) to generate a vector of s outputs yj = (y1j, y2j, . . ., ysj, ),

where l is a vector of intensity. The measure of efficiency u is

obtained by solving the following linear programming

problem for each DMU jo:

Min u

s:t:Xn

j¼1

l j xi j � u xi jo
1 � i � m

Xn

j¼1

l jyr j� yr jo
1 � r � s

l j� 0 1 � j � nXn

j¼1

l j ¼ 1

(1)

The measure of efficiency EIðy jo
; x jo
Þ ¼ u is constrained be-

tween 0 and 1. Specifically, it is considered that a DMU (WWTP)

is efficient if u = 1 and slacks are zero, while it is inefficient if

0 � u < 1. The difference between the score u and the value 1

may be considered as the potential reduction in inputs to

obtain the same outputs.

2.2. DEA with tolerance model

As mentioned in Section 1, one of the most common criticisms

of the DEA model as a deterministic mathematical model, is

that it does not take uncertainty into account (Tsolas, 2010). In

other words, DEA has no accommodation for noise or random

error, as it uses a linear programming approach to estimate

the frontier. The inefficiency scores derived from DEA and the

envelopment surface are ‘‘calculated’’ rather than statistically

‘‘estimated’’ (Assaf and Matawie, 2010). To overcome this

limitation, we applied DEA model with uncertainty assess-

ment developed by Bonilla et al. (2004).
The DEA with statistical tolerance allows a variation1 level

to be defined for each of the inputs (i) and outputs (r)

considered in each of the assessed DMUs. These exchange

rates are denoted as ai j; a0i j; br j; b0r j, and are a non-negative

scalar expressing the changes from left and right of the values

of inputs and outputs respectively. Importantly, the tolerances

defined for each of the outputs and inputs may be symmetrical

or may not respect to the original value.

Suppose that the values of the inputs and outputs are

within the range defined by Eq. (2):

xi j 2 xi j � ai j; xi j þ a0i j

h i
yr j 2 yr j � br j; yr j þ b0r j

h i
(2)

Given the breadth of possible combinations, we focus on

analyzing only the extreme values and the original value of

each input and output. If we assess the efficiency of the DMU

jo, the inputs and outputs may take the following values,

expressed in multiplicative form:

Inputs of the DMU jo : xi jo
ð1 � ai jo

Þ; xi jo
; xi jo
ð1 þ a0i jo

Þ
Outputs of the DMU jo : yr jo

ð1 � br jo
Þ; yr jo

; yr jo
ð1 þ b0r jo

Þ
Inputs of the DMU j 6¼ jo : xi jð1 � ai jÞ; xi j; xi jð1 þ a0i jÞ
Outputs of the DMU j 6¼ jo : yr jð1 � br jÞ; yr j; yr jð1 þ b0r jÞ

(3)

Therefore, the number of DEA combinations2 that require

resolving when analyzing the DMU jo is 34 (81). There are three

situations: (i) favorable, (ii) unfavorable, and (iii) original, with

four possible inputs and outputs: (i) inputs for the analyzed

DMU, (ii) outputs for the analyzed DMU, (iii) inputs for the

remaining DMUs, and (iv) outputs for the remaining DMUs.

By simplifying the notation of (Eq. 3), (Eq. 4) is obtained:

xi jo
� ai jo

:¼ xm
i jo
; xi jo

:¼ xo
i jo
; xi jo

þ a0i jo
:¼ xM

i jo

yr jo
� br jo

:¼ ym
r jo
; yr jo

:¼ yo
r jo
; yr jo

þ b0r jo
:¼ yM

r jo

(4)

where xm
i j is the minimum value (m) of the input ‘‘i’’ for DMU

‘‘j’’. xo
i j is the original value (o) of the input ‘‘i’’ for DMU ‘‘j’’. xM

i j is

the maximum value (M) of the input ‘‘i’’ for DMU ‘‘j’’. ym
r j is the

minimum value (m) of the output ‘‘r’’ for DMU ‘‘j’’. yo
r j is the

original value (o) of the output ‘‘r’’ for DMU ‘‘j’’. yM
r j is the

maximum value (M) of the output ‘‘r’’ for DMU ‘‘j’’.

By substituting in the original DEA model (Eq. (1)), the

original values of the inputs and outputs are replaced by the

modified values according to the estimated level of tolerance,

from which it is possible to define the best and worst possible

case scenarios that can appear for each DMU ‘‘jo’’.

The best case scenario for DMU ‘‘jo’’: inputs decrease with

increasing outputs in this DMU, while the rest of the DMUs

register inverse behavior in their variables according to

tolerance levels:

xi j ¼
xm

i j j ¼ jo
xM

i j j 6¼ jo

(

Yr j ¼
yM

r j j ¼ jo
ym

r j j 6¼ jo

( (5)



Table 1 – Main descriptive statistics for variables used in
the study.

VOLUME
(m3/year)

OUPUTS
(g/m3)

INPUTS
(s/m3)

SS COD N Cost

Mean 408,014 263 588 43 0.5203

Std. dev. 286,381 121 344 20 0.2112

Source: Entitat of Sanejament d’Aigues-EPSAR (Regional Government).
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The worst case scenario for DMU ‘‘jo’’: inputs increase with

decreasing outputs in the DMU under evaluation, while the

rest of the DMUs inputs decrease and outputs increase:

x0i j ¼
xM

i j j ¼ jo
xm

i j j 6¼ jo

(

y0r j ¼
ym

r j j ¼ jo
yM

r j j 6¼ jo

( (6)

By collecting the most favorable and unfavorable case scenar-

ios for each analyzed DMU, the X0 and Y0 matrices are

achieved:

X0 ¼ ½xi j� 2 Mði; jÞ
Y0 ¼ ½yr j� 2 Mðr; jÞ

(7)

The matrices (7) implemented in the model (1) allow the

value of the efficiency index for the ‘‘best case scenario’’

and for the ‘‘worst case scenario’’ to be attained. In other

words, the maximum and minimum efficiency score is

obtained for each DMU under study, thus uncertainty is

narrowed.

2.3. Ranking DMUs

The WWTPs must be ranked to prioritize facilities on which

actions would be carry out to improve efficiency. This

objective was achieved by using the approach defined by

Boscá et al. (2011). Thus, Eqs. (8) and (9) present two efficiency

indicators for the jo-th order unit (R1
jo and R2

jo), allowing the

production units (WWTPs) to be ranked according to their

relative level of efficiency.

R1
jo
¼

e jo

t jo

(8)

R2
jo
¼ ðS jo

� e jo
Þ=ðt jo

� e jo
Þ If t jo

6¼ e jo
0 If t jo

¼ e jo

�
(9)

where e jo
is the number of times that DMU jo is efficient (i.e.,

the efficiency score equals 1). S jo
¼
P

a;b;c;d E xa
i j; xb

i jo; yc
r j; yd

r jo

� �
,

which is the sum of the 81 efficiency scores of DMU jo. t jo
¼ 81,

for this problem. If there are undesirable outputs, the value of

t jo
is 729.

The indicatior R1
jo

reports on the proportion of times that

unit jo has been efficient. Its value is between [0,1]. A value of 0

indicates that the DMU has been characterized as inefficient in

all of the 81 scenarios. If the indicator is equal to unity, this

result implies that in all the problems have been solved, and

the efficiency score is equal to one. In other words, the higher

the value of R1
jo

, the greater propensity of the unit to be

efficient. The indicator R2
jo

is used when two units have the

same value for the first indicator, for which the range of values

is also between [0,1].

It follows that DMUj would be better than DMUz if:

DMU j > DMUz, R1
j > R1

z (10)

If R1
j ¼ R1

z , the second indicator of efficiency (R2
jo

) is used. In this

case, DMUj would be better than DMUz if:

DMU j > DMUz, R1
j ¼ R1

z and R2
j > R2

z (11)
3. Sample description

Our data consist of a sample of 45 WWTPs located in the

Valencia Region, which is on the Mediterranean coast of Spain.

All WWTPs carry out conventional secondary wastewater

treatment with nitrogen removal. The wastewater that is

treated at the facilities is residential in origin, with industrial

discharge being rare. The ultimate reason for using this

sample is to ensure that all WWTPs are essentially compara-

ble, as is required when using a DEA-based distance function

(Odeck, 2009). Statistical information was supplied for the year

2009 by the Regional Wastewater Treatment Authority (Entitat

of Sanejament d’Aigues-EPSAR).

Accordingly, the objective of WWTPs is considered to be to

perform a production process that obtains an effluent content

that meets the quality criteria required by legislation at the

lowest possible cost. WWTPs are considered as multi-output

firms that remove three main pollutants from wastewater.

Thus, as a consequence of the treatment process, three

outputs are generated: (i) suspended solids (SS) (y1), (ii) organic

matter measured as chemical oxygen demand (COD) (y2), and

(iii) nitrogen (N) (y3). The necessary inputs to carry out the

process are operation and maintenance costs (x1). It is worth

highlighting that outputs are measured in physical units

(grams of pollutant removal per cubic meter of treated water),

while inputs are expressed in monetary units (euros per cubic

meter of treated water).

A brief description of these variables is provided in Table 1.

In our research, usually outputs data accuracy is not a

problem. This is because in most cases the compilation of data

is characterized by the precision of analytical methods for the

determination of contaminants of both the influent and the

effluent, which has improved considerably in recent years. In

addition, WWTP operators are legally obliged to determine the

main parameters that define the quality of the treated water

on a daily basis, and the Regional Administration conducts

periodic checks to verify that the data provided by the

companies are correct. Nevertheless, contaminated samples

are occasionally present, while analytical mistakes or point

pollution discharges may produce data that are not represen-

tative. The situation is more complex with respect to inputs,

because it is the operators that provide the data to the

Administration. Despite the fact that costs are strictly

controlled by the operating companies, is very difficult to

obtain such information, since neither the Administration nor

companies have the legal obligation to make this information

public. Furthermore, the same company is responsible for the



Table 2 – Tolerances for input and outputs in %.

WWTP OUTPUTS (%) INPUTS (%)

SS COD N Cost

1 8.8 12.5 11.8 23.9

2 2.4 6.6 29.1 13.5

3 2.2 6.3 10.1 6.6

4 46.3 57.1 27.3 10.7

5 11.2 3.3 10.3 13.7

6 0.3 0.6 45.9 9.5

7 6.8 1.9 24.3 29.1

8 3.4 29.9 10.8 2.3

9 40.8 2.0 6.2 12.5

10 6.0 2.6 13.3 16.8

11 2.7 2.3 9.0 1.2

12 2.3 14.0 18.6 8.9

13 1.7 3.4 16.3 4.1

14 2.5 1.0 18.9 13.1

15 7.9 3.4 5.0 11.2

16 11.4 17.4 22.1 15.8

17 0.1 2.2 23.0 4.5

18 18.6 7.5 4.4 1.8

19 1.9 3.9 28.5 12.3

20 14.9 15.9 23.8 2.8

21 4.6 1.2 8.1 3.1

22 2.8 4.4 15.5 4.2

23 12.4 18.7 18.9 6.4

24 4.1 1.7 46.7 0.9

25 42.7 15.5 70.0 19.3

26 22.7 20.3 8.5 3.4

27 9.2 1.5 4.7 5.0

28 4.0 2.2 5.6 1.9

29 2.0 1.0 14.1 8.6

30 7.3 6.9 7.6 8.9

31 21.3 9.6 8.4 9.4

32 10.1 5.5 7.8 5.4

33 3.3 2.1 11.2 8.8

34 23.4 11.2 15.8 15.0

35 2.0 9.8 31.4 3.6

36 3.6 4.5 7.1 2.7

37 6.6 2.0 4.1 14.9

38 10.7 15.3 9.0 3.6

39 13.1 9.7 6.9 2.5

40 1.4 1.5 1.4 1.5

41 1.6 1.3 1.3 1.2

42 28.0 18.8 6.9 3.5

43 14.9 21.5 21.7 23.6

44 26.2 25.4 17.3 7.0

45 4.8 14.3 22.2 12.7

Mean 10.6 9.3 16.3 8.7

Std. Dev. 11.4 10.5 13.2 6.7
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management of various WWTPs in most cases. Hence,

accounting is conducted jointly for all plants, which makes

the acquisition of information at the individual WWTP level

difficult.

4. Results and discussion

4.1. Tolerances for outputs and inputs

Following the methodology described in Appendix 1, symmet-

rical gaps for each of the outputs and inputs of each WWTP have

been estimated. To this end, we used output and input data for

the years between 2003 and 2009, since these datasets are

basically the longest time series available at present. Table 2

provides a list of the values of (symmetric) tolerance obtained

for the inputs (operation and maintenance costs) and outputs

(SS, COD and N removed).

The greater the amplitude of the tolerance interval, the

greater the sensitivity to possible input and output changes

and, in contrast, a lesser margin is shown in the strength of the

efficiency index whether data varies. For this reason, despite

the fact that WWTPs are not particularly plagued by data

inaccuracy, it is important to assess the uncertainty in the

parameters that determine efficiency to obtain reliable

conclusions. For example, the values in Table 2 indicate that

WWTP 4 presents a variability of �46.3% in the removal of SS.

Our empirical results show that the average value of

tolerance for the inputs is lower than for the outputs. This

result is consistent with what we might expect from the

theoretical point of view, because WWTP operators aim to

minimize operational costs and, since our time series is

recent, the majority of analyzed plants in this study have

already optimized their expenses. With respect to outputs, the

volume of pollutants that are removed depends, not only on

how a particular WWTP is operated, but also on the

characteristics of the influent. After the wastewater treatment

process, effluent that meets the quality criteria required by

legislation must be obtained. Therefore, if the concentration of

pollutants in the influent changes over time, it is clear that the

volume of pollutants that are being removed must also

change. For this reason, the average exchange rates obtained

for the outputs are greater than that for the inputs.

At the plant level, tolerances of the studied WWTPs are

observed to be highly variable especially for outputs, which are

confirmed by the standard deviation values. The variability in

the tolerance for nitrogen between plants was particularly

significant, as the minimum value was 1.3% (WWTP 41), while

the maximum value was 70% (WWTP 25). For the other two

pollutants (SS and COD), the variability in the tolerance levels

may in general be justified by the fact that the influent quality

had changed over time in several plants (i.e., WWTPs with high

tolerance values), while others remained virtually constant (i.e.,

WWTPs with small tolerance values). It is also important to note

that the concentration of these pollutants in the effluent should

be similar because it is regulated by legislation (Directive 92/271/

EEC). In addition, WWTP 4 presented the highest value of

variability in both the SS and the COD removed. This is because

during 2003 (at the beginning of its operation) this WWTP had

operational problems for several months; hence, the removal
percentage of the monitored pollutants for that year was low,

while for the remaining years the removal efficiencies were

considerably higher.

4.2. Efficiency scores

Once the tolerances have been calculated, the next step in our

analysis is to apply the DEA model (Eq. (1)) to the set of WWTPs

being investigated by considering the original data, as well as

gaps in the input and output. The resolution of the DEA model

with uncertainty assessment leads 81 scores being obtained

for each of the WWTPs, which provides the variation in the

range of efficiency score values. The breadth and complexity



e n v i r o n m e n t a l s c i e n c e & p o l i c y 1 8 ( 2 0 1 2 ) 3 4 – 4 4 39
of the resultant information is noticeable; therefore, we divide

the efficiency scores obtained for each of the WWTPs into four

scenarios: (i) original situation without tolerances (ORIGINAL),

(ii) maximum score obtained (MAX), which corresponds to the

best possible case scenario, (iii) minimum score achieved

(MIN), which corresponds to the worst possible case scenario,

and (iv) mean score of the 81 possible combinations of

tolerances (MEAN). Along with these datasets, Table 3 provides

information on the amplitude of the range (MAX–MIN) and

(ORIGINAL � MEAN) percentage terms.

First, we discuss the results that were obtained when the

original data was used (ORIGINAL). The mean efficiency score
Table 3 – Efficient scores using DEA with uncertainty assessm

WWTP ORIGINAL MEAN MAX 

1 0.790 0.794 1.000 

2 1.000 0.894 1.000 

3 0.574 0.575 0.656 

4 0.351 0.356 0.424 

5 0.737 0.794 1.000 

6 0.654 0.747 1.000 

7 1.000 1.000 1.000 

8 0.855 0.849 0.972 

9 0.728 0.773 1.000 

10 0.174 0.193 0.391 

11 0.349 0.414 0.696 

12 0.334 0.335 0.390 

13 0.381 0.486 1.000 

14 1.000 0.999 1.000 

15 0.598 0.601 0.779 

16 0.797 0.808 1.000 

17 0.380 0.379 0.432 

18 0.468 0.516 0.843 

19 1.000 0.889 1.000 

20 1.000 0.912 1.000 

21 0.263 0.275 0.378 

22 1.000 1.000 1.000 

23 0.352 0.351 0.432 

24 0.267 0.283 0.459 

25 0.924 0.904 1.000 

26 0.286 0.347 0.644 

27 0.159 0.159 0.175 

28 0.278 0.277 0.305 

29 0.472 0.470 0.576 

30 0.353 0.354 0.420 

31 0.679 0.677 0.915 

32 1.000 0.989 1.000 

33 0.853 0.879 1.000 

34 0.462 0.578 1.000 

35 0.794 0.853 1.000 

36 0.375 0.372 0.438 

37 0.362 0.366 0.471 

38 1.000 0.908 1.000 

39 0.248 0.256 0.339 

40 1.000 0.794 1.000 

41 0.345 0.408 0.685 

42 0.270 0.272 0.316 

43 0.584 0.593 0.914 

44 0.456 0.459 0.525 

45 0.519 0.529 0.706 

Mean 0.588 0.593 0.740 

Std. dev. 0.283 0.266 0.281 
across the sample was 0.588. Taking into account that a DMU

is efficient when its score is equal to unity (i.e., 1), the mean

potential for saving inputs among the WWTPs is about 41.2%.

Our empirical results are similar to that obtained by

Hernández-Sancho and Sala-Garrido (2009), who estimated

an average efficiency score of 0.41 for 338 WWTPs in 2004.

Hence, under the most favorable scenario (MAX), the average

efficiency score of the WWTPs could potentially reach 0.740,

which means there could be an improvement approximately

of 26%. However, under the worst case scenario, the decrease

in average efficiency is also quantified as 26%. These results

allow us to confirm that the tolerances calculated for each of
ent.

MIN AMPLITUDE
(max–min) (%)

AMPLITUDE
(ori-mean) (%)

0.540 46.0% �0.4%

0.631 36.9% 10.6%

0.504 15.3% �0.1%

0.304 12.1% �0.5%

0.511 48.9% �5.7%

0.511 48.9% �9.3%

1.000 0.0% 0.0%

0.727 24.5% 0.6%

0.513 48.7% �4.4%

0.135 25.6% �1.9%

0.255 44.1% �6.5%

0.287 10.4% �0.1%

0.304 69.6% �10.5%

0.947 5.3% 0.1%

0.459 32.1% �0.3%

0.625 37.5% �1.1%

0.330 10.2% 0.0%

0.333 51.0% �4.8%

0.353 64.7% 11.1%

0.430 57.1% 8.9%

0.233 14.5% �1.1%

1.000 0.0% 0.0%

0.285 14.8% 0.2%

0.240 21.8% �1.6%

0.627 37.3% 2.0%

0.242 40.2% �6.1%

0.145 3.0% �0.0%

0.251 5.4% 0.1%

0.371 20.5% 0.2%

0.300 12.0% �0.1%

0.504 41.0% 0.3%

0.677 32.3% 1.2%

0.690 31.0% �2.5%

0.264 73.6% �11.6%

0.640 36.0% �5.9%

0.306 13.2% 0.3%

0.281 18.9% �0.4%

0.421 57.9% 9.2%

0.227 11.2% �0.8%

0.368 63.2% 20.6%

0.272 41.3% �6.3%

0.245 7.1% �0.3%

0.388 52.7% �0.9%

0.408 11.7% �0.4%

0.424 28.1% �1.1%

0.433 30.6% �0.4%

0.217 20.2% 5.6%
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the outputs and inputs are symmetrical with respect to the

original value. It is important to note that the average

efficiency score for the 81 analyzed cases (MEAN) is 0.593,

which is practically the same as when the original data is used

(i.e., the difference is less than 1%).

Table 3 shows that, aside from the efficient units, 10

WWTPs could become efficient by simply increasing their

pollutants removal efficiency, or by decreasing their operation

and maintenance costs. In other words, in the best-case

scenario, 22% of the studied WWTPs minimize their costs

given a certain level of outputs. Therefore, the measures used

by these WWTPs should be undertaken by other plants to

achieve an increase in outputs to improve efficiency. Never-

theless, the rest of the WWTPs (58%) would not become

efficient, even in the best case scenario.

If the least favorable case scenario is analyzed (i.e., an

increase in inputs with a decrease in outputs of the DMU,

while the rest vary inversely), the fact that 7 of the 9 WWTPs

that had an efficiency score equal to unity based on the

original data are no longer efficient, should be underlined.

Here, it is worth noting the plant numbers 7 and 22, both in the

best and the worst scenarios, had an efficiency score equal to

unity (i.e., are always efficient). Likewise, it is also important to

note that the significant decrease in efficiency experienced by

WWTP numbers 19, 20, 38, and 40, shifting from the efficient

production frontier to having efficiency scores of below 0.6.

These changes indicate that these plants should remain

vigilant, as if there are small changes in the volume of

pollutants removed, its efficiency will be greatly reduced.

Fig. 1 clearly shows the variation intervals (represented by

bars) between the best and the worst possible case scenarios of

WWTP efficiency scores, as well as the original values that

were employed. The different length of the intervals denotes

the level of stability (i.e., less or more) in the obtained results.

If the original value is compared with the average of the 81

scores (AMPLITUDE (ori-mean)), the average divergence is just

�0.4%, for both positive and negative values. In absolute
Fig. 1 – DEA with tolerances: maximu
terms, the maximum amplitude is 20.6%, while the lowest

amplitude is 0.0%. These results indicate that when the

efficiency of a sample of WWTPs is assessed, the mean value

does not differ greatly from the score that would be obtained if

the confidence intervals of the original data had been used.

However, when the same analysis is performed at the plant

level, consideration of the gaps (uncertainty) acquires special

importance since there are substantial differences between

the results from original data and from the average of the 81

scenarios.

Variability is understood as the difference between the

score in the best and the worst case scenario (AMPLITUDE

(max–min)). Hence, large amplitude implies that a WWTP may

improve or worsen significantly when their inputs and outputs

change. In other words, individual WWTPs are very sensitive

to possible variations in the inputs and/or outputs. In

comparison, low amplitude indicates that the efficiency will

change minimally, or may remain stable if the amplitude is

zero, despite variation in the inputs and outputs. Hence, of the

studied WWTPs, our empirical results indicate that 18% of the

plants have amplitudes higher than 50%, reaching a maximum

value of 74%. In other words, the efficiency of these plants

would be greatly affected by changes to their inputs or

outputs. In contrast, 38% of plants have amplitudes lower than

20%. This value indicates that these plants are minimally

sensitive to changes in the data. Of all the evaluated WWTPs,

the most ‘‘insensitive’’ were numbers 7 and 22, because both

in the best and the worst scenarios are efficient, with their

amplitude being 0%.

Looking at the distribution of efficiency scores across

individual plants, three levels may be distinguished: (i) high

efficiency, when the average efficiency score exceeds 0.7, (ii)

medium efficiency, when the average efficiency scores are

between 0.3 and 0.7, and (iii) low efficiency, when the average

level of efficiency does not exceed 0.3. Fig. 2 shows these three

groups of WWTPs with respect to the original, maximum and

minimum possible scores.
m, minimum and original scores.



Fig. 2 – Groups of WWTPs for original, minimum and

maximum.
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We found that the percentage of plants that had a mean

efficiency minimally changed when the efficiency was deter-

mined using either the original data or the estimated

tolerances, particularly in the case of the maximum values.

However, in the case of groups of plants with low and high

efficiency, the differences between the best and the worst

scenarios were very significant. Thus, we observed that the

percentage of facilities with low efficiency was 31% when the

minimum value was used, while the percentage decreased to

2% when using the maximum value. For plants with high

efficiency, there was a 47% difference between the plants of

this group when considering the best and the worst case

scenarios.

This example clearly illustrates the advantages of measur-

ing efficiency when taking into account the uncertainty in the

inputs and outputs that characterize the production process.

4.3. Ranking DMUs

Once the efficiency scores were obtained, we proceeded to

calculate the two efficiency indicators (R1 and R2) detailed in

Section 2.3 for each of the evaluated WWTPs, to complete the

efficiency analysis. As explained, both ratios occur in a range

of values [0,1]. The more frequently that a WWTP is efficient,

the closer that indicator R1 is to unity, and would therefore

occupy a higher place in the ranking.

Efficiency indicators R1 and R2 for each WWTP studied are

reported in Appendix 2. As expected from previous analysis,

the WWTP numbers 7 and 22 jointly occupy first place in the

ranking. In other words, these plants are the most efficient,

since indicator R1 shows the value of its upper bound, whereby

these units are efficient under the 81 possible analyzed cases.

The subsequent positions in the ranking are occupied by

WWTP numbers 14 and 32, which have a value very close to

unity. Remember that these WWTPs were efficient when using

the original data and in the best case scenario. However, in the

worst case scenario their efficiency scores were reduced to

0.947 and 0.677, respectively.

Also, the ratio R1 confirms that in the best case scenario, 19

of the 45 analyzed WWTPs would become efficient, since the

value of this indicator for these plants is greater than zero. In

contrast, 26 facilities could never become efficient (WWTPs R1

equal to zero).
The results of the R2 indicator facilitate the ranking of the

WWTPs that have the same value of R1. Specifically for our

study, first the value of R2 allow WWTP numbers 1, 5 and 6 to

be ranked, which present the same value of R1 and are greater

than zero. Moreover, R2 also allows us to classify plants that

even in the best case scenario would not become efficient,

such as WWTPs with an R1 value equal to zero. In this way, we

verify that this group of facilities does not form a homoge-

neous group, but that WWTP numbers 8, 31 or 15 occupy a

higher position in the ranking. This difference in ranking

occurs because when variation in the inputs and outputs leads

these plants to the best possible situation, higher efficiency

rates may be obtained when compared to other WWTPs for

which R1 also is zero. In comparison, plant numbers 10 and 27

would be the least efficient, even in the best possible scenario,

because they had the lowest values of the ratio R2.

In summary, we would like to highlight that evidence is

provided showing that WWTP numbers 7 and 22 have the best

performance from the point of view of efficiency, as all

possible scenarios are efficient. In other words, these two

plants represent the efficient frontier of best practice.

Furthermore, the results of the efficiency indicators allow

us to verify that the plant number 27 is the worst of all

analyzed plants, because even in the best scenario, the

efficiency of this plant would remain lower than the other

assessed facilities.

The hierarchical ranking of the WWTPs is of special

interest for the authorities, since compared against the results

where almost all units may be considered efficient, this

system facilitates discrimination. In turn, this allows plants

with better efficiency values to be identified and prioritized.

Thus, the authorities are provided with more complete

information for the decision-making process when planning

investment actions in these facilities.

5. Conclusions

The rapid increase in costs associated with WWTP manage-

ment, means that performance evaluation has acquired

special relevance to identify the units with the best practice

for use as a reference guideline. The DEA technique has proven

to be a suitable tool for evaluating the efficiency of production

processes that have multiple inputs and outputs, such as

wastewater treatment processes. However, one of the main

disadvantages of this method is that information about

uncertainty is not available.

Our analysis contributes new information about how

changes in available data could cause instability in the

efficiency results. We estimated the efficiency scores for a

sample of 45 Spanish WWTPs by using the DEA model with

uncertainty assessment, due to its guarantee of greater

stability in the results. Moreover, we used obtained results

to calculate the two indicators that allow the evaluated

WWTPs to be ranked in terms of efficiency.

As a consequence, we derived useful insights about the

efficiency of our sample of WWTPs. First, the tolerances

estimated for each of the parameters show that variability in

the outputs is greater than for the inputs. Second, the average

efficiency scores that was obtained with both the original data
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and with minimum and maximum gaps indicates that there is

scope for the managers of facilities to reduce their operational

costs. Third, the difference between the efficiency score for the

best and worst scenarios indicates that not all of the studied

WWTPs had the same sensitivity to changes in their inputs

and outputs. Finally, at the plant level, our analysis verifies

that there are substantial changes in the number of efficient

plants when data with gaps are used instead of the original

data.

Concerning the ranking of WWTPs, we contribute empiri-

cal evidence verifying that two WWTPs clearly occupy first

place, because in all analyzed scenarios the efficiency scores

were one. Hence, these WWTPs should be considered as the

best-practice. In contrast, the second indicator confirms that

the plants which not will not become efficient even in the best

scenario, are heterogeneous, allowing the lowest ranked

WWTP to be identified.

Of note, the employment of the DEA model with uncer-

tainty assessment facilitates the incidence of each output and

input of the WWTP efficiency scores to be measured in

comparison to the traditional DEA. Likewise, the inclusion of

variability in the data solved the problem of inaccuracy, in

addition to being used to predict changes in the efficiency of

plants subject to variability in the volume of outputs and

inputs. This analysis allows plants that should be on alert to be

identified, because small changes in the data will cause a

dramatic reduction in their efficiency. In addition, plants with

the greatest potential for improvement may also be identified,

and ensuring that the correct change in their operational

parameters are selected to become efficient.

Finally, from a policy perspective, the results of the derived

efficiency scores should be of use to both managers of WWTPs

and responsible Administration, as the most efficient and

innovative facilities are identified as references. Therefore, the

comparative strengths and weaknesses of WWTPs may be

identified, allowing the adoption of measures for the efficient

allocation of available resources. The adoption of this best

practice in the other WWTPs, would potentially contribute

towards minimizing operation and maintenance costs, and

thus increase the profits of companies.
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Appendix 1

The determination of the tolerance values is a critical

aspect of the DEA model with uncertainty assessment, given

the subjectivity to which it is exposed. Clearly, the arbitrary

determination of possible variations in the inputs and outputs

affects the results, from which unusable and/or unrealistic

conclusions may be derived. According to Bonilla et al. (2004),
Medal (2010), and Boscá et al. (2011), a descriptive statistical

method must be selected to analyze the data. This method is

based on the selection of a historical series of inputs and

outputs. Considering the maximum and minimum levels

reached in the review period, gaps submitted for these

variables may be determined, and thus the appropriate levels

of tolerance may be selected.

The method used to determine the tolerance levels follows

six steps that are applied to each of the analyzed DMUs, and

for each of the considered outputs and inputs. The steps are

described as follows:

Step 1: Analysis of the inputs and outputs for each period of

time (i).

Step 2: Calculation of the mean, maximum and minimum

values for the given data of each period (i).

Step 3: Calculation of the differences between the maxi-

mum and mean (DIFMAX (i)), and the differences between the

minimum and mean (DIFMIN (i)), according Eq. (A1), of each

period (i) analyzed. (I = 1, 2, . . ., n)

DIFMAX ðiÞ ¼Max ðiÞ � Mean ðiÞ
Mean ðiÞ

DIFMIN ðiÞ ¼Mean ðiÞ � Min ðiÞ
Mean ðiÞ

(A1)

Step 4: Determination of individual tolerance levels for each

period (i):

TOL ðiÞ ¼ DIFMAX ðiÞ � DIFMIN ðiÞ
2

(A2)

Step 5: Determination of the global amplitude for each type of

input and output tolerance as the arithmetic mean of the

variables (TOL (i)):

TOL ¼ mean TOL ðiÞ ¼

Xn

i¼1

TOLðiÞ

n
(A3)

Step 6: The tolerance value (TOL) is divided by two. By dividing

the overall amplitude into two parts, both positive and nega-

tive variations of inputs and outputs are indicated.

The described methodology allows the symmetrical toler-

ances to be calculated since, as shown in step 6, the overall

amplitude is divided in half. However, when it is considered

important that the tolerances are not symmetrical, the

proposal of Bonilla et al. (2004) can be tailored to maintain

steps 1 to 3, while substituting steps 4–6 as follows:

Step 4: Determination of upper individual tolerance level for

each input and output.

TOL MAX ¼

Xn

i¼1

DIF MAX ðiÞ

n
(A4)

Step 5: Determination of lower individual tolerance level for

each input and output.

TOL MIN ¼

Xn

i¼1

DIF MIN ðiÞ

n
(A5)

Whether symmetric or non-symmetric tolerances are calcu-

lated, the same weight is assigned to each of the time periods

being analyzed. However, in the case of large historical series,
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it may be appropriate to assign a greater weight to more recent

periods and a lower weight to those furthest from the current

time.

Medal and Sala (2009) validated this approach in determin-

ing the tolerances of the variables, through the analysis of

contingency tables of the distribution of scores for each of the

analyzed DMU, which led to the conclusion that the selection

of tolerances based on individual historical variations in the

inputs and outputs leads to better results than the use of

generic or random variations.

Appendix 2
Table A2 – WWTPs efficiency ranking.

WWTP R1 R2

7 1.000 –

22 1.000 –

14 0.987 0.947

32 0.938 0.813

38 0.777 0.587

19 0.740 0.358

20 0.617 0.769

40 0.555 0.536

25 0.518 0.800

2 0.506 0.784

35 0.308 0.787

33 0.247 0.839

34 0.222 0.456

9 0.210 0.712

1 0.185 0.748

5 0.185 0.747

6 0.185 0.690

13 0.111 0.422

16 0.074 0.792

8 0.000 0.849

31 0.000 0.677

15 0.000 0.601

43 0.000 0.593

3 0.000 0.575

45 0.000 0.529

18 0.000 0.516

29 0.000 0.470

44 0.000 0.460

11 0.000 0.414

41 0.000 0.408

17 0.000 0.380

36 0.000 0.372

37 0.000 0.365

4 0.000 0.356

30 0.000 0.354

23 0.000 0.350

26 0.000 0.347

12 0.000 0.335

24 0.000 0.282

28 0.000 0.277

21 0.000 0.274

42 0.000 0.272

39 0.000 0.256

10 0.000 0.193

27 0.000 0.159
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