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A B S T R A C T

Eco-efficiency assessment is a useful tool for improving the sustainability of wastewater treatment plants
(WWTPs). However, it is a complex task that requires the integration of several performance indicators into a
single index. Data envelopment analysis (DEA) is established as a highly effective methodology for achieving this
as it permits the integration of the service value, resource consumption and environmental impact variables as
the desirable outputs, inputs and undesirable outputs, respectively. However, traditional DEA models omit
uncertainties in the data that are likely to result in biased conclusions. This study pioneers the assessment of the
eco-efficiency of WWTPs while accounting for the data uncertainty and integrating the greenhouse gas emissions
as an undesirable output. The DEA-tolerance model was applied to compute the eco-efficiency scores for 729
scenarios for each facility tested for identifying the best- and worst-case scenarios. The WWTPs were also ranked
based on their eco-efficiency scores. The results demonstrated the importance of integrating data uncertainty in
eco-efficiency assessments; the performances of the WWTPs change notably based on the evaluated set of sce-
narios. The proposed methodological approach provides a reliable and robust framework for supporting deci-
sion-making processes.

1. Introduction

The United Nations Industrial Development Organization has
identified eco-efficiency as a major strategic element for its work on
sustainable development (UNIDO, 2012). Schaltegger and Sturm (1989)
pioneered the definition of eco-efficiency as the ratio between the value
added and environmental impact. Hence, in the term ‘eco-efficiency’,
the prefix ‘eco’ represents both the ecological and economic perfor-
mance (Yin et al., 2014). That is, eco-efficiency entails producing more
goods and services with fewer resources and with lesser environmental
impact (Koskela and Vehmas, 2012).

Eco-efficiency has been popularized as a management philosophy
that encourages companies to balance their environmental and eco-
nomic performances by promoting innovation, growth and competi-
tiveness (WBCSD, 2000). Therefore, several studies have been

conducted with the aim of evaluating the eco-efficiency of different
sectors including the water and sanitation industry (Caiado et al.,
2017). In this context, wastewater treatment plants (WWTPs) are a
special type of productive unit that use resources (energy and mate-
rials) to remove pollutants from wastewater and discharge the treated
water into the environment (Ren and Liang, 2017). Thus, according to
the most widely used definition of eco-efficiency, which is the ratio
between the value of products or services and the environmental im-
pacts and resources consumption, eco-efficiency of WWTPs entails the
removal of more pollutants from wastewater by incurring less economic
costs and emitting fewer greenhouse gases (GHG). The capability to
quantify the eco-efficiency of WWTPs is essential to determining suc-
cesses, identifying and tracking trends, prioritizing actions and identi-
fying areas for improvement (Molinos-Senante et al., 2016a). The
achievement of Goal 6 of the Sustainable Development Goals of the
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2030 Agenda adopted by the United Nations (ensure access to water
and sanitation for all) will involve a notable increase in the number of
operational WWTPs worldwide. Thus, there is an increasing need to
assess the eco-efficiency of WWTPs to improve their sustainability
(Dong et al., 2017).

Eco-efficiency is a multidisciplinary concept, and therefore com-
plicated to assess as it requires a holistic approach that integrates sev-
eral performance indicators into a single index (Fan et al., 2017; Godoy-
Duran et al., 2017). A few studies evaluating the eco-efficiency of
WWTPs employed life-cycle assessment (LCA) (Lorenzo-Toja et al.,
2015; Opher and Friedler, 2016; Zepon Tarpani and Azapagic, 2018) as
it is a useful tool for evaluating the environmental performance of
WWTPs (McNamara et al., 2016). However, in the specific context of
eco-efficiency estimation, LCA has two main limitations. Firstly, it does
not consider economic variables and therefore, does not integrate the
economic dimension essential for eco-efficiency evaluation (Richa
et al., 2017). Secondly, the applicability of LCA is generally limited by
the requirement for a large amount of data (Curran, 2013). An alter-
native methodological approach employed to evaluate the eco-effi-
ciency of WWTPs is data envelopment analysis (DEA) (Mai et al., 2015;
Castellet and Molinos-Senante, 2016; Guerrini et al., 2017; Gómez
et al., 2017). It integrates different sets of performance in-
dicators—economic and environmental—within an organizational
production process (Lahouel, 2016). In the context of assessing the eco-
efficiency of WWTPs, Dong et al. (2017) reported that DEA is superior
to LCA.

In the framework of eco-efficiency analysis, DEA presents an addi-
tional and fundamental advantage: it enables the integration of en-
vironmental impacts as undesirable outputs in the assessment. The
significant advantage of this approach is that the holistically computed
eco-efficiency score integrates the three dimensions of eco-efficiency: i)
service value (desirable outputs), ii) resource consumption (inputs) and
iii) environmental impacts (undesirable outputs) (Ji, 2013). Numerous
studies have integrated environmental impacts as undesirable outputs
in the eco-efficiency assessments of several types of productive units
(e.g., Oggioni et al., 2011; Robaina-Alves et al., 2015; Xu et al., 2017).

Notwithstanding the fact that this is a significant methodological
advantage, to our knowledge, only Molinos-Senante et al. (2016b)
considered GHG emissions from WWTPs as an undesirable output while
evaluating their eco-efficiency. Other studies, such as Hernández-
Sancho et al. (2011), Sala-Garrido et al. (2012), and Gómez et al.
(2017) evaluated the efficiency of WWTPs while completely omitting
their environmental impacts. Thus, in a strictly rigorous sense, they
evaluated the economic efficiency, rather than the eco-efficiency, of
WWTPs. Recently, Dong et al. (2017) employed the DEA approach to
assess the eco-efficiency of a sample of Chinese WWTPs while also
taking GHG emissions into consideration. However, these authors in-
tegrate the environmental impact as an input rather than an undesir-
able output, which contradicts the assumptions of production theory
(Färe et al., 1989). Section 2.1 discusses this issue further.

However, the positive features of DEA do not exempt it from lim-
itations in terms of eco-efficiency assessments. DEA is a deterministic
method and therefore cannot address imprecise data or provide in-
formation about uncertainty (Kao and Liu, 2014). The role of un-
certainty is essential because the conclusions derived from eco-effi-
ciency analyses are highly sensitive to errors in data (Bhardwaj et al.,
2018). To overcome this problem and take uncertainty into account,
several extensions to the traditional DEA models have been proposed,
such as Monte Carlo simulation (Cordero et al., 2009), the α-level based
approach (Carvalho and Marques, 2016), chance constraint (Momeni
and Farzipoor Saen, 2012), bootstrapping (Simar and Wilson, 2007),
fuzzy ranking (Han et al., 2015) and DEA-tolerance (Bonilla et al.,
2004). Each of these methodological approaches exhibits advantages
and shortcomings. However, Bonilla et al. (2004) demonstrated that the
DEA-tolerance method is simpler and faster than the bootstrapping
approach and provides similar results. Moreover, Dong et al. (2017)

noted that the DEA-tolerance approach is less subjective than the fuzzy
approach as it does not require the fuzzy sets of variables to be defined
for all decision-making units. Furthermore, the DEA-tolerance approach
can be combined with the system of indicators proposed by Boscá et al.
(2011) that permits units to be ranked in an uncertain context. This is
highly noteworthy in the framework of WWTPs because water and sa-
nitation are regulated industries, wherein water tariffs are generally set
based on benchmarking processes (price cap regulation), in numerous
countries.

The DEA-tolerance approach has been successfully applied by Sala-
Garrido et al. (2012) and Dong et al. (2017) to assess the eco-efficiency
of WWTPs. However, the model employed by both studies involved
only inputs and desirable outputs while omitting undesirable outputs.
As previously mentioned, in eco-efficiency assessments, it is funda-
mental to integrate the environmental impacts as undesirable outputs,
as they are jointly produced with the desirable outputs, although they
must be minimized. Otherwise, the eco-efficiency scores estimated do
not completely capture the holistic nature of the eco-efficiency concept
based on service value, resource consumption and environmental im-
pacts (Zhang et al., 2008).

The objective of this study was to evaluate the eco-efficiency of a
sample of WWTPs while accounting for uncertainty. In achieving this, a
DEA-tolerance model integrating GHG emissions as undesirable outputs
was applied for the first time. The integration of data uncertainty in
DEA models enabled the computation of the eco-efficiency scores for
729 scenarios and the identification and evaluation of the best- and
worst-case scenarios for each facility (the scenarios are described in
section 2.2). It reduces the uncertainty in eco-efficiency assessment.
Moreover, WWTPs are benchmarked based on their scores using a ro-
bust approach that integrates uncertainty. Thus, this paper contributes
to the current literature in the field of WWTP performance assessment.
Moreover, it should be highlighted that to our knowledge, no prior
studies applied the DEA-tolerance approach and included undesirable
outputs for the eco-efficiency assessments of WWTPs or other produc-
tive sectors. Thus, we are also innovating in the field of performance
assessment by providing a robust additional method for evaluating the
eco-efficiency of units by directly integrating environmental impacts
and uncertainty. Beyond academics, the observations of this study are
also effective from a policy perspective. An evaluation of the eco-effi-
ciency of WWTPs is essential for developing policies and measures to
promote sustainable wastewater treatment. Moreover, benchmarking
the performances of WWTPs based on the eco-efficiency scores con-
sidering uncertainty provides a reliable and robust ranking of the
WWTPs analysed. This is essential for the decision-making process.

2. Methodology

2.1. Data envelopment analysis with undesirable outputs

The DEA methodology was applied to evaluate the eco-efficiency of
WWTPs. DEA is a non-parametric method based on linear programming
that permits the construction of an efficient production frontier based
on the inputs and outputs of the units evaluated (WWTPs in this case-
study) (Cooper et al., 2007). The relative position between the units and
the production possibility frontier is represented by an eco-efficiency
index ranging from zero to one (Dong et al., 2017). A WWTP is con-
sidered to be eco-efficient if its index equals one because it implies that
it is located on the efficient frontier. In contrast, an eco-efficiency lesser
than one indicates that the efficiency of the WWTP is low and requires
improvement (Gómez et al., 2017).

In the traditional DEA models proposed by Charnes et al. (1978) and
Banker et al. (1984), performance indicators were categorized as inputs
and desirable outputs, where the former are resources used to produce
outputs and the latter are the products or value-added services
(Lahouel, 2016). However, as noted in the seminal work of Koopmans
(1951), the production process is also likely to generate undesirable

T. Gómez et al. Journal of Environmental Management 226 (2018) 484–492

485



outputs such as pollutants or waste. This is the concept underlying eco-
efficiency, which has three goals: i) to increase the value of the service
or good, ii) to optimize the use of resources and iii) to reduce the en-
vironmental impact (Robaina-Alves et al., 2015). Expressing these ob-
jectives in DEA terms, eco-efficiency assessments require the integra-
tion of performance indicators as inputs, desirable outputs and
undesirable outputs (Monastyrenko, 2017).

Several models within the framework of the DEA method have been
proposed to incorporate undesirable outputs in efficiency assessments
(Charles et al., 2012). There are two main types of approaches, direct
and indirect, to handle undesirable outputs in DEA models (Scheel,
2001). Indirect approaches are based on the transformation of the data
corresponding to the undesirable outputs into inputs or desirable out-
puts (Pérez et al., 2017). However, several studies have demonstrated
the limitations of these approaches. For example, Seiford and Zhu
(2002) noted that treating undesirable outputs as inputs does not reflect
the actual production process because the input–output structure that
defines the production process is lost. Liu and Sharp (1999) and Färe
and Grosskopf (2004) demonstrated that several transformations to
handle undesirable outputs can produce adverse results. In contrast,
direct approaches do not alter the undesirable outputs and rather in-
tegrate them in the DEA model with constraints (Wang et al., 2012).
Several studies (Färe and Grosskopf, 2003, 2004; 2009; Sahoo et al.,
2011) have established that treating undesirable outputs in their ori-
ginal forms is consistent with the physical laws and standard axioms of
production theory. Hence, this study applies the latter methodological
approach to compute the eco-efficiency of WWTPs.

Following previous studies (Marques et al., 2014; Guerrini et al.,
2015; Molinos-Senante et al., 2016a), a DEA approach based on as-
sumptions of variable returns to scale and minimization orientation
including undesirable outputs (Wang et al., 2012) (Eq. (1)) was em-
ployed to compute an eco-efficiency index for each WWTP evaluated.
The use of variable returns to scale implies that WWTP inputs are af-
fected by economies of scale; that is, plants treating a larger volume of
wastewater tend to be more efficient than smaller ones (Hernández-
Sancho et al., 2011).

Given n WWTPs and that WWTP k ( = …k n1,2 , ) has vector
= …x x x x( , , , )k k k Mk1 2 of M inputs, vector = …y y y y( , , , )k k k Sk1 2 of S de-

sirable outputs and vector = …b b b b( , , ., ,)k k k Lk1 2 of L undesirable out-
puts, the eco-efficiency θ is obtained according to the DEA model as-
suming variable returns to scale by solving the following linear
programming problem for each WWTP:
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where λk is a vector of intensity. The measure of eco-efficiency θ is
bounded between zero and one. A WWTP is considered eco-efficient if

=θ 1, whereas it is considered eco-inefficient if ≤ <θ0 1.

2.2. Eco-efficiency assessment under uncertainty

The DEA model expressed by Eq. (1) does not permit stochastic
variations in data because imprecise and uncertain information con-
strains DEA models. Classic DEA requires that the exact values of all the
inputs and outputs (desirable and undesirable) be specified. However,
these assumptions may not be true because certain data cannot be
measured precisely in practice (Eslami et al., 2012) as uncertainty is
inherent in data that are either collected from WWTPs or monitored.
Moreover, for decision-makers, it is essential to take the fluctuations of
WWTP performance into account in eco-efficiency assessments (Dong
et al., 2017).

The DEA-tolerance approach captures uncertainty by constructing
intervals for data (Dyson and Shale, 2010). Thus, it provides informa-
tion on the sensitivity of the eco-efficiency of WWTPs to changes in
inputs and outputs (desirable and undesirable) by considering several
scenarios for each WWTP. Fig. 1 shows the methodological steps carried
out to compute eco-efficiency scores integrating uncertainty while
employing the DEA-tolerance approach based on Molinos-Senante et al.
(2016c).

Step 1: Tolerance estimation for each input, desirable output and
undesirable output.

The definition of the tolerance values for inputs, desirable outputs
and undesirable outputs was an essential step in applying the DEA-
tolerance model. Following Medal and Sala (2009) and Sala-Garrido
et al. (2012), tolerances were based on observations of historical series
of each variable. This study set the tolerance level based on the annual
averages of the inputs and outputs (desirable and undesirable) of
WWTPs during 2014–2016 (another period can be selected depending
on data availability). Symmetric and constant tolerances were also
defined for each variable.

The tolerances defined are non-negative scalar values and express
the positive and negative changes in the values of the inputs and out-
puts (desirable and undesirable) as follows:

=
=

=

α x r
β y s

γ b t

Tolerance for inputs:
Tolerance for desirable outputs:
Tolerance for undesirable outputs:

ik ik ik

rk rk rk

lk lk lk (2)

where rik, srk and tlk are the percentages of deviation from the original
values for the inputs, desirable outputs and undesirable outputs, re-
spectively and fall in the range −[0 100].

According to the tolerance values defined, the values of the inputs
and outputs should be within the following ranges:

∈ − +
∈ − +

∈ − +

x x r x r
y y s y s
b b y b t

[ (1 ), (1 ) ]
[ (1 ), (1 ) ]

[ (1 ), (1 )]

ik ik ik ik ik

rk rk rk rk rk

lk lk lk lk lk (3)

Step 2: Selection of DEA combinations to be solved.
Equation (3) reveals the existence of a large set of feasible combi-

nations of inputs, desirable outputs and undesirable outputs. This step
involves the selection of the scenarios for which the eco-efficiency in-
dexes are computed. Following Medal (2010), this case study simulated
729 scenarios for each facility, yielding the maximum (best case) and
minimum (worst case) eco-efficiency index in addition to the mean
value. It involves solving Eq. (1) 729 times for each WWTP because 36

(= 729) scenarios were created for each WWTP. These corresponded to
three situations, namely, (i) best case, (ii) worst case and (iii) original,
with six feasible inputs and outputs, i.e., (1) inputs for the WWTP
analysed, (2) desirable outputs for the WWTP analysed, (3) undesirable
outputs for the WWTP analysed, (4) inputs for the remaining WWTPs,
(5) desirable outputs for the remaining WWTPs and (6) undesirable
outputs for the remaining WWTPs.

Thus, the following values are considered to evaluate the eco-effi-
ciency of WWTP k0 and its inputs, desirable outputs and undesirable
outputs:

Step 1: 
Tolerance 

Step 2: 

solved

Step 3:

efficiency indexes

Fig. 1. Step to apply DEA-tolerance approach.
Source: Own elaboration from Molinos-Senante et al. (2016c).
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Step 3: Estimating eco-efficiency indexes for each WWTP.
The 729 DEA combinations defined in Step 2 result in two extreme

scenarios for each WWTP k0: (i) the best-case scenario (the best for the
WWTP evaluated, considering the lowest values for inputs and un-
desirable outputs and the highest values for desirable outputs) and (ii)
the worst-case scenario (the opposite situation). The values of the in-
puts and the desirable and undesirable outputs for each scenario (where
k0 is the evaluated WWTP) are as follows:
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Under the best- and worst-case scenarios, the maximum and
minimum eco-efficiency indexes, respectively, are obtained for each
WWTP evaluated, permitting the uncertainty of the eco-efficiency as-
sessment to be narrowed down.

2.3. Eco-efficiency and ranking of WWTPs

In a regulated industry such as urban water, one of the objectives of
eco-efficiency evaluation is to benchmark the WWTPs analysed. Using
the DEA approach alone, several WWTPs can be categorized as eco-
efficient, and therefore, ranking them directly is not feasible. This
limitation can be overcome using the DEA-tolerance estimation fra-
mework because it estimates the efficiency indexes for several sce-
narios. Thus, Boscá et al. (2011) proposed two indicators to rank
WWTPs based on the number of times they are categorized as efficient.

We modified those indicators to rank WWTPs based on their eco-effi-
ciency, considering that our assessment involved 729 case scenarios
rather than 81 since Boscá et al. (2011) only considered the desirable
outputs and inputs.

The two eco-efficiency indicators for the k0-th order WWTP are
defined as follows:

=R
e
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where ek0 is the number of times that the eco-efficiency index of WWTP
k0 is equal to one; τk0 is equal to 729, the number of scenarios analysed
for each WWTP and Sk0is the sum of the eco-efficiency indexes of
WWTP k0.

Rk
1
0 is bounded between zero and one and denotes the proportion of

times that WWTP k0 is eco-efficient. A value of zero implies that WWTP
k0 was eco-inefficient in all the 729 scenarios evaluated. In contrast,
whenRk

1
0equals one, the WWTP is eco-efficient in all the scenarios

evaluated. Therefore, the higher the value of Rk
1
0 is, the higher is the

propensity of the WWTP to be eco-efficient (Sala-Garrido et al., 2012).
The indicator Rk

2
0 , also bounded between zero and one, is used to rank

two WWTPs that have an identical value for the first indicator, Rk
1
0 .

3. Sample description

The empirical application of this study is focused on evaluating the
eco-efficiency of a sample of 30 Spanish WWTPs operated by the same
public partnership. As one of the objectives of this study was to
benchmark the eco-efficiency of the WWTPs, it was essential to com-
pare homogeneous facilities, such as those designed to remove the same
pollutants. The 30 plants evaluated remove suspended solids (SS) and
organic matter using conventional secondary treatment and do not
perform specific processes for nutrient (nitrogen and phosphorus) re-
moval. The volume of wastewater treated by each of these facilities
ranges between 22 000m3/y and 555 000m3/y; therefore, they are
considered small plants (Lorenzo-Toja et al., 2015).

The selection of inputs, desirable outputs and undesirable outputs
was based on previous studies that evaluated the eco-efficiency of
WWTPs (Molinos-Senante et al., 2016b; Dong et al., 2017) and the
broader concept of eco-efficiency (see Fig. 2 and Table 1). The inputs
reflect the amount of resources consumed by the WWTPs. Therefore,
they were represented by the operational and maintenance costs of the
facilities (€/year) (Guerrini et al., 2015), which are grouped into the
following four categories: i) staff costs, which include the salaries and
social charges of the WWTP employees; ii) maintenance costs, which

Wastewater 
treatment 

plants 
(WWTPs)

Staff costs ( )1
Maintenance costs ( )2
Waste costs ( )3
Other costs ( )4

Suspended solids ( )1
Chemical oxygen demand ( ) 2

Indirect greenhouse gases ( )1

RESOURCES 
CONSUMED SERVICES 

PROVIDED

ENVIRONMENTAL 
IMPACT

Fig. 2. Eco-efficiency modelling for wastewater treatment plants.
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include the equipment and machinery maintenance and replacement
costs; iii) waste management costs, which include the costs related to
waste and sludge management (not treatment) and iv) other costs (for
reagents, the laboratory, office supplies, etc.). Notwithstanding the
importance of energy costs among the operating costs of WWTPs, they
were not considered as input in order to prevent double counting be-
cause energy consumption is a fundamental variable for estimating the
indirect GHG emissions of each facility. Within the framework of eco-
efficiency evaluation, desirable outputs refer to the value of the services
provided (Ji, 2013). The main function of WWTPs is to reduce the
negative impacts on water bodies by reducing the pollutants discharged
into them. Taking into account the operational characteristics of the
WWTPs assessed in this study, two desirable outputs were integrated in
the DEA-tolerance model: the SS and the organic matter measured as
chemical oxygen demand (COD). Both the variables were expressed in
kg/y; therefore, the influent and effluent characteristics were integrated
in the assessment. It should be noted that all the WWTPs satisfy the
effluent quality requirements specified in the European Urban Waste-
water Directive 91/271/EEC.

This paper pioneers the integration of environmental impacts as
undesirable outputs in the eco-efficiency assessments of WWTPs. In
particular, this study focused on the effects of WWTP operation on
climate change. This was because in recent years, the amount of energy
consumed by WWTPs increased owing both to an increase in the vo-
lume of wastewater treated and to newer and more stringent effluent
quality regulations (Gu et al., 2017). The operation of WWTPs involves
direct and indirect emissions of GHGs, mainly CO2, N2O and CH4

(Meneses et al., 2015). The 30 WWTPs evaluated in this study do not
remove nitrogen or monitor its concentration in their effluent. There-
fore, notwithstanding the high global warming potential of N2O com-
pared to that of CO2 (IPCC, 2014), it was not feasible to estimate the
direct emissions of N2O from these WWTPs. This is also the case with
CH4 because none of the facilities evaluated treat sludge anaerobically
or monitor CH4 emissions. Direct emissions of CO2 consist mostly of
biogenic carbon and therefore do not make an extra contribution to
global warming (Wang, 2010). Thus, this study considered indirect
GHG emissions (expressed as Kg CO2-eq/y) as the undesirable output in
the eco-efficiency evaluations of the WWTPs (Molinos-Senante et al.,
2016b). The emissions were estimated based on the energy consumed
by the facilities (kWh/y), the Spanish electrical production mix for
2016 and the coefficient of the 100-year global warming potential
(308 g CO2-eq/y per kWh of electricity produced).

4. Results and discussion

4.1. Eco-efficiency of WWTPs under uncertainty

To compute the eco-efficiency scores of the WWTPs for the 729
scenarios, the first step was to estimate the tolerance values for each
variable integrated in the DEA-tolerance model (Fig. 1) . The tolerance
values reflect the potential data uncertainty for each variable. Table 2
lists the values of symmetric tolerance estimated for the inputs (costs
for staff, maintenance, and waste management, etc.), desirable outputs

(COD and SS removed) and undesirable output (GHG emissions) ex-
pressed as a percentage of the original data.

The undesirable output presents the lowest tolerance value, which
implies that this variable exhibits the lowest uncertainty in the WWTP
eco-efficiency assessments. However, it should be noted that the data
availability restrictions at the time of this study implied that only in-
direct GHG emissions (those related to energy consumption) were
considered. The fact that the GHG emissions variable presents the
lowest uncertainty highlights the importance that the managers of
WWTPs accord to energy issues. In contrast, the inputs (the variables
related to the operational and maintenance costs) exhibit the highest
tolerance values. Of these, the highest variability (uncertainty) is ob-
served in the maintenance costs. This illustrates that the economic ef-
forts undertaken by the WWTPs vary significantly over time depending
on the needs of the facilities. The two desirable outputs, the removal of
SS and COD, exhibit similar moderate tolerance values. This is because
they are only partially regulated by the WWTP operators as the con-
centration of pollutants in the influent depends on urban residents and
the effluent must comply with environmental regulations (Directive 91/
271/EEC).

The application of the DEA-tolerance model and inclusion of un-
desirable outputs generated 729 eco-efficiency scores for each WWTP
under an equal number of likely scenarios. It yielded the range within
which the eco-efficiency scores varied, thus narrowing the uncertainty
in the eco-efficiency of each WWTP evaluated. To inspect the results
more closely, the eco-efficiency scores of four specific groups were se-
lected and are presented in Table 3: i) the ‘original’, which is the eco-
efficiency score obtained using the original data, ii) the ‘mean’, which is
the average eco-efficiency score of the 729 scenarios evaluated, iii) the
‘maximum’, which is the highest eco-efficiency score obtained and
therefore represents the best-case scenario of the WWTPs assessed and
iv) the ‘minimum’, which is the lowest eco-efficiency score obtained
and therefore represents the worst-case scenario of the WWTPs as-
sessed.

Based on the original data, the average eco-efficiency of the 30
WWTPs evaluated was 0.454, which indicates that the potential to save
costs, reduce GHG emissions and improve the pollutant removal effi-
ciency is 54.6%. Under the best-case scenario, the average maximum
eco-efficiency score of the WWTPs could potentially attain 0.618, which
implies a feasibility of improvement by approximately 38%. In contrast,
under the worst-case scenario, the average minimum eco-efficiency
score was 0.339, indicating a potential improvement of 66%. The
average mean eco-efficiency score for the 729 scenarios evaluated was
0.482, which is very close to the average score using the original data.
Table 3 illustrates that the eco-efficiency scores of the 30 WWTPs ex-
hibit large standard deviations under the scenarios evaluated. For ex-
ample, using the original data, the minimum eco-efficiency score was
0.037; this is very low as it indicates that this plant could improve its
eco-efficiency by 96% compared to the most eco-efficient ones.

With regard to the WWTPs with the highest performances, Table 3
illustrates that eight out of 30 WWTPs (27%) were eco-efficient based
on the original data, implying that they were located on the efficient
frontier. Eight additional WWTPs could become eco-efficient, in the

Table 1
Sample description.

Inputs Desirable Outputs Undesirable Output

Staff costs
(€/year)

Waste management costs
(€/year)

Maintenance costs
(€/year)

Other costs
(€/year)

Organic matter
removed (Kg COD/
year)

Suspended solids
removed (Kg/year)

Greenhouse gas (Kg CO2-
eq/year)

Average 17167 2240 2000 3215 423 161 16029
SD 14198 2458 2078 1003 234 68 18156
Minimum 1691 7 73 2236 93 33 160
Maximum 61063 9733 10107 6663 1112 387 64475
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best-case scenario, by increasing their pollutant removal efficiency or
decreasing their operational and maintenance costs and GHG emissions
to within the defined tolerance values. This demonstrates that in the
most favourable scenario, 16 out of the 30 WWTPs (53%) are likely to
be eco-efficient; however, the remaining facilities evaluated (47%)
would not become eco-efficient even in the best-case scenario. In con-
trast, in the worst-case scenario 6 out of the 30 WWTPs (20%) were
identified as eco-efficient, implying that two facilities that were con-
sidered eco-efficient based on the original data cease to be so in the
pessimistic scenario. From a management perspective, these WWTPs
should be vigilant as marginal changes in their performance could
cause them to lose their eco-efficiency status. These results illustrate the
importance of considering uncertainty in eco-efficiency assessments.

Fig. 3 illustrates the impact of data uncertainty on the estimation of
the eco-efficiency of the WWTPs evaluated. It illustrates the variation
intervals between the best and worst cases out of the 729 scenarios
assessed as well as the mean values of the WWTP eco-efficiency scores.
The different lengths of the bars indicate the stability of the eco-effi-
ciency scores. That is, they denote the extent to which the uncertainties
in the inputs, desirable outputs and undesirable output impact the eco-
efficiency scores of each WWTP. A high amplitude reveals that there are
large differences in scores between the best- and worst-case scenarios
and that therefore, the data uncertainty exerts a large impact on the
latter. In contrast, a low amplitude indicates that the eco-efficiency will
change only minimally irrespective of variations (uncertainty) in the
data.

Fig. 3 shows that six of the WWTPs are eco-efficient under the 729
scenarios evaluated. This indicates that the eco-efficiency of these
plants is not impacted by uncertainties in data. Another group of
WWTPs exhibit low variability in their eco-efficiency scores, which
implies that their scores do not differ notably under either the best- or
worst-case scenarios. Nevertheless, this group of WWTPs are char-
acterized by their low eco-efficiency scores even in the former; for ex-
ample, the eco-efficiency scores of WWTP 29 are 0.05 and 0.04 in the
best- and worst-case scenarios, respectively. A third group of plants
exhibited a large amplitude between their maximum and minimum eco-
efficiency scores. These WWTPs can be considered highly ‘sensitive’
because uncertainty exerts a notable impact on their eco-efficiency
scores. The extreme example is the WWTP1, whose eco-efficiency score
ranges between a minimum of 0.04 in the least favourable and a
maximum of 1.0 (eco-efficient) in the most favourable scenario of the
WWTPs assessed.

From a management perspective, it is highly effective to compare
the sensitivities of different facilities to data uncertainty when evalu-
ating eco-efficiency. Thus, it is important to have accurate information
on the performance indicators of the facilities, particularly if the eco-
efficiency assessment serves benchmarking purposes for setting waste-
water treatment tariffs, such as those that occur in price cap regulation
approaches.

4.2. Ranking WWTPs based on eco-efficiency scores under uncertainty

The indicators Rko
1 and Rko

2 were computed to rank the WWTPs ac-
cording to their eco-efficiencies (see Section 2.3). This approach en-
abled an accurate ranking of the WWTPs based on their scores for the
729 scenarios evaluated. The rankings are thus highly robust because
they are based on numerous eco-efficiency estimations rather than a
single estimate as is the case in traditional assessment. Table 4 shows
the values of both the indicators for the WWTPs assessed.

Based on the Rko
1 indicator, it is evident that WWTPs 8, 11, 15, 17,

20 and 25 occupy the first position in the ranking as they are eco-ef-
ficient under all the 729 scenarios evaluated. It should also be noted
that under the original data scenario, eight facilities were identified as
eco-efficient. Thus, the inclusion of data uncertainty in the assessment
generated a more accurate ranking of the WWTP based on eco-effi-
ciency scores. A second group of WWTPs (1, 2, 3, 7, 14, 21, 24, 26, 27
and 30) were categorized as eco-efficient in a few of the scenarios
evaluated. For example, R1 for WWTP 27 was 0.444, implying that in
44.4% of the evaluations (324 scenarios), this facility was identified as
eco-efficient. The other WWTPs have Rko

1 values equal to zero, in-
dicating that they were identified as eco-inefficient in all the 729 sce-
narios.

The results of the Rko
2 indicator facilitate the ranking of the WWTPs

that exhibit the same value of ≠R 1ko
1 . In this case study, the Rko

2 values
helped rank WWTPs 21 and 27, 14 and 1 and 7 and 30 when each of the
pairs exhibited identical Rko

1 values. Each of these WWTP pairs pre-
sented identical eco-efficiency scores when the original data was used
to compute them; however, they performed differently under the worst-
case scenario. Moreover, the Rko

2 indicator permitted the ranking of the
WWTPs for which Rko

1 =0; these were facilities that were not identified
as eco-efficient even in the best-case scenario. Table 4 reveals that
WWTP 19 occupies the highest position in this ranking of plants,
whereas WWTP5 is identified as the less eco-efficient facility.

The hierarchical ranking of WWTPs is of significant interest for
(waste) water regulators as it compares the eco-efficiency of WWTPs

Table 2
Tolerances for inputs, desirable outputs and undesirable output in %.

Staff costs Waste management costs Maintenance costs Other costs Organic matter removed Suspended solids removed Greenhouse gas

4.18 6.86 12.97 2.97 3.41 3.38 2.83

Table 3
Eco-efficiency scores of wastewater treatment plants (WWTPs) for 729 sce-
narios.

WWTP Original Mean Maximum Minimum Amplitude (max-min) (%)

1 0.167 0.454 1.000 0.047 95.3
2 0.612 0.639 1.000 0.208 79.2
3 0.618 0.622 1.000 0.432 56.8
4 0.144 0.145 0.164 0.127 3.7
5 0.037 0.044 0.124 0.032 9.2
6 0.104 0.104 0.118 0.092 2.7
7 0.450 0.623 1.000 0.266 73.4
8 1.000 1.000 1.000 1.000 0.0
9 0.223 0.224 0.254 0.196 5.8
10 0.072 0.072 0.082 0.063 1.8
11 1.000 1.000 1.000 1.000 0.0
12 0.061 0.062 0.087 0.047 4.0
13 0.177 0.177 0.201 0.156 4.5
14 0.609 0.678 1.000 0.131 86.9
15 1.000 1.000 1.000 1.000 0.0
16 0.113 0.114 0.129 0.100 2.9
17 1.000 1.000 1.000 1.000 0.0
18 0.256 0.257 0.335 0.198 13.8
19 0.319 0.319 0.363 0.280 8.2
20 1.000 1.000 1.000 1.000 0.0
21 0.417 0.667 1.000 0.336 66.4
22 0.145 0.145 0.165 0.128 3.7
23 0.173 0.182 0.380 0.130 25.0
24 1.000 0.719 1.000 0.186 81.4
25 1.000 1.000 1.000 1.000 0.0
26 1.000 0.995 1.000 0.587 41.3
27 0.657 0.659 1.000 0.271 72.9
28 0.075 0.075 0.086 0.066 1.9
29 0.046 0.046 0.052 0.040 1.2
30 0.156 0.433 1.000 0.058 94.2
Mean 0.454 0.482 0.618 0.339 27.87
SD 0.378 0.363 0.422 0.357 35.34
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addressing the same regulatory framework. Unlike traditional ranking
systems, the integration of uncertainty in eco-efficiency assessment
facilitates discrimination among WWTPs with similar performances.
Moreover, Dong et al. (2017) noted that an important advantage of the
DEA-tolerance approach is its reliable identification of the most stable
of the best and worst performers. The eco-efficiency assessment of the
best- and worst-case scenarios provides a highly conservative estimate
of these scores for each WWTP.

5. Conclusions

The assessment of the eco-efficiency of WWTPs is an effective
management tool for improving their sustainability. However, it is a
challenging task as it requires a holistic approach that integrates several
performance indicators into a single index. From a methodological
point of view, previous studies have demonstrated that the data en-
velopment technique exhibits several positive features with which the
eco-efficiency of productive units can be evaluated. Nevertheless, tra-
ditional data envelopment analysis models do not account for data
uncertainties, which is important because eco-efficiency scores are
highly sensitive to data errors.

To overcome this limitation, this study is the first to evaluate the
eco-efficiency of a sample of WWTPs while simultaneously considering
uncertainty in data and integrating greenhouse gas emissions as an
undesirable output. The data envelopment analysis-tolerance model
was applied for this evaluation. This enabled the computation of the
eco-efficiency of each facility for 729 scenarios, and the best and worst
cases were identified. The WWTPs were also benchmarked based on
their eco-efficiency scores for the scenarios considered.

The primary observations of our study can be summarized as fol-
lows: Firstly, indirect greenhouse gas emissions exhibit the lowest tol-
erance value or the lowest uncertainty in data. This reveals the im-
portance that WWTP managers accord to energy issues. Secondly, based
on the average eco-efficiency scores, there is a high scope for im-
provement in the performances of the WWTPs, from both economic and
environmental perspectives. Thirdly, for most of the WWTPs evaluated,
the scores computed for the best- and worst-case scenarios change
significantly. This highlights the importance of taking uncertainty into
account for performance assessments.

From a policy perspective, this study demonstrates the importance
of integrating data uncertainty in eco-efficiency assessments. This is
further relevant for regions or countries where performance assessment
is used to set (waste) water tariffs. Omitting uncertainty data is likely to
result in biased conclusions because the ranking of eco-efficient WWTPs
changed notably for the scenarios evaluated when this was included.
The proposed methodological approach provides a robust and reliable
framework for supporting decision-making aimed at improving the
sustainability of WWTPs.
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Fig. 3. Eco-efficiency scores of each wastewater treatment plant (WWTP) for 729 scenarios: mean, maximum and minimum scores.

Table 4
Ranking of wastewater treatment plants (WWTPs) based on eco-effi-
ciency scores for 729 scenarios.

WWTP Rko
1 Rko

2

8 1.000 –
11 1.000 –
15 1.000 –
17 1.000 –
20 1.000 –
25 1.000 –
26 0.988 0.624
24 0.630 0.242
21 0.444 0.401
27 0.444 0.387
14 0.383 0.478
1 0.383 0.115
7 0.358 0.413
30 0.358 0.117
2 0.169 0.566
3 0.012 0.617
19 0.000 0.319
18 0.000 0.257
9 0.000 0.224
23 0.000 0.182
13 0.000 0.177
22 0.000 0.145
4 0.000 0.145
16 0.000 0.114
6 0.000 0.104
28 0.000 0.075
10 0.000 0.072
12 0.000 0.062
29 0.000 0.046
5 0.000 0.044
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