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A B S T R A C T   

Building energy use is expected to grow by more than 40% in the next 20 years. Electricity remains the largest 
energy source consumed by buildings, and that demand is growing. To mitigate the impact of the growing de-
mand, strategies are needed to improve buildings’ energy efficiency. In residential buildings home appliances, 
water, and space heating are answerable for the increase of energy use, while space heating and other miscel-
laneous equipment are behind the increase of energy utilization in non-residential buildings. Building energy 
management systems support building managers and proprietors to increase energy efficiency in modern and 
existing buildings, non-residential and residential buildings can benefit from building energy management sys-
tem to decrease energy use. Base on the type of building, different management strategies can be used to achieve 
energy savings. This paper presents a review of management strategies for building energy management systems 
for improving energy efficiency. Different management strategies are investigated in non-residential and resi-
dential buildings. Following this, the reviewed researches are discussed in terms of the type of buildings, building 
systems, and management strategies. Lastly, the paper discusses future challenges for the increase of energy 
efficiency in building energy management system.   

1. Introduction 

Buildings such as residential, education, office, healthcare, and in-
dustrial are emerging as critical consumers in energy consumption. 
Energy consumption for buildings represents 30–45% of global energy 
use [1–3], with a larger part of the energy used by the building sub-
systems, which consist of cooling and heating systems; safety, water, 
lighting, and similarly combined subsystems. In this context, efforts at 
this time are focused on the fulfillment of the requirements for 
energy-efficient in buildings, by guaranteeing the operative needs with 
the base conceivable energy cost and environmentally friendly [4]. In 
many developing and developed countries, energy efficiency is viewed 
as the best mechanism to address and defeat ever-rising energy needs 
[5]. In any case, advancing the energy efficiency of these subsystems is 

very testing since they typically have to comply with complex working 
requirements, dynamic energy necessity, and comfort needs [6]. 

Considering the use of the building, the idea of Building Energy 
Management Systems (BEMS) is now being used. BEMS can be described 
as a combination of strategies and methods needed to improve its per-
formance, efficiency, and energy utilization [7]. This technology per-
mits the implementation of key energy management tasks such as 
automating demand response approaches, overseeing energy costs, 
detecting energy use anomalies, and arranging energy use information 
[8]. There are numerous studies and research work that are describing 
advanced use of BEMS either for subsystems such as, cooling and heating 
systems [9,10] or the whole building [11,12]. Comfort and energy 
management in buildings have gotten noteworthy research enthusiasm 
throughout the most recent decade. Commercial systems will, in gen-
eral, depend on specified working timetables, depend on the occupation 
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expected at the building layout phase. It has been discovered that such 
timetables can vary significantly from real occupancy behavior, causing 
energy to squander [13]. 

The objective of this paper is to provide a review of energy man-
agement strategies for non-residential and residential buildings to know 
what are the gaps in terms of strategies and techniques used for types of 
buildings and the future lines to follow. The paper reviews existing 
studies’ respect for building types, building subsystems, and used 
techniques. We identify the current state and future challenges in BEMS 
research. The structure of this paper is: Section 2 presents the method-
ology used in this review, Section 3 offers background information of 
buildings and subsystems inside a smart building, Section 4 gives a 
summary of existing studies on management strategies for BEMS, Sec-
tion 5 discusses the previous studies, Section 6 presents future chal-
lenges in the topics of management strategies for BEMS, and Section 7 
concludes this paper. 

2. Methodology 

The methodology for the realization of this review consisted of the 
following steps:  

� Articles search procedure: A keyword-based search was made using 
Science Direct and IEEE Xplore databases. Keywords such as building 
energy management systems, building management systems, and 
building management methods were used. Furthermore, the papers 
were chosen by types of article, selecting research articles, and re-
view articles. Science Direct and IEEE Xplore were selected, because 
both databases have a large number of high quality and innovative 
articles, and the search engines have multiple advanced search op-
tions that allow a more precise search.  
� Articles filtering: The outcomes of the articles search procedure from 

both databases were imported into a reference manager to be filtered 
based on the title, keywords, and abstract, so articles that were not 
related to the topic were eliminated.  
� Sub-topics selection: After having reviewed the remaining articles, a 

critical analysis was made based on the topics of focus, selecting 
which would be the sub-topics to develop and which would be to 
introduce, and allowing to organize in the reference manager the 
articles in different sub-topics.  
� New articles search: Once the sub-topics were defined, new searches 

were made in the aforementioned databases, combining the sub- 

topics with the main topic using logical operators. Then again an 
article filtering was done, eliminating duplicate articles and articles 
not related to the topic.  
� Analyzing the outcomes: The survey results were examined to 

distinguish research breaches in the field of building energy man-
agement systems and to highlight the future directions of research. 

3. Smart buildings 

Buildings can go about as intelligent systems that encourage the 
move towards an increasingly feasible energy use perspective. They can 
promote the quickened take-up of sustainable technologies and the 
decrease of carbon emissions, operational costs, productivity, wellbeing, 
energy consumption, and comfort [14]. Presently, there are several 
kinds of building depending on the design goals. For instance, there are 
green buildings, net-zero energy buildings, and smart buildings (see 
Fig. 1). 

Green buildings are commonly intended to be eco-friendly for the 
entire building cycle from plan, development, running, and activity, and 
upkeep to a building remodel and destruction. For net-zero energy 
buildings, the objective is to make the building supply its energy by 
protection and sustainable power source generators in the structure and 
accomplish net-zero energy use and consequently carbon emission on a 
yearly premise [15]. The concept of smart buildings includes the 
incorporation of technology and energy systems within buildings. This 
focuses on automation, resource management, occupants’ comfort, and 
energy conservation [16]. Balancing energy use requirements and 
occupant comfort is the biggest issue in smart buildings. Three key 
considerations which determine the occupants’ comfort inside a build-
ing are air quality, visual and thermal comfort [17]. In this paper, we 
focus attention on smart buildings that have their highest energy con-
sumption in the operation stage of the lifecycle of a building. 

The next generation of smart buildings must not only contemplate 
features such as weather conditions and predicted occupancy, but it 
should also be sufficiently adaptable to maximize the use of schedule 
consumption around low energy price periods, local renewable re-
sources and energy storage [18]. The structure of a smart building in-
cludes generation, energy storage, demand management, and control 
and communication, all of which are controlled by BEMS (see Fig. 2). 
The different components of smart buildings are described in the 
following sections. 

3.1. Generation 

These days, traditional generation systems are being rebuilt and 
transformed into intelligent grids to increase the dependability and 
effectiveness of the generation systems that bring about collective, 
financial, and environmental advantages. An intelligent grid is an 
electrical energy network that utilizes innovative knowledge to 

Abbreviation and nomenclature 

AHU Air Handling Unit 
BEMS Building Energy Management System 
BES Battery Energy System 
CO2 Carbon Dioxide, 
DR Demand Response 
DSM Demand Side Management 
EE Energy Efficiency 
EMS Energy Management System 
ESS Energy Storage System 
FDD Fault Detection and Diagnosis 
HVAC Heating Ventilation Air-Conditioning 
IoT Internet of Things 
MPC Model Predictive Control 
PV Photovoltaic 
RO Robust Optimization 
SO Stochastic Optimization 
TES Thermal Energy System 
WSN Wireless Sensor Network  

Fig. 1. Types of buildings concepts based on design goals.  
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supervise and control the energy production from all sources to fulfill 
the fluctuating energy needs of end-clients [19]. A microgrid is a small 
section of the intelligent grid. A microgrid can be controlled as a sepa-
rate generation system for small-scale areas as well as a dispatchable 
load of the typical generation system. The basic idea of a small-sized 
microgrid has been utilized in industrial plants, commercial buildings, 
and homes [20]. Photovoltaic (PV) based microgrids are progressively 
turning into a key energy source, particularly among residential energy 
consumers. In recent years, huge development on the incorporation of 
PV systems to the utility grid has been made [21]. 

An intelligent building can be view as an energy-efficient structure 
that can be additionally seen as a building with an integrated microgrid. 
It can assume a key part in the renovation of electrical energy grids and 
fill in as an important component in guaranteeing grid trustworthiness. 
This can be accomplished by changing the conduct of the building from 
an unresponsive to a dynamic provider [22]. For this reason, smart 
buildings and smart homes have an important function, because they are 
the final point in the distribution network [23]. 

3.2. Energy storage 

Providing a storage capacity to assist the changing nature of wind 
and solar resources is one clear solution [24]. Storage gadgets, for 
example, water tanks, heat/ice storage units, and batteries perform a 
crucial task in lowering energy costs in building energy systems since 
they can assist to use time-of-use electricity prices and renewable energy 
resources [25]. End-users with dispatchable energy generators and 
storage gadgets provide an exceptional opportunity to raise the per-
centage of controllable loads [26]. For encouraging the progression of 
numerous types of resources in the building, two distinctive types of 
storages are used: Battery Energy Storage (BES) and Thermal Energy 
Storage (TES). BES is a high energy storage gadget that goes about as a 
cushion to store additional energy and help system operation when 
needed. TES depends on the common rule of ESS and is controlled by the 
movement of thermal power constrained by the restrictions of energy 
storage [27]. Electrical or Thermal storage is much of the time employed 
as regulators of demand during the day or energy buffers [28]. 

TES is seen as an answer for the issues of peak load shaving and 
power fluctuation in thermal loads, such as air conditioner or water 
heater which contributes to a significant part of the total energy con-
sumption in buildings [29]. BES is the most popular hybrid energy 
source in buildings. Through appropriate charging and discharging 
timetable, the storage ability of BES components is used for peak de-
mand shaving, frequency regulation, and load balancing [30]. 

3.3. Demand management 

Demand Management has been characterized to be a lot of the wide 

scope of arranging, execution, and supervising of utility activities to 
impact users’ behavior to create wanted changes in utility’s load shape 
[31]. It is essential for demand to be increasingly adaptable and to urge 
the user to take an interest effectively in the energy market [32]. Leaders 
from numerous nations have begun to concentrate on policies connected 
with improving the quota of renewable energy sources and encouraging 
the application of demand management methods [33]. Demand man-
agement strategies impact the conduct of consumers for energy use. 
Truth be told, it depends on coordinating present age values with de-
mand by regulating the energy use of electrical devices and enhancing 
their function at the user side [34]. 

Consumption planning is one of the significant basic ways to deal 
with demand management. It is accomplished by modifying the typical 
energy use behavior of end consumers after some time [35]. In build-
ings, a significant part is played by consumers because the diminution of 
energy use can be gotten by just giving the utilization profile of electrical 
devices to the users and as needs be assisting them to alter their conduct. 
To propel consumers to efficiently utilize energy, monetary incentives 
are offered to the consumers with the goal that they intentionally use 
energy optimally and avoid energy waste. This approach gives harmony 
between supply and demand [36]. 

3.4. Control & communication 

Building automation is worried about communication and control 
networks in buildings; the systems consist of processing units, actuators, 
sensors, and communication [37]. The field of building automatic 
technology is not new; be that as it may, as detecting, processing, and 
activating technologies have built up the extent of control has extended. 
The utilization of progressively broad sensor/actuator systems has made 
it more viable for automatic technology to take control instead of tenant, 
considering agreeable conditions to be kept up without inefficient 
practices from tenants [38]. A cozy environment with high energy ef-
ficiency is the essential target of building management [39]. Sensors 
were utilized for the adjustment of the temperature. To prevent recur-
rent adjustments among the two conditions of a sensor, sensors with a 
Deadband were established and utilized. In any case, overshoots in the 
regulated temperature were not prevented, which enhanced energy use. 
To tackle the issue, Proportional-Integrate-Derivative controllers were 
used. Although these controllers improved energy use, an incorrect 
configuration in the controller could make the entire system unbalanced 
[40]. 

The expression of a world in which objects, and not only individuals, 
will always be associated and ready to collaborate through the Internet 
is known as the Internet of Things (IoT) [41]. IoT defines the capacity to 
associate and control gadgets through the system in intelligent buildings 
[42]. Numerous conceivable sensor networks speak to various applica-
tions and typically include hybrid devices, these devices can have wired 
or remote access. They can be working to supervise and control [43]. To 
avoid the difficulties involved in connecting devices through wired 
routes in large scale networks, wireless communications are the most 
utilized in present-day [44]. Novel technologies such a Wireless Sensor 
Network (WSN) were evolved consequently to IoT advancements [45]. 
With the advance of WSN technology, it is presently simpler than at any 
other time to supervise and control industrial buildings, offices, and 
houses. WSN is the foundation of a huge assortment of building appli-
cations in healthcare, environmental monitoring, industrial, and secu-
rity areas, among others, because of the adaptable dispersion of WSN 
gadgets [46]. 

4. Energy management strategies for BEMS 

The essential idea of energy management is the consistent, 
methodical, and efficient review of energy use, focusing on energy cost 
optimization concerning user characteristics, financing ability, energy 
demands, funding opportunities, and emission reductions accomplished 

Fig. 2. General description of related systems inside Smart Buildings.  
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[47]. Energy Management Systems (EMS) allow clients to achieve ob-
jectives and those of utility suppliers, based on renewable generation 
predictions and load demand patterns [48]. These systems could 
monitor and control the use of energy in industry, equipment, and 
building according to different developed functions or control logics 
[49]. In this paper, the term management strategy refers to a set of 
techniques used in BEMS that interact dynamically with the building to 
obtain results that, in this case, would be to improve energy efficiency. 
Also, the term BEMS is used for both non-residential buildings and 
residential. 

BEMS is a term employed to typify various systems utilized to in-
crease the energy efficiency of operational buildings [50] and ensure 
indoor comfort for building occupants [51]. BEMS are an essential piece 
of an intelligent grid, enables building administrators to supervise and 
manage the energy used in their buildings, thus cutting the demand and 
energy use [52]. The usage of BEMS is highly flexible in both residential 
buildings and non-residential. 

There are two kinds of BEMS methods: active and passive. Passive 
methods are based on providing future strategies and improving the 
user’s energy awareness to influence and decrease the utilization of 
energy in buildings indirectly. Active methods are based on the mix of 
the actuators and sensors’ infrastructure in the building. They depend on 
reducing energy wastes contexts through the control of smart building 
actuators and gadgets [53]. Based on active approaches, we classified 
BEMS into four management strategies: model predictive control, 
demand-side management, optimization and fault detection, and diag-
nosis (see Fig. 3). 

4.1. Model predictive control 

Model Predictive Control (MPC) can foresee building response to 
control requests, and realizing the way to tail it can act sufficiently to 
accomplish the necessary operation. Forecast of building energy utili-
zation is important for better judgment towards decreasing CO2 emis-
sions and energy utilization since it can help with assessing various 
building layout options and building operation approaches and 
improving requirement and supply administration [54]. 

Three methods have been taken for building energy use forecasts (see 
Fig. 4). Physics-based methods are frequently mentioned as white-box. 
They utilize a straightforward procedure dependent on physics calcu-
lations to explain the energy performance of buildings. Data-driven 
methods, regularly referred to as black-box methods, principally 
depend on statistical evaluations and artificial intelligence to evaluate 
and estimate the building energy utilization. Hybrid methods, often 
named grey-box methods, refer to the merge of white-box and black-box 
approaches [55]. 

There have been studies on BEMS associated with the white-box 
model that focused on temperature control [56], forecast energy con-
sumption [57], predictive whole building heat and moisture [58], 
optimally control of cooling and heating activities [59], group of 
building connected to heat pumps [60], optimal Heating Ventilation 
Air-Conditioning (HVAC) and energy operation [61], energy flexibility 

[62], and minimize energy consumption and the energy cost of building 
HVAC system with incorporated concentrated solar power system [63]. 
Black-box models studies have focused on predictive control for boilers 
[64], predictive control for HVAC system [65], peak load, thermal 
comfort, energy storage, and renewables [66], building energy perfor-
mance models [67], and model for sustainable power source [68]. For 
grey-box models, studies have focused on optimizing the airflow volume 
and the air supply temperature setpoints [69], instant balance point 
temperature [70], estimate the ventilation air change rate [71], and 
thermal building modeling [72,73]. 

Based on the aforementioned studies in MPC, a summary of their 
contributions and limitations is present in Table 1. It is also worth noting 
that all models are mainly used in non-residential buildings such as of-
fices and universities. The most researched subsystem in all models has 
been the HVAC system. Regarding the techniques used, a great variety of 
techniques are presented, but no specific technique stands out. For 
white-box and grey-box models, the simulation software that stands out 
is MATLAB, TRNSYS, and EnergyPlus. And the most used programming 
languages for the black-box model are Python and R. 

4.2. Demand Side Management 

Demand Side Management (DSM) is an arrangement of actions to 
enhance the energy system on the user side. It goes from enhancing 
energy efficiency by utilizing improved resources, over intelligent en-
ergy rates with motivators for certain utilization arrangements, up to 
modern continuous management of allocated energy resources [74]. 
DSM is often understood to have two approaches (see Fig. 5): demand 
response (DR) and energy efficiency (EE) [75,76]. 

By integrating technologies such as the generation of renewable re-
sources, energy storage systems, smart devices, and smart meters, 
energy-efficient buildings are possible. Additionally, it establishes 
distributed generation, DSM, and distributed storage provisions of up-
coming intelligent grids. There have been studies on BEMS associated 
with the energy efficiency approach that have focused on a smart meter 
for smart houses [77], assessment of the electrical energy behavior [78], 
oversee building electrical device utilization [79], load estimating of 
thermal demand in smart buildings [80], utilize the thermal mass in 
building [81], and various users with a common distribution system 
[82]. 

Performing Demand Response in non-residential buildings can as-
sume a significant job in decreasing the peak load in the building. This 
increases the efficiency of power grids and mitigates costly energy and 
peak demand charges. There have been studies on BEMS associated with 
the demand response approach that have focused on decreasing the peak 
demand in building through end-use load control [83], decreasing costs 
for home energy management [84], smart home EMS for prosumers of 
residential buildings [85], cooling and heating systems in homerooms 
[86], real-time thermal EMS for intelligent homes [87], peak load 
diminution in a smart building [88]. 

Based on the aforementioned studies in DSM, a summary of their 
contributions and limitations is presented in Table 2. It is also worth Fig. 3. BEMS management strategies.  

Fig. 4. MPC approaches based on building energy consumption prediction.  
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noting that the energy efficiency approach is mainly used in residential 
and non-residential buildings, while the demand response approach is 
used in non-residential buildings. The most researched subsystem in 
demand response has been the HVAC system, while the energy efficiency 
approach in appliance consumption and HVAC system. Regarding the 
techniques used, a great variety of techniques are presented, but no 
specific technique stands out. For both approaches, the simulation 
software that stands out is MATLAB. 

4.3. Optimization 

There are a few ways to deal with the optimization in EMS and their 
related issues. EMS and their elements might be enhanced as for pro-
foundly various goals and on distinct concept levels [89]. Based on data 
uncertainty problems, optimization has two approaches, namely robust 
and stochastic optimization (see Fig. 6). 

Stochastic Optimization (SO) expects that the genuine prospect 
dissemination of dubious information must be known or assessed. On 
the off chance that this condition is met and the reformulation of the 
unsure optimization issue is computationally tractable, at that point SO 
is the method to take care of the questionable optimization issue within 
reach [90]. There have been studies on BEMS associated with a 

Table 1 
Summary of previous research papers, their contributions, and limitations.  

Approach Reference Contributions Limitations 

White-Box 
Model 

[57] A cost function for MPC 
which guarantees thermal 
comfort with minimal 
energy utilization and a 
linearization technique for 
the hydronic heating 
system model. 

Thermal control is based 
on a mono-zone building 
model, it was viewed that 
climate, and inward loads 
forecasts were 100% 
solid. 

[58] Model to foresee and 
evaluate energy 
utilization in non- 
residential buildings in 
the beginning phases. 

Only one specific climate 
region was considered for 
building design 
parameters and shapes. 

[59] Building a hygrothermal 
model dependent on a 
physical approach to 
perform optimal control. 

Performance relies on 
upon the circumstance of 
a specific building system. 

[60] Model predictive 
controller scheme for the 
cooling and heating 
system using prediction 
data for climate and inner 
gains. 

The simulation studies did 
not contemplate using 
ventilation coils in the 
rooms. 

[61] Economic MPC technique 
to minimize the total cost 
of operating the heating 
system for a cluster of 
buildings. 

Do not incorporate 
electricity prices and 
climate forecasts to look 
at the effect of 
vulnerability. 

[62] Specialized MPC 
technique to ideally 
control the HVAC system 
and the storage gadgets 
under thermal comfort 
and technological 
constraints. 

No consideration was 
given to the active/ 
reactive power flow in 
this case to guarantee the 
fulfillment of electrical 
limitations. 

[63] Productive enhancement 
based MPC energy 
management system that 
is appropriate for 
nonlinear energy systems. 

Involve non-convex 
constraints, making the 
solution optimal only 
locally. 

[64] Real-time MPC framework 
to minimize the energy 
utilization and 
operational cost of the 
HVAC system with 
integrated micro-scale 
concentrated solar power. 

An economical 
assessment and an exergy 
analysis of the system was 
not performed. 

Black-Box 
Model 

[65] A procedure of 
implementing a predictive 
control technique based 
on neural network in a 
commercial BEMS for 
boilers. 

Only based on the heating 
system temperature, 
internal temperature, and 
external temperature. 

[66] An optimization 
framework for proficiently 
controlling HVAC systems 
in buildings. 

Only was evaluated on 
one specific type of non- 
residential building. 

[67] An optimal control system 
to synchronize HVAC, 
battery energy storage, 
and renewable 
generation. 

Moistness and useable 
temperature based 
thermal comfort models 
were excluded from the 
control system. 

[68] A methodology to 
describe and assesses 
building energy 
performance models. 

The methodology was 
only evaluated on the 
HVAC system coefficient 
of performance. 

[69] Neural network predictive 
control technique for 
energy management in the 
zero-energy building. 

Only was evaluated on a 
residential building. 

Grey-Box 
Model 

[70] MPC-based control 
framework planned for 
decreasing energy 
utilization in non- 

The design depends on a 
variety of heuristic 
search, which can be 
difficult to scale up if a  

Table 1 (continued ) 

Approach Reference Contributions Limitations 

residential buildings while 
ensuring occupants’ 
comfort. 

few factors are to be 
streamlined 
simultaneously. 

[71] A methodology for 
deciding the 
instantaneous balance 
point temperature of a 
building. 

Need to be approved on 
real monitored 
information. 

[72] Use of a grey-box 
modeling approach to 
evaluate the ventilation 
air change rate. 

Need further exploration 
in more prominent 
heights. Only was 
evaluated for rooms up to 
3 m. 

[73] A hybrid building 
modeling technique for 
the HVAC system with 
reduced modeling and 
calibration effort. 

The utilization of two 
distinctive modeling 
methods requiring a 
different set of skills from 
the modeler might be an 
obstacle for its usage. 

[74] A dynamic technique 
based on Bayesian 
statistics to evaluate the 
thermophysical properties 
of the building. 

Estimation not considered 
the utilization of in-situ 
measurements outside the 
winter time frame.  

Fig. 5. DSM approaches based on utility end-user.  
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stochastic approach that have focused on maximizing the comfort index 
utilizing minimum power consumption [91], effective policy measures 
[92], identifying energy consumptions patterns [93], maximizing the 
general energy efficiency performance [94], load demand prediction of 
PV integrated intelligent buildings [95], and energy savings through 
analytics of actuators and information sources [96]. 

Robust Optimization (RO), does not presume that prospect dissem-
inations are known, yet rather, it expects that the unpredictability in-
formation resides in the so-called unpredictability set. Moreover, 
fundamental adaptations of RO presume hard restrictions, i.e., restric-
tion breach cannot be permitted for any understanding of the informa-
tion in the unpredictability set [90]. There have been studies on BEMS 
associated with a robust approach that focused on optimal planning of 
the components of the local energy system [97], supervising 
multi-HVAC system [98], managing occupants’ comfort and energy 
utilization [99], coordination of cooling system and individual fan 
[100], and energy use with prediction error [101,102]. 

Based on the aforementioned studies in optimization, a summary of 
their contributions and limitations is present in Table 3. It is also worth 
noting that the stochastic approach is mainly used in residential and 

non-residential buildings, while a robust approach in non-residential 
buildings. The most researched subsystem in a robust approach has 
been the HVAC system, while the stochastic approach in all building 
systems. Regarding the techniques used in the stochastic approach, 
particle swarm optimization and neural network are the most used, 
while in the robust approach no specific technique stands out. For both 
approaches, the simulation software that stands out is MATLAB. 

4.3.1. Fault detection & diagnosis 
A building could be planned and developed in an energy-efficient 

and green manner, a substantial fraction of energy could be lost if the 
EMS is not appropriately executed [103], causing an increase in the 
building operation costs [104]. Fault detection and diagnosis (FDD) is a 
programmed procedure of detecting and separating flaws in BEMS for 
the defense of a system from further harm. Some FDD uses in BEMS were 
created and studied dependent on the connections between thermody-
namics, pressure, and temperature for the recognition and analysis of 
flaws [105]. Regarding the field of BEMS, the FDD strategy can be 
grouped into two techniques: knowledge driven-based and data 
driven-based (see Fig. 7). 

Data driven-based approaches resolve FDD challenges utilizing 
artificial intelligence. With adequate training information, the assign-
ment of fault detection is to decide whether the examples of supervising 
information are like those of the typical training information [106]. 
There have been studies on BEMS associated with a driven-based 
approach that focused on the cause of faults in the heating system 
[107] and recognizing irregular operation patterns [108,109]. Knowl-
edge driven-based approaches depend on specialists to recognize and 
detect faults more viably and dependably than the vast majority of the 
current FDD approaches, particularly in the cases that analytic data is 
deficient and unsure. There have been studies on BEMS associated with 
knowledge driven-based approach that focused on analytic analysis for 
an air handling unit (AHU) [110], recognizing potential reasons for in-
consistencies for an AHU [111], distinguishing and assess chosen faults 
in a cooling system [112], and distinguishing undetected flaws [113]. 

Based on the aforementioned studies in fault detection and diagnosis, 
a summary of their contributions and limitations is presented in Table 4. 
It is also worth noting that both approaches are mainly used in non- 
residential buildings. The most researched subsystem in knowledge 
driven-based approach has been the HVAC system, while data driven- 

Table 2 
Summary of previous research papers, their contributions, and limitations.  

Approach Reference Contributions Limitations 

Energy 
Efficiency 

[78] Power management system idea dependent on residential DC 
distribution with smart plugs for smart homes. 

The implementation of this idea requires an initial investment to modify 
the distribution network of the home. 

[79] A method for the examination of electricity conduct of buildings, 
utilizing clustering techniques. 

The method requires an immense measure of crude information to acquire 
in-depth helpful data of the electricity conduct. 

[80] A control model to manage main electric appliances in residential 
buildings. 

The control was applied to a home with 12 different loads. The optimal 
setpoint for each load was not investigated. 

[81] A short-term activity-aware thermal energy demand forecasting method. The method did not implement production management strategies that 
optimize the operation of the equipment. 

[82] An algorithm to utilize building thermal inertia to spare energy and 
encourage coordinated effort inside building clusters. 

Activity joint effort of buildings and other factors, for example, electric 
vehicles and shared resources were not assessed. 

[83] Assessment of the impact of the incorporation in a local grid of 
commercial clients, as apartment buildings and districts. 

The assessment was validated with a building that was not fully 
operational. 

Demand 
Response 

[84] An approach to get proposed reduction values for home energy 
management. 

The usage of the approach is commonly unmistakable and issue 
coordinated. 

[85] Method to decrease the building’s peak electrical demand through end- 
use load control. 

Excludes the joining of renewable generation and storage at the client- 
side with demand-responsive buildings. 

[86] Algorithm for schedulable loads and battery units for prosumers of a 
smart home. 

The algorithm is evaluated in a scenario where the cost of energy varies 
depending on the schedule 

[87] An energy management scheme to decrease the overall energy 
utilization of HVAC units. 

The scheme was developed for a decentralized HVAC system. 

[88] A thermal energy management system in smart buildings for peak-load 
shifting. 

The management system and simulation results were confirmed by trial 
tests. 

[89] An energy management system to diminish peak load as observed by the 
electricity grid in a smart building. 

Do not consider local appliances and HVAC system, but only electric 
vehicles.  

Fig. 6. Optimization approaches to deal with information ambiguity.  
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based approach in all building systems. Regarding the techniques used 
in both approaches, no specific technique stands out. For data driven- 
based approach, the simulation software that stands out is MATLAB, 
while in knowledge driven-based, no specific software stands out. 

5. Discussion 

Based on the review of previous research work, a categorization 
based on building energy management strategies is present in Table 5. 
About 71,74% of the reviewed research efforts concentrated on devel-
oping building energy management strategies for non-residential, 
21,74% focused on residential buildings, and only 6,52% on non- 
residential/residential buildings (see Fig. 8). 

About 56,52% of the reviewed studies in non-residential focused on 
an HVAC system, could be because the comfort inside a building 

depends normally on three components: air-quality comfort, thermal 
comfort, and visual comfort. Since two of the three factors depend on the 
HVAC system and the most significant building energy use occurs from 
cooling and heating systems, it is important to improve the utilization 
[114]. On the other hand, for residential buildings, only 4,35% focused 
on the HVAC system. Instead, the studies focused on the entire building 
or electrical device use (see Fig. 9), this could be due to electrical device 

Table 3 
Summary of previous research papers, their contributions, and limitations.  

Approach Reference Contributions Limitations 

Stochastic [92] A building indoor energy 
and comfort management 
model dependent on data 
combination. 

Did not incorporate 
electric vehicles into the 
smart building system. 

[93] A model that combines 
energy-balance 
requirements with 
detailed modeling of 
regular HVAC systems. 

The application of the 
model was in a single zone 
rather than in multiple 
zones. 

[94] An optimization 
methodology for 
foreseeing real-time 
building energy 
utilization. 

Did not considere optimize 
energy utilization based on 
usage patterns. 

[95] A choice help strategy 
that distinguishes an ideal 
arrangement of retrofit 
intercessions in building 
stock. 

The technique requires the 
meaning of criteria 
weights, which implies the 
user has to be able to give 
his global cardinal scale of 
values. 

[96] An ensemble forecasting 
system for PV coordinated 
bioclimatic buildings. 

The system was applied 
only in the load demand 
forecast. 

[97] A cloud-based BEMS that 
integrates an enhanced 
sensor network with 
advanced analytics. 

Need to show the 
arrangement’s 
replicability across 
different buildings. 

Robust [98] A method which decides 
the ideal scheduling of the 
components of the local 
energy system. 

The method was tested on 
an emulated medium-size 
hotel. 

[99] An architecture to oversee 
multi-HVAC systems in 
buildings. 

The architecture excludes 
indoor humidity and 
indoor air quality index. 

[100] A method for a smart 
building to manage 
energy utilization and the 
overall comfort value. 

No proper function 
indicating the human 
activities was incorporated 
into the energy utilization 
calculations. 

[101] An algorithm for the 
coordination between air 
conditioning, mechanical 
ventilation, and personal 
fan. 

The models of room energy 
dynamics were obtained 
dependent on a simplified 
model with the measured 
information. 

[102] An approach based on the 
probabilistic data of 
subintervals of the outside 
temperature to plan the 
energy utilization of 
HVAC. 

The energy utilization 
model can be applied to 
the HVAC system with just 
on-off control activity. 

[103] An algorithm, which can 
be performed by the 
consumers to look for the 
ideal working state, 
energy supply, and cost. 

Consider a system 
consisting of an energy 
provider and consumers 
who have independent 
HVAC systems.  

Fig. 7. Fault detection techniques in the field of BEMS.  

Table 4 
Summary of previous research papers, their contributions, and limitations.  

Approach Reference Contributions Limitations 

Data driven- 
based 

[108] A methodology to detect 
functional sensor 
shortcomings in the 
hydronic heating system. 

Exclude the water 
pressure, balance 
model. 

[109] A methodology for the 
characterization of 
energy time-series in 
buildings and the 
distinguishing proof of 
rare and unforeseen 
energy patterns. 

Just working days were 
considered, and days 
with a low standard 
deviation of the energy 
demand were rejected. 

[110] Two techniques to 
produce named 
information for irregular 
energy utilization for 
both short-range and 
long-range information. 

The techniques depend 
on the size of the 
accessible dataset. 

Knowledge 
driven- 
based 

[111] A diagnostic 
methodology for an air 
handling unit. 

The methodology is 
appropriate for finding 
particular and sudden 
changes however no for 
distinguishing slow 
degradations and 
gradual faults. 

[112] A diagnostic model for an 
air handling unit. 

The model was tested 
using a series of 
simulation experiments 
injecting different fault 
scenarios. 

[113] An FDD approach that is 
non-intrusive and 
requires insignificant 
information assortment 
for AHU. 

The FDD approach is 
first constrained by the 
requirement for models 
that describe hardware 
behavior. 

[114] The technique to 
distinguish concealed 
faults by utilizing the 
likenesses between 
known faults and 
unknown faults. 

The reliability of the 
technique depends on 
how well the expert 
knowledge can describe 
the fault categories at a 
high level.  
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Table 5 
Summary of research papers based on building typology, building subsystems, and management strategies.  

Reference Authors Building 
Typology 

Building Subsystem Techniques Used 
Software 

Management 
Strategies 

[55] Hazyuk et al. Tertiary Heating Linear Programming MATLAB MPC Optimization 
[58] Asadi et al. Commercial HVAC Monte Carlo Simulation DOE-2, eQuest MPC 
[59] Salakij et al. Residential HVAC Linear Quadratic Tracking EnergyPlus MPC 
[60] Schirrer et al. Office HVAC Nonlinear Complex Model, Nonlinear Simplified 

Model 
Modelica, MATLAB MPC Optimization 

[61] Staino et al. Tertiary Heating Cooperative Optimization MATLAB MPC Optimization 
[62] Bianchini et al. Commercial HVAC Linear Programming, Mixed Integer Linear 

Programming 
EnergyPlus, MATLAB MPC Optimization 

[63] Ruusu et al. House Heating Successive Linear 
Programming 

MATLAB, TRNSYS MPC Optimization 

[64] Toub et al. University HVAC Monte Carlo Simulation MATLAB MPC 
[65] Macarulla et al. University Heating Neural Network MATLAB MPC 
[66] Manjarres et al. Office HVAC Random Forest Regression Next24h Energy MPC 
[67] Biyik et al. University HVAC Unspecified MATLAB MPC Optimization 
[68] Fan et al. University HVAC Machine Learning CRAN MPC 
[69] Megahed et al. House Overall Neural Network MATLAB/Simulink MPC 
[70] G�omez-Romero 

et al. 
Office HVAC Operational Plan Generator Algorithm IES Virtual Environment MPC 

[71] Krese et al. Tertiary HVAC Cluster-based sensitivity analysis EnergyPlus MPC 
[72] Macarulla et al. Office Ventilation Stochastic differential equations CTSM-R MPC 
[73] Massa Grey et al. Office HVAC Gaussian Process Model MATLAB, TRNSYS MPC 
[74] Gori et al. Office 

Residential 
HVAC Bayesian Statistics LORD MPC 

[79] Panapakidis et al. University Overall Clustering Techniques MATLAB DSM 
[78] Keles et al. Residential Appliance 

Consumption 
Load Shedding algorithm MATLAB/Simulink DSM 

[80] Fanti et al. House Appliance 
Consumption 

Control algorithms MATLAB/Simulink DSM 

[81] Sala-Cardoso 
et al. 

University HVAC Neural Network Unspecified DSM 

[82] Ghofrani et al. Tertiary HVAC Neural Network EnergyPlus, Building 
Virtual Testbed 

DSM 

[83] Martirano et al. Residential 
Commercial 

HVAC Load Demand Analysis Unspecified DSM 

[85] Faia et al. Residential Overall k-Nearest Neighbors Algorithm Unspecified DSM 
[84] Sehar et al. Office Lighting, 

HVAC 
Control algorithms EnergyPlus DSM 

[86] Arun et al. Residential Appliance 
Consumption 

Scheduling Algorithm, Genetic Algorithm MATLAB DSM 

[87] Jindal et al. University HVAC Mixed Integer Linear Programming CPLEX, Gurobi DSM 
[88] Baniasadi et al. University Heating Non-convex Mixed-Integer 

Nonlinear Programming 
LabVIEW, MATLAB DSM 

[89] Dagdougui et al. University HVAC Dual tracking control strategy LINGO DSM 
[92] Wang et al. Tertiary Overall Particle Swarm Optimization Unspecified Optimization 
[93] Rocha et al. Office 

Residential 
HVAC Sequential Quadratic Programming MATLAB Optimization 

[94] Chou et al. Residential Overall Time-series prediction, Machine Learning MATLAB Optimization 
[95] Carli et al. School Overall SAUGMECON resolution method MATLAB Optimization 
[96] Raza et al. University Overall Particle Swarm Optimization, Neural Network, 

Bayesian model 
MATLAB Optimization 

[97] Howell et al. Residential Overall Genetic Algorithm, 
Neural Network 

EnergyPlus, MATLAB Optimization 

[98] Gruber et al. Hotel Overall Horizon Optimization LabVIEW Optimization 
[99] Aguilar et al. Theatre 

Hospital 
HVAC Multi-objective Optimization Unspecified Optimization 

[100] Yang et al. Unspecified Lighting, 
HVAC 

Multi-Objective Swarm Particle Optimization, 
Weighted aggregation 

Unspecified Optimization 

[101] Xu et al. Office HVAC Lagrangian relaxation-based algorithm MATLAB Optimization 
[102] Du et al. Unspecified HVAC Linear Programming MATLAB Optimization 
[103] Ma et al. Unspecified HVAC Lagrangian dual method MATLAB Optimization 
[108] Djuric et al. University Heating Sequential Quadratic programming MATLAB FDD 
[109] Capozzoli et al. Office 

University 
Overall Symbolic Aggregate approXimation, 

Classification and Regression Tree 
Unspecified FDD 

[110] Gaur et al. House Overall Statistical approach, Segmented Linear 
Regression 

MATLAB FDD 

[111] Pakanen et al. College AHU Online Diagnostic Test Commercial BEMS FDD 
[112] Ploennigs et al. Commercial AHU Semantic model BEAD FDD 
[113] Deshmukh et al. University AHU Non-intrusive electric load monitoring Unspecified FDD 
[114] Li et al. University AHU Expert knowledge-based Unseen Fault 

Identification 
Unspecified FDD  
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are utilized depending on the need given by users to each load regardless 
of the moment [115]. 

For non-residential buildings, the most used strategy was MPC, the 
reason could be due to MPC can represent the room occupancy, weather 
prediction, and other data that could be of interest for ideal control of 
the system [116]. Analyzing occupants’ interactions is fundamental for 
forecasting energy consumption, without such an investigation, there is 
a high level of vulnerability and mistake [117]. Although it should be 
recognized that in recent research, optimization has grown since this 
management strategy is not only being used in active BEMS methods but 
also the passive ones, such as thermal load management [118], and 
structural links [119]. For residential buildings, the most used strategy 
was DSM (see Fig. 10), the reason could be due to customers are allowed 
to determine their energy utilization, helping energy suppliers to 
reshape the load profile and decrease peak load demand. DSM in con-
ventional EMS utilizes system-specific methods and it handles a pre-
determined number of manageable loads of restricted kinds [120]. 

Residential and non-residential buildings have a common factor that 
must be considered for efficient use of energy, which is the occupant 
behavior, which will determine how the system should work. Occupant 
behavior prediction is a difficult assignment in buildings since it will 
depend on the way the occupant thinks and the purpose of the building. 
Due to this, technologies such as machine learning have proven to be 

useful to predictive occupant behavior, since they are based on previous 
experience and model future behavior. 

6. Future challenge 

The energy issue in buildings has made essential a periodic change in 
the strategies to address building configuration/retrofit [121]. In this 
regard, all management strategies present future challenges that must be 
faced. Some are particular to each strategy while others are presented in 
several.  

� For model-based control methods, the nature of the model that 
characterizes building systems and elements is fundamental to 
ensure acceptable execution of intelligent building control and 
automation [122]. Also, the accuracy and reasonableness of the in-
formation and the connections assumed from it become a basic re-
ality [123]. 
� Energy needs are unequivocally connected to local climate condi-

tions, along these lines it very well may be normal that changes in 
worldwide and local climate conditions will lead later on to the 
development of the yearly energy requirement for the current 
building stock [124]. Residential building demand will be affected 
by the environmental change because of the expansion of normal 
temperature, climate limits, and the ensuing change on space 
warming and cooling needs [125]. 
� Changes in the energy supply system stimulate the task of coordi-

nating the exceptionally fluctuating and changeable sustainable en-
ergy generation with the yet firm energy demand. This prompts an 
expanding demand for storage and demand flexibility [126]. For that 
reason, energy coordination and collaboration among buildings and 
vehicles pulled in far-reaching intrigues these days [127].  
� The life cycle of traditional buildings is normally fixed in hundreds of 

years, while the sensor life must be kept up in over ten years or 
considerably shorter [128]. Besides, techniques depend on the pre-
sumption that the sensor information is finished and solid, which is 
not really obvious in real practice [129]. 

Considering the aforementioned challenges, each of the strategies 
has future lines of research that should be addressed. The MPC and 
optimization strategies require developing improve models that have a 
better performance taking into account the characterization of the 
building systems and climatic variables so that energy savings could be 
achieved in systems that influence the comfort of the occupants. DSM 
strategies are affected by the behavior of the occupants of buildings and 
the devices used, it is necessary to research loads that will have a sig-
nificant impact not only on the building but also on the grid, such as, 
electric vehicle. FDD is the most affected in terms of reliability that 
sensors must-have, so research that allows having a reliable 

Fig. 8. Comparison of reviewed literature based on building type.  

Fig. 9. Comparison of reviewed literature between building type and build-
ing system. 

Fig. 10. Comparison of reviewed literature between management strategies on 
building type. 
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communication system is increasingly required. Furthermore, the need 
for prediction models for specific tasks in buildings is a topic of interest 
for each of the management strategies. 

7. Conclusion 

This paper presents an overview of ongoing strategies in the area of 
active building energy management systems. Articles related to different 
management strategies for BEMS such as MPC, DSM, Optimization, and 
FDD in terms of residential and non-residential buildings were evalu-
ated. The building subsystems and techniques used for each type of 
strategy were reviewed. Also, the software used to validate the meth-
odologies was evaluated. This paper closes with a discussion of the 
outcomes found in every one of the strategies, research breach, and 
future research guidelines. 

As found in the review, most of the studies focused on HVAC systems, 
prioritizing only to decrease the energy consumption of these systems 
but leaving aside other buildings subsystem, which may represent a 
higher consumption depending on the purpose of the building. The 
outcomes of this paper demonstrate that some research areas may 
require more consideration: energy consumption prediction models for 
different subsystems, demand management considering new loads such 
as electric vehicles, methods that include the behavior of the occupants 
based on real data and methodologies that can be applied to both resi-
dential and non-residential buildings, taking into account all sub-
systems. Future research directions may lead to significant 
improvements in these areas and beyond include machine learning 
techniques and occupant behavior models. 
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