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Increasing evidence supports a central role of the immune system in sepsis, but the current view of how sepsis 
affects immunity, and vice versa, is still rudimentary. The European Group on Immunology of Sepsis has identified 
major gaps that should be addressed with high priority, such as understanding how immunological alterations 
predispose to sepsis, key aspects of the immunopathological events during sepsis, and the long-term consequences 
of sepsis on patient’s immunity. We discuss major unmet topics in those three categories, including the role of key 
immune cells, the cause of lymphopenia, organ-specific immunology, the dynamics of sepsis-associated 
immunological alterations, the role of the microbiome, the standardisation of immunological tests, the 
development of better animal models, and the opportunities offered by immunotherapy. Addressing these gaps 
should help us to better understand sepsis physiopathology, offering translational opportunities to improve its 
prevention, diagnosis, and care.

Introduction
Sepsis and septic shock definitions were revised in 2016 
to address key limitations of the previous iterations 
that included a simplistic illness model, which implied 
that sepsis transitions from a systemic inflammatory 
response to a compensatory anti-inflammatory response 
syndrome. Other limitations included a lack of explicit 
unifying clinical criteria1,2 and outdated understanding of 
sepsis pathophysiology.1 Sepsis-3 definitions have shifted 
the focus away from a non-specific inflammation to 
sepsis as organ dysfunction caused by a dysregulated 
host response to infection with the sequential organ 

failure assessment as the central diagnostic component.3,4 
1 year after the introduction of Sepsis-3, the WHO 
highlighted sepsis as a global health priority.5

Although Sepsis-3 is not free from controversy,6,7 the 
newly set focus on the host response and organ 
derangements has prompted new ways to approach 
sepsis immunobiology to identify unmet challenges in 
basic and clinical sepsis research.8 To address this deficit, 
the European Group on Immunology of Sepsis (EGIS) 
has identified key gaps in the current knowledge on 
sepsis immunology. The Sepsis-3 definitions refer to 
sepsis as dysregulated or dysfunctional host immune 
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Key messages

• The timeline of immunological events in sepsis must be 
elucidated, identifying the immunological changes induced 
by sepsis and those present before sepsis, which constitute 
risk factors for the disease

• Our knowledge on sepsis immunology is mostly based on 
what we learnt from studies in blood. We need to place 
more emphasis on understanding the immunological 
alterations occurring in organs, and their implications in the 
pathophysiology of sepsis

• We identify pending research challenges regarding key 
actors of the immune system, beyond T lymphocytes and 
antigen presenting cells (B cells, myeloid derived suppressor 
cells, neutrophils, neutrophil extracellular traps)

• A unified mechanistic framework is needed to understand 
the association between the immunity and pathological 
responses in sepsis.

• The microbiome plays a major but poorly understood role 
in shaping the immune response to infection, which could 
influence the risk of sepsis and the outcome after sepsis is 
established

• Sepsis survivors show important immunological alterations, 
which could play major pathogenic roles in the consequences 
of this disease in the long term

• Animal models that better mimic human immunopathology 
in sepsis are needed

• Reinterpretation and better standardisation of common 
immunological tests and emerging tests might offer new 
opportunities for improving detection and severity 
stratification of this disease

• Individualisation of treatment based on immunological 
profiling could help to improve the chances of 
immunotherapy to work

• Addressing the immunological gaps in the pre-sepsis phase, 
during sepsis, and in the post-sepsis phase will help to design 
better preventive, diagnostic, and treatment approaches to 
lower the morbidity and mortality associated with this 
disease
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and non-immune responses to infection without 
explicitly defining the nature and mechanisms of those 
dysregulations. In our view, this reflects the poor 
understanding of sepsis immunopathology. The lack of 
clear immune blueprints in sepsis generates many 
ambiguities and conceptual challenges. We review and 
discuss the major gaps in sepsis immunology at the pre-
sepsis stage, during sepsis evolution, and at the post-
sepsis period.

Gaps in the pre-sepsis period
An immunological profile predisposing to sepsis
Compelling evidence exists to support the connection 
between the basal immunological status and sepsis 
(table 1). As many as 24% of children with primary 
immunodeficiency diseases suffer from sepsis during 
their childhood.9 In a cohort study with 98 344 individuals, 
Warny and colleagues10 showed that, in the general 
population, lymphopenia (lymphocyte count <1·1 × 10⁹ cells 

per L) was associated with an increased risk of sepsis. 
Similarly, Furst and colleagues11 documented that low 
concentrations of immunoglobulins for prolonged periods 
(IgG <100 mg/dL, IgM <20 mg/dL) increased the risk of 
life-threatening infectious episodes. Low concentrations of 
immunoglobulins increase mortality risk in patients 
with moderate severe sepsis.12 In patients presenting to 
emergency departments with suspected acute infection, 
the presence of markers of early immunosuppression 
(neutrophil and monocyte programmed cell death 
protein 1 [PD-L1, also known as CD274] and programmed 
cell death protein-ligand 1 [PD-1, also known as CD279]; 
monocyte human leukocyte antigen-DR [HLA-DR]) is 
associated with subsequent sepsis.13

Factors inducing immunological susceptibility to sepsis
One of the major factors affecting the function of the 
immune system is genetic variability of the host. The 
impact of genetic variation on the immunopathogenesis 

Translational implications Potential solutions

Pre-sepsis

Identification of the host’s 
factors impairing 
immunity

Identifying the factors impairing immunity may help to 
establish corrective measures

Promoting healthy ageing, proper control of chronic conditions 
(eg, diabetes, COPD, obesity, renal and cardiovascular insufficiency, 
HIV infection) and optimised nutrition could improve immune 
systems’ ability to prevent, combat, and develop homeostatic 
responses to infection (thereby diminishing the risk of sepsis)

Defining immunological 
profiles associated with an 
increased risk of sepsis

Identifying profiles associated with an elevated risk of 
sepsis will allow implementation of specific preventive 
measures: correction of immunological deficiencies 
(ie, IgG, IgM), enhanced surveillance of potential infections, 
antimicrobial prophylaxis in susceptible individuals, and 
vaccination

Developing algorithms combining clinical information (ie, asplenia, 
treatment with immunosuppressors) with laboratory data 
(immunological phenotyping of whole blood, expression of 
immune related genes, functional responses to specific microbial 
antigens, etc) to detect those individuals predisposed to sepsis; 
developing international consortia to identify immunogenetic 
factors associated with sepsis by exome sequencing or 
genome-wide association studies

Sepsis

Causes and evolution of 
lymphopenia

Precise understanding of the mechanisms underlying 
lymphopenia and their individualised correction will likely 
improve outcomes

The use of humanised mouse chimeras with transplanted human 
hematopoietic cells could help to study mechanisms leading to 
lymphocyte depletion following induction of sepsis; these models 
could help to evaluate the true impact of check-point blockade and 
IL-7 therapies aimed to preserve or restore T cells’ function; 
developing longitudinal clinical studies to evaluate lymphocyte 
concentrations and function in blood before and after sepsis in 
individuals at risk could help to identify lymphopenia when 
it appears, and the impact of sepsis on lymphocytes’ biology

The role of B lymphocytes 
in sepsis onset and 
progression

Understanding the implications of B-cell counts, their 
fluctuation and functionality (eg, mounting a fully 
functional antibody responses) will should provide vital 
diagnostic clues and serve as theragnostic component of 
personalised therapies with exogenous immunoglobulins

Implementing studies centred on the biology of B cells in patients 
with acute sepsis and in sepsis survivors

The role of neutrophils 
and NETs in sepsis

The balance between mature and immature forms of the 
neutrophils and the dynamics of NETs formation or 
clearance is relevant to the control of the pathogen and to 
the pathogenesis of organ failure following infection; 
profiling concentrations of mature or immature neutrophils 
and NETs could help to detect sepsis early and to predict its 
prognosis

Implementing new methods to quantify mature and immature 
forms of neutrophils and NETs (ie, analysers providing delta index, 
gene expression of neutrophil granule-related genes combined 
with histone quantification); evaluating functionality of immature 
neutrophils (bacterial phagocytosis and killing via the production of 
reactive oxygen species, chemotaxis, activation); improving 
functionality of immature neutrophils (ie, with G-CSF) might 
normalise innate immune responses; seeking drugs for preventing 
excessive release of NETs or promoting its clearance could avoid or 
improve endothelial and tissue damage

COPD=chronic obstructive pulmonary disease. NET=neutrophil extracellular traps. G-CSF=granulocyte colony-stimulating factor.

Table 1: Major gaps in pre-sepsis and sepsis immunology, translational implications, and potential solutions 
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of sepsis can influence predisposition to this disease and 
its prognosis, which should be reflected in study designs. 
Most available studies use the candidate gene approach 
dealing with, for example, cytokine genes that can affect 
the inflammatory response, genes encoding for pattern-
recognition receptors (like Toll-like receptors), or genes 
that shape the response to infections.14,15 As such studies 
often suffer from poor reproducibility, an alternative could 
be conducting well planned and well powered data-driven 
genomic studies. Typically, these works are developed in 
consortia and lead to highly reproducible associations. 
Small-scale consortia aimed at studying the role of 
the immune system in sepsis employ approaches based 
on exome sequencing16 or genome-wide association 
studies.17,18 However, since exome sequencing studies miss 
regulatory regions of genes that are likely to be crucial in 
regulating inflammation in sepsis, broader genome-wide 
sequencing studies are necessary to cover this important 
aspect. In addition, large genome-wide association studies 
of sufficient power that insure validation in independent 
cohorts are needed to provide robust information on 
common genetic variants influencing susceptibility and 
outcome in patients with sepsis.

Aging, diabetes, chronic obstructive pulmonary disease, 
obesity, cardiovascular and renal disease, and the chronic 
use of immunosupressors are factors that impair the 
immune system’s ability to prevent and manage 
infections constituting risk factors for sepsis.19,20 These 
conditions simultaneously induce a lasting latent 
inflammation and metabolic dysfunction frequently 
accompanied by endothelial injury.21,22 These chronic 
alterations have a potential to modify the homeostatic 
transmigration of leukocytes and their ability to mount 
functional antimicrobial responses. They can also 
facilitate vascular leakage of cells and proteins 
(eg, immunoglobulins) during the response to infection.

The role of micronutrients such as zinc has been 
proposed to be essential in resistance against sepsis due to 
its modulatory effect on the inflammatory response, 
chemotaxis, phagocytosis, and oxidative stress.23 Vitamin D 
has an integral role in the functioning of the innate 
immune system. Low baseline 25-hydroxyvitamin D 
concentrations in serum are associated with an increased 
long-term risk of subsequent community-acquired sepsis.24 
Moreover, malnutrition has a negative effect on immunity, 
potentially increasing sepsis frequency.25

Patients with HIV infection or AIDS with decreased 
concentrations of CD4 T lymphocytes in the blood, are 
also at greater risk for sepsis.25 Neutropenia is a common 
complication in patients with cancer given cytotoxic 
chemotherapy, and can result in sepsis, septic shock, 
and exacerbated mortality.26 Furthermore, patients after 
splenectomy and those undergoing transplantation are at 
increased risk of sepsis.27,28 Patients with important 
bleeding have an acute loss of leukocytes. Some leukocyte 
classes rapidly replenish de novo (neutrophils) but others 
(lymphocytes) cannot be replaced easily, especially in older 

patients. Surgery per se represents an exposure with a 
substantial impact on immune competence, inducing 
both a transient activation of the innate immune response, 
accompanied by a rapid decline of monocyte HLA-DR, 
which is sustained in patients developing infection.29

Consequently, many adverse profiles influence the host 
immune responses to infection, which in turn increases 
risk of developing sepsis and thus encourages the 
design and implementation of novel, targeted preventive 
interventions to reduce or eliminate such risks. These 
interventions could involve the correction of nutritional 
and the immunological deficiencies (eg, immunoglobulin 
replacement),24 enhanced surveillance of the status of 
infection and infection-induced organ failure, vaccination, 
or the implementation of antibiotic prophylaxis before 
facing situations of risk, such as surgery.30,31 A special 
cohort of surgical patients consists of those receiving 
immunosuppressive medication after, for example, solid 
organ transplantation. Due to the suppression of cell-
based immunity, predominantly T-cell responses, these 
patients possess a substantial risk for developing 
infections with unusual pathogens (eg, candida or listeria), 
and reactivation of latent viruses (eg, cytomegalovirus).32 
Therefore, for surgical procedures involving a likely 
exposure of sterile compartments to microorganisms 
(eg, colorectal resections or transrectal biopsy), a perio-
perative, single-shot application of antimicrobial prophy-
laxis to prevent surgical-site infections and sepsis is the 
current standard of care, irrespective of the patient’s 
immune competence.33,34 Ultimately, it is hard to maintain 
the balance between host protection and harm, introduced 
by the selection of antibiotic-resistant bacteria and dis-
ruption of the gastrointestinal microbiota.

Immunological gaps during sepsis
The cause, emergence, and evolution of lymphopenia
T lymphocytes are part of the adaptive immune system 
and are responsible for the generation of memory 
against invading pathogens. CD4 T-helper cells support 
the production of specific antibodies by B lymphocytes 
and promote the bactericidal activity of phagocytes 
that together clear the infection. CD8 T lymphocytes 
recognise and kill virus-infected cells and tumour cells. 
Although a massive loss of lymphocytes occurs at the 
onset of sepsis, it is its persistence in a substantial 
subgroup of patients that correlates with mortality.35 
Elucidating the mechanisms underlying lymphopenia 
and lymphocyte restoration is thus of paramount 
importance (table 1 and table 2). Most data argue for 
apoptosis as the cause of sepsis-associated lymphopenia. 
Lymphocyte apoptosis appears to be driven by intrinsic 
(eg, mitochondrial p53) or extrinsic (eg, FAS) apoptotic 
cues, depending on the context,36,37 but data remain 
unclear. Beyond apoptosis, an excessive extravasation 
and aberrant recruitment to sites of inflammation, 
together with a hampered egress to the periphery due to 
low serum concentrations of chemotactic factors such 
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as sphingosine 1-phosphate,38 are potential mechanisms 
contributing to the decrease of circulating T cells. In 
fact, circulating lymphocytes might accumulate at large 
numbers at damaged endothelia and tissues; major 
cardiovascular injuries that afflict patients with sepsis 
lend credibility to such a hypothesis.39 The effect of 
hormonal imbalances on T cells in sepsis is another 
potential mechanism of lymphocyte dysfunction. The 
identification of risk factors associated with septic 
lymphopenia and its causes is still pending.

Regarding the restoration of lymphocyte counts 
observed in sepsis survivors, data suggest that peripheral 
mechanisms play a more prominent role than thymic 
output, especially given the strong apoptosis and 
involution of the thymus observed in sepsis.40,41 Thus, 
the role of homeostatic proliferation of T-cell clones 
in the periphery, probably driven by IL-7 and 
IL-15 signalling, has been implied by animal studies42 
but not yet verified in patients. Whether the promising 
check point blockade and IL-7 therapies43 can improve 
preservation of T-cell clonal spectrum remains 
speculative. In turn, the extent to which the complete 
T-cell receptor clonal repertoire of naive and memory 
T cells remains functional after a sepsis episode is 
doubtful.41 Besides the numerical loss or clonal shift, 
multiple dysfunctions in T cells’ metabolism and 
activation in sepsis have been reported.44 Nonetheless, 
the extent to which these cell-intrinsic impairments 

contribute to post-sepsis immunosuppression has 
now been challenged,45,46 implying a prominent role of 
T cells’ extrinsic cues in the post-sepsis environment 
(eg, defective antigen presentation). Also, the impact of 
sepsis on non-conventional, but biologically potent 
T-cell subsets such natural killer T cells or γδ T cells 
deserves more attention. For example, a dysfunctional 
response of natural killer T cells and cytotoxic T cells 
following infection or trauma, causing an excessive 
release of pro-inflammatory cytokines while being 
unable to eradicate target cells,47 has been put forward as 
a major cause of hemophagocytic lymphohistiocytosis—a 
life-threatening hyperinflammatory syndrome with 
high mortality in adults frequently misdiagnosed as 
sepsis.48 Finally, we need to understand in more detail 
the processes influencing lymphocyte differentiation 
and egress in the bone marrow.

The role of B lymphocytes in sepsis
B cells differentiate to plasma cells, the cells responsible 
for production of antibodies (immunoglobulins) against 
the infecting pathogen. However, the role of B cells in 
sepsis extends beyond immunoglobulin secretion. For 
example, B cells modulate the innate immune responses, 
cytokine production, and function as antigen presenting 
cells.49,50 Sepsis is associated with an accelerated loss of 
B lymphocytes, secondary to either lack of T-cell support 
or accelerated apoptosis through the mitochondrial 

Translational implications Potential solutions

Sepsis

The role of MDSC Monitoring MDSCs’ counts and their fluctuations will help 
define immunosuppressive phenotype and predict the risk of 
flair-ups and secondary hospital infections

Standardisation and development of consensus flow cytometry 
protocols for whole blood phenotyping of granulocytic or 
neutrophilic and monocytic MDSCs

Common elicitors and 
mechanisms of immune 
cell malfunction

Identification and characterisation of the so-called master 
inducers of generalised dysfunction of immune cells and their 
mechanisms of action will yield a better understanding of 
sepsis immuno-pathogenesis; a unified framework for 
sepsis-induced immune dysfunction should facilitate the 
design of new targeted treatments targeting immunity in 
sepsis

Developing assays on primary cell cultures from patients’ blood 
and tissues and animal models to evaluate the role of hypoxia, 
redox unbalance (including mitochondrial failure), and metabolic 
switch of immunocytes as potential ultimate triggers for most of 
immune cells’ aberrancies

Inadequate knowledge of 
organ-specific 
immunology (the concept 
of compartmentalisation 
of responses)

Organ-specific immunological alterations promote injury of 
individual organs or systems and contribute to the overall 
pathogenesis; targeted correction of these alterations will 
prevent or treat failure of the affected organs or systems

Identification of immunological biomarkers related to specific 
organs (beyond the blood) will improve the understanding of 
compartmentalisation and its therapeutic consequences; 
works on animal models and autopsy tissues will help to 
evaluate organ specific immune responses in sepsis

The exact timeline and 
sequence of immune 
alterations

Understanding the temporal sequence of individual 
immunological alterations will facilitate development of 
precise, time-matched, individualised corrective therapies.

Developing comprehensive clinical studies profiling innate, 
adaptive, pro-inflammatory and anti-inflammatory responses 
along the course of sepsis, by using flow cytometry and 
functional, transcriptomic, and proteomic assays.

Post-sepsis

Long-term impact of 
sepsis on the immune 
system: consequences on 
the risk of infections, 
neurological and 
cardiovascular 
complications, and cancer

Identification and temporal characteristics of typical and rare 
post-septic immune derangements (and subsequent 
complications) will enable creation of a SOP for sepsis 
survivors; correction of post- septic immune derangements 
using individualised SOP will prevent or reduce the 
detrimental long-term sequelae in sepsis survivors

Monitoring persistence of lymphopenia or low HLA-DR levels 
could help to identify those individuals at risk of secondary 
infections, and to reinforce surveillance and prevention of 
infection in these individuals; using high-dimensional flow 
cytometry and functional assays complemented by methods that 
focus on the transcriptome and epigenome could help to obtain 
a wide picture of the immune status in patients after sepsis

MDSC=myeloid derived suppressor cells. SOP=standard operation procedure.

Table 2: Major gaps in sepsis and post-sepsis immunology, translational implications, and potential solutions
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and death receptor pathways. Unexpectedly, this occurs 
in the presence of unaltered B-cell specific survival 
factor concentrations such as B-cell-activating factor or 
a proliferation-inducing ligand.51,52 B-lymphocyte loss is 
differential, with a greater loss of activated memory 
B-lymphocyte subsets.51 B lymphocytes that survive 
this accelerated apoptosis have an exhausted phenotype 
featuring a decreased MHC class II expression and 
increased interleukin-10 production.53 Finally, the 
profound T-lymphocyte abnormalities seen in sepsis also 
impair T-cell-dependent peripheral maturation of 
B lymphocytes contributing to changes in functionality of 
B lymphocytes.54 The memory B-cell niches that exist to 
rapidly recall antibody responses to new infections55 are 
unlikely to be spontaneously replenished to pre-sepsis 
levels and might contribute to the long-term infection risk 
seen in sepsis survivors.56,57

The role of neutrophils and neutrophil extracellular 
traps in sepsis
Neutrophils are first-line defence cells of innate 
immunity responding to the infecting pathogen. Severe 
microbial infection leads to an enhanced generation of 
granulocytes and the release of immature and mature 
forms of neutrophils from the bone marrow into the 
peripheral blood.58 In sepsis, the presence of excessive 
amounts of immature granulocytes in the blood is linked 
to clinical deterioration.59 Immature neutrophils 
from patients with sepsis have substantially diminished 
functional capacity, including both phagocytosis 
and respiratory burst.60 Immature neutrophils show 
an increased spontaneous production and release of 
neutrophil extracellular traps,61 which are composed of 
chromatin DNA, histones, and granular proteins. 
A prolonged presence of neutrophil extracellular traps in 
vasculature or tissues (by their overproduction or 
inadequate removal) can lead to endothelial injury and 
hypercoagulation.62,61 Understanding the impact of 
balanced responses between mature and immature 
neutrophils and the mechanisms of endothelial and 
tissue damage mediated by these cells and neutrophil 
extracellular traps will likely open new treatment options 
in sepsis.

The role of myeloid-derived suppressor cells
Immature myeloid cells migrating into the blood during 
emergency granulopoiesis in response to infection could 
become functionally active myeloid-derived suppressor 
cells. Myeloid-derived suppressor cells, whose immuno- 
suppressing properties have been studied in depth in 
malignant disease,63 remain poorly explored in sepsis. 
They constitute a heterogeneous population of immature 
myeloid cells equipped with potent immunosuppressing 
functions acting both on innate and adaptive immune 
responses. Two major subsets of these cells have been 
described: granulocytic or neutrophilic myeloid-derived 
suppressor cells, and monocytic myeloid-derived 

suppressor cells. Although experimental models of 
sepsis have reported a deleterious role of myeloid-derived 
suppressor cells,64 patient data are scarce. Uhel and 
colleagues65 described an association between increased 
neutrophilic myeloid-derived suppressor cell counts and 
occurrence of nosocomial infections after sepsis. 
Additionally, these cells have been proposed to sustain 
long-term immunosuppression in patients with chronic 
critical illness.66 The definition of human myeloid-
derived suppressor cells has been lacking unanimous 
phenotypic characterisation.67 The published results have 
been generated typically from Ficoll-enriched cell 
fractions, which constitutes a major limitation for clinical 
studies. A better standardisation and development of 
protocols for whole blood phenotyping of myeloid-
derived suppressor cells is essential.

The quest for common mechanisms of immune cell 
malfunction
Sepsis is characterised by a dysfunctional host immune 
response comprising both pro-inflammatory and anti-
inflammatory or immunosuppressing components that 
affect all types of immune cells and their compartments 
(figure 1). Current models assume that a derailment 
from immune homeostasis underlies sepsis-associated 
acute and long-term mortality. Nevertheless, the causes 
of the immune dysfunction remain conceptually hard to 
grasp. One difficulty is that most studies investigate a 
single type of immune cell at a time, which can preclude 
obtaining a wider view of how sepsis impacts immunity 
in its entirety. Owing to these deficits, an increased 
interest exists to generate a unified framework of sepsis-
associated immune dysfunction. One crucial question is 
whether the causes of various immune malfunctions 
converge at the level of one or several common elicitors 
for all immune compartments. Can hypoxia, the 
derailment of reactive oxygen species homeostasis, and 
the resulting redox unbalance (including mitochondrial 
failure) be considered as the ultimate trigger for most of 
immune cell aberrancies?22,68 Another candidate is the 
metabolic switch of immunocytes: most immune cells 
undergo dramatic rewiring of their cellular energy 
metabolism upon infection or exposure to pathogens.54

The spatial dimension: organ-specific immunology
Immunological sepsis research in humans has focused 
almost exclusively on the circulating blood cells. However, 
the existing evidence indicates that the immune response 
is highly compartmentalised. For instance, murine 
experiments showed that blood and spleen leukocytes 
are rendered hyporesponsive by endotoxaemia or 
caecal ligation and puncture-induced sepsis in the acute 
disease stage, which is indicative of tolerance in 
these haematopoietic compartments.69,70 However, 
the functionality of alveolar macrophages,69,70 liver 
Kupffer cells,70 renal cortex cells,71 intestinal epithelial 
lymphocytes,72 skin’s CD8 T-cells,73 and microglial cells74 
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was shown to be unaffected or primed. Studies in healthy 
volunteers revealed that alveolar macrophages were 
primed after endotoxin administration,75 a phenotype 
markedly different from the profound immunotolerant 
state of the blood monocytes in human endotoxaemia.76 
Furthermore, the initially suppressed ex vivo leukocytic 
cytokine production capacity was quickly restored after 
endotoxin administration in healthy volunteers and in 
mice,76 whereas the in-vivo response to an endotoxin 
rechallenge remained impaired for a sustained period.76 
These findings suggest that compartments other than 
the blood participate in shaping immunosuppression. 
A study by Ferguson and colleagues77 revealed that an 
endotoxin administration induced an opposite response 

in monocytes versus adipose tissue in over 30 genes. 
Immunological exploration of the response specificity in 
other compartments (eg, the brain, endothelium) remains 
rudimentary. These considerations indicate a need to 
extend the research for immunological biomarkers in 
sepsis beyond the blood.78 For example, several innovative 
nuclear imaging tracers that can quantitatively measure 
microglial activation in the brain in vivo have been 
developed.79 Understanding organ-specific immune 
responses to sepsis should also help rationalise how the 
local control of the infectious focus (or the failure to do 
so) might affect the overall immunity and progression of 
sepsis and persistent inflammation, immunosuppression, 
and catabolism syndrome.

Figure 1: Key events in sepsis immunopathology
Pathogen associated molecular patterns and damage-associated molecular patterns are recognised by pattern recognition receptors (ie, Toll-like receptors), which initiate inflammation. What differentiates 
sepsis from uncomplicated infection is a dysregulated host response (ie, inflammation) that leads to various organ dysfunctions and systems activation (vascular endothelium, complement systems inducing 
a procoagulant state and injury in the parenchyma). This process normally occurs in a susceptible host with predisposing factors (ie, aging, chronic diseases, prior immunosuppression) who shows chronic 
endothelial injury, a loss of homeostasis (to contain inflammation), or ineffective antimicrobial host defence, which translates into high microbial burden and high innate immunity activation. At the same 
time, host mechanisms aimed at blocking this deleterious excess of inflammation (endotoxin tolerance, apoptosis, energetic failure, anti-inflammatory mediators release, epigenetic regulation, central and 
endocrine regulation) along with leukocyte loss by vascular leakage and sequestration in the tissues and thrombus, lead to profound immune failure in some patients with the effect on both the innate and 
the adaptive immunity. These events translate into the coexistence of a pro-inflammatory response with immunosuppression at the time of clinical diagnosis of sepsis. In turn, the immune failure might 
contribute to perpetuate organ failure, in an indirect manner (poor control of the pathogen, secondary infections, and reactivation of dormant viruses), but also in a direct way (endothelial injury mediated 
by leukocytes, cytokines, reactive oxygen species, and maintained activation of coagulation). ROS=reactive oxygen species. Ig=immunoglobulins. NETs=neutrophil extracellular traps; MDSCs=myeloid 
derived suppressor cell. T reg=T regulatory lymphocytes.
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The temporal dimension: timeline and dynamics of 
immune alterations
The timeline of immunological alterations in sepsis is 
not well understood. Originally, a compensatory reaction 
was postulated to occur subsequently to the initial hyper- 
inflammatory phase of sepsis (figure 2). However, 
suggestive evidence demonstrated that, in sepsis, anti-
inflammatory reactions arise concomitantly with the 
pro-inflammatory response.78 As early as 1995, three 
research groups independently reported that the 
increase of IL-10 correlated with the rise of tumour 
necrosis factor, IL-6, and IL-8 in patients;80–82 this finding 
was later reproduced by pre-clinical sepsis studies, 
which demonstrated an identical response pattern.83,84 
Thus, septic plasma typically represents a mixed 
hyperinflammatory and immunosuppressing milieu85,86 
that can subsequently modulate circulating leukocytes 
in various ways.87,88 In addition to IL-10, also plasma 
cortisol, norepinephrine, and other endocrine factors 
can contribute to the alteration of the immune status.89 
Because it is difficult to define the exact onset of sepsis, 
the alterations of the immune status observed in patients 
with sepsis feature large variations in the time-lag with 
respect to the initial infectious insult. For example, in 
patients after cardiac arrest resuscitation, the circulating 
immune cells displayed altered functions already at 3 h 
after admission.90 This phenomenon occurred even 
earlier in patients undergoing arterial surgery, in which 
the alteration of the ex vivo cytokine production and 
HLA-DR expression on monocytes was evident already 
before the end of the surgery.89,91 The presence of damage 
associated molecular patterns and the alteration of the 
immune status of circulating cells occurs already at the 

trauma scene, far before the patient admission to the 
emergency room.92 Finally, it is unclear whether some 
of the immunological alterations observed in sepsis 
(eg, depressed expression of HLA-DR on monocytes) 
precede its onset or are induced by sepsis (or if both 
options occur concurrently).

Immunological gaps post-sepsis
The role of post-sepsis persistent immune alterations in 
pathogenesis
Alterations of the patients’ immune system after sepsis 
have been postulated as the molecular foundation of the 
epidemiologically proven increase in health-care costs 
and long-term mortality (table 2).56,93,94 Evidence 
favouring this concept is, however, sparse.95–97 It is 
necessary to direct efforts toward a holistic approach, 
incorporating data from routinely used methods, such 
as high-dimensional flow cytometry and functional 
assays, complemented by methods that focus on the 
transcriptome and epigenome. Identification of novel 
therapeutic targets of post-septic immune disorders 
requires an improved understanding of the underlying 
pathomechanisms. Therefore, animal models and the 
timing of post-septic and long-term analyses must be 
defined. A major issue is the reprogramming of 
immune cells due to epigenetic and metabolic changes 
that might determine a long-lasting dysfunction 
of immunity.98,99 Considering the rapid turnover of 
leukocytes during infection, changes in the bone 
marrow as the site of haematopoiesis are of special 
interest. Moreover, the impact of the microenvironment 
in the periphery on recruited immune cells deserves 
more attention.100

Figure 2: Historical evolution of the models explaining pro and anti-inflammatory responses during sepsis
Models were generated using data obtained from the blood during the sepsis episode. Lines represent prototypical hyperinflammatory (red) versus immune suppressive (blue) disease progression 
courses with return to immune homeostasis (solid) or pathological immune dysfunction (dashed). CARS=compensatory anti-inflammatory response syndrome. SIRS=systemic inflammatory response 
syndrome. PICS=persistent inflammation, immunosuppression, and catabolism syndrome. MARS=mixed antagonists response syndrome. 
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Additional gaps
Lack of standardisation of immunological test for 
clinical applications
We face an exciting new era in which the promise of 
immunological biomarkers to improve sepsis care is 
becoming a reality. Nonetheless, it is necessary to 
develop efforts to standardise the immunological tests 
(table 3). For example, a standardised protocol for 
flow-cytometric leukocyte biomarker measurement 
demonstrated that the combination of neutrophil CD24 
and CD279 (PD-1) and expression of HLA-DR on 
monocytes accurately predicted the clinical deterioration 
to sepsis in patients with suspected infection.13 However, 
flow cytometry requires an advanced technical know-
how that is not widespread across clinical laboratories. 
Given that persistence of low expression of HLA-DR 
predicts both sepsis mortality and the occurrence of 
nosocomial infections,101–103 new technologies such the 
development of automated bench-top cytometers 

could simplify testing.104 Well standardised functionality 
tests to measure endotoxin tolerance from peripheral 
monocytes might serve as a surrogate readout 
of immunosuppression status.105,106 Standardisation 
problems also affect the transcriptomic tests. Quanti-
fication of the IL-7 receptor gene expression in the blood 
helps to identify patients with sepsis at risk of death.107 
The neutrophil transcriptome is a promising new 
source of biomarkers in sepsis with lipocalin-2 (also 
known as gelatinase-associated lipocalin) and matrix 
metallopeptidase 8 among the most promising ones.108,109 
Transcriptomics could identify endotypes of sepsis with 
distinct clinical and biological features and differential 
treatment responses.110,111 Next generation mRNA 
profiling methods could facilitate standardisation of 
gene expression-based test.108,112 Finally, microfluidics 
could help to develop point-of-care tests to quantify 
immunological parameters in an easy and reproducible 
manner.113

Additional gaps Translational implications Potential solutions

Immunological 
monitoring

Lack of standardisation of 
immunological tests for 
clinical applications

Developing a standardised profiling of the 
immunological alterations in sepsis will 
enable its use in a more individualised 
manner to predict, diagnose, and treat 
patients

Simple test based on flow cytometry to phenotype immunological cells using 
automated table-top cytometers (ie, for evaluating endotoxin tolerance in peripheral 
monocytes); using public repositories such as Gene Expression Omnibus or Arrays 
Express is helping to identify and validate gene expression signatures reflecting 
population heterogeneity; developing multicentric prospective studies with unified 
protocols is needed to evaluate the performance of each immunological test

Immunological biomarkers Utility of existing biomarkers 
obtained from routine clinical 
analytics and the emergence 
of new potential 
immunological biomarkers

Re-interpretation of common analytics 
involving elements of the immune or 
inflammatory response or advancing the 
immuno-monitoring to new areas could 
contribute to the differential diagnosis of 
sepsis and to assess its prognosis

Circulating ferritin concentration enables an accurate detection of the macrophage-like 
activation syndrome in sepsis; sepsis frequently presents with lymphopenia, thus, 
the diagnosis of lymphopenia during ongoing infection might serve as a marker for 
the onset of sepsis; failure to expand neutrophil counts could be benchmarked as a 
predictor of mortality in septic shock; phenotyping of monocytes and T regulatory 
cells, characterisation of their metabolism (eg, mitochondrial respiration) and fate 
(eg, cell cycle analysis, death mode) could replace or improve the efficacy of the current 
biomarkers; testing immunological biomarkers (beyond procalcitonin) to improve 
antibiotic stewardship

Immunotherapy Rationale and efficacy of 
personalised immunotherapy 
in sepsis

Developing verifiable strategies aimed at 
personalising the type, dosing, and timing 
of immunotherapies will likely enhance 
their efficiency and improve patient 
outcomes

Evaluating PD-1 and PD-L1 expression and lymphocytes counts to select potential 
patients for treatment with check-point inhibitors; evaluating expression of IL-7 in 
plasma or expression of its receptor to select potential patients for treatment with IL-7; 
assessing concentrations of endogenous immunoglobulins to select patients for 
treatment with intravenous immunoglobulins; assessing expression of HLA-DR in 
monocytes to identify patients for treatment with GM-CSF

Microbiome The role of the microbiome in 
immunity and 
pathophysiology of sepsis

Future research should focus on 
elucidating how the microbiotic 
disturbances can predispose to, 
exacerbate, and perpetuate the immune 
response dysregulation in sepsis;  
modulation of microbiome harbours a 
great anti-sepsis potential regarding 
preventive strategies and individualised 
treatments

Next generation sequencing studies to evaluate the profiles of commensal and 
pathogenic bacteria in parallel to evaluation of immunological changes induced by 
sepsis at the blood and organ level; evaluation in animal models and clinical trials of 
pro-biotics or prebiotics and (partial) recolonisation of the gut with a faecal microbiota 
to decrease sepsis incidence, to improve sepsis outcome and late mortality, with a 
parallel evaluation of the immunological changes

Animal models Clinically relevant animal 
models, their standardisation 
and reproducibility

Developing an adequate diversity of 
animal models that maximally 
recapitulate specific sepsis phenotypes 
will enable a better understanding of 
sepsis pathophysiology (its types, 
evolution, and response 
compartmentalisation) and a more 
reliable testing of immunomodulators for 
their potential advance to clinical trials

Identification of models that provide acceptable clinical relevance (following the 
evolving understanding of sepsis pathophysiology); identification of must-do 
must-not-do study-design elements that recapitulate clinical practice

PD-1=programmed cell death protein 1. PD-L1=programmed cell death-ligand 1. HLA-DR=human leukocyte antigen DR isotype. GM-CSF=granulocyte-macrophage colony-stimulating factor.

Table 3: Additional gaps in sepsis immunology, translational implications, and potential solutions
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Useful biomarkers for sepsis from simple routine clinical 
analytics
Another pending issue regarding immunological 
monitoring is the insufficient exploitation of simple 
analytical tests. For example, changes in the ferritin 
concentration enable an accurate detection of the 
macrophage-like activation syndrome and the presence 
of a hyper-inflammation in sepsis.114 In sepsis, at least 
50% of patients show lymphopenia at diagnosis108 
and lymphopenia (especially persistent) identifies a 
subpopulation of patients at higher risk of death.35,115,116 
Additionally, a lack of neutrophil count expansion can be 
associated with poorer outcomes in septic shock.117 
The potential role of the neutrophil-to-lymphocyte ratio 
to predict mortality in sepsis has also been reported.118 
An association has been shown between monocyte 
counts and mortality, the prevalence of bacteraemia, and 
organ dysfunction in patients with sepsis.119 Immature 
granulocytes count could help in ruling in120 and 
ruling out121 sepsis. Monocyte complexity and neutrophil 
fluorescence intensity are promising cell population data 
to diagnose the presence of this disease.122

New immunological features with potential as 
biomarkers in sepsis
A multitude of soluble mediators such as procalcitonin, 
C-reactive protein, and IL-6 (and other cytokines or 
chemokines) have been proposed as biomarkers in sepsis. 
So far, only procalcitonin has been officially sanctioned to 
aid antibiotic stewardship.123 One of the main obstacles in 
clinical use of these markers is that they are relatively 
unspecific and neither comprehensively reflect the entire 
magnitude and extent of the response to infection nor 
can help to identify the entities involved in immune 
dysregulation. The identification and characterisation of 
new immune features (readouts) or detection of different 
T-cell populations and their functions hold potential as 
more valuable prediction and monitoring tools.124–126 
Evaluating the potential translational applications of 
different types of monocytes or T regulatory cells (activated, 
exhausted, with markers of homing)127 and monitoring cell 
cycle analysis, apoptosis, and mitochondrial functionality 
have been gaining momentum. Finally, use of 
immunological biomarkers could help to guide antibiotic 
treatment.

The rationale and potential efficacy of personalised 
immunotherapy in sepsis
Immunotherapy aims to improve sepsis outcomes 
by modulating (depressing or boosting) pathological 
immune responses to infection. After early animal studies 
evidenced the importance of pro-inflammatory mediators, 
immune cell dysfunction, and apoptosis for sepsis 
outcomes, immunotherapy emerged as a key approach. 
Spectacular successes of anti-inflammatory128,129 and 
immunostimulatory130 therapies in various animals, 
including non-human primates, reinforced this notion. 

However, the subsequent clinical sepsis trials based on the 
same premise failed. One important reason for that failure 
is the heterogeneity of sepsis and the lack of consensus on 
when or how the host response should be manipulated in 
patients. The unsuccessful clinical trials that tested various 
anti-inflammatory agents have shown that curbing 
excessive inflammation cannot improve outcome in all 
patients with sepsis and identification of sub-cohorts on 
the basis of the disease severity itself is not optimal.36,131 
Conversely, the more functionally specific immune status-
based criteria should be better suited to stratify patients for 
immunotherapy. Other investigators advocate the use of 
immunostimulatory approaches to restore defective 
immune functions, subsequently reducing susceptibility 
to secondary infection and late sepsis mortality.132–134 
However, a reflexive preference of immunostimulation 
might, again, turn out to be too simplistic (and harmful) 
given that the presence of the immunosuppression status 
is currently judged on the basis of readouts from a single 
compartment (ie, the blood) and immunosuppression can 
be mixed or absent in other systems and organs. 
For example, a recent study calculated that secondary 
infections are responsible for only 10% of overall sepsis 
mortality in the intensive care unit, raising doubts about 
the potential benefit of immune stimulation in unselected 
sepsis populations.133 Theragnostics could be the key to any 
effective host-directed treatment—ie, identification and 
enrolment of those patients who will most likely benefit 
from a given intervention. Such a therapy personalisation 
should be based on a continuous standardised monitoring 
of specific immune biomarkers in the blood and 
other compartments. Depending on the net balance of 
pro-inflammatory and anti-inflammatory responses, pa 
tients could be treated with either anti-inflammatory 
drugs (eg, IL-1 receptor antagonist) or immuno- stimulatory 
agents (eg, granulocyte-macrophage colony-stimulating 
factor [GM-CSF], IL-7, or anti-PD-L1). The principle of a 
biomarker-guided immunotherapy has been shown by 
proof-of-principle studies using immunostimulatory 
cytokines such as interferon-γ, GM-CSF, and IL-7, or 
removing immunosuppressing mediators by selective 
extra- corporeal therapies.134–137 Finally, humanised mice 
might be a feasible alternative in preclinical immuno-
therapy modelling.138

The influence of microbiome on the immune system
Preclinical studies show that microbiome-dependent 
metabolic pathways can drive distinct immune responses 
to invading pathogens.139 The gut microbiome plays a 
protective role in sepsis by maintaining the gut barrier, 
regulating leukocyte function, and modulating innate and 
adaptive immunity.139–141 Clinical studies have underscored 
the extreme perturbations of the microbiome (termed 
dysbiosis) in patients with sepsis.139,142 Dysbiosis has been 
associated with poor outcome although the underlying 
mechanisms are not yet understood.139,143 The intestinal 
microbiome of a patient with sepsis is characterised by a 
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loss of diversity, lower abundances of the key commensal 
genera, and overgrowth of opportunistic pathogens.139,142 
How does the microbiome exert its protective effects in 
sepsis? Which components of the microbiome are doing 
the job? Which pathways are used by the metabolites that 
are excreted by all these microorganisms? What is the role 
of the other kingdoms such as the viriome, mycobiome, 
and parasitome? In addition, other limitations include the 
large variation between and within individuals, the limited 
mechanistic knowledge, and the scarce number of trials 
that investigate microbes as a treatment for sepsis. The 
potential of microbiome-modulating, preventive, and 
treatment strategies in patients with sepsis is enormous. 
Examples include the use of probiotics and or prebiotics 
and (partial) recolonisation of the gut with a faecal 
microbiota transplantation.144 These strategies can 
in theory be used to decrease sepsis incidence and 
to improve sepsis outcome and decrease late sepsis 
mortality.

The necessity of standardised animal models for sepsis
Although several disease models have already been 
following established standardisation blueprints, the 
sepsis modelling field has only recently attempted to fill 
this void145 by releasing expert consensus guidelines for 
Minimal Quality Threshold in Pre-clinical Sepsis Studies 
(known as MQTiPSS).146 This delay has been, in part, 
caused by an enduring reliance on the erroneous 
(homogenous) endotoxin or lipopolysaccharide model. 
Given the now recognised heterogeneity of sepsis, an 
adequate standardisation of (clinically relevant) animal 
models of sepsis will likely enhance their reproducibility 
and translational potential.145 As good modelling practices 
overlap across fields, the standardisation should duplicate 
the successful guidelines from other diseases such as 
stroke147 and malaria,148 while developing strategies for 
(pre-clinical) sepsis. In the long-term, the standardisation 
of sepsis models should focus on the two main areas that 
are equally crucial for the bench-to-bedside translation: 
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identification of models that provide acceptable clinical 
relevance (following the evolving understanding of sepsis 
pathophysiology) and identification of must-do must-not-
do study-design elements that recapitulate clinical 
practice. For example, inclusion of components such as 
advanced age, comorbidities (eg, diabetes, obesity), and 
testing beyond rodent models is especially criucial.149 The 
standardisation needs to be balanced because excessive 
micromanagement creates an artificial, idiosyncratic 
environment that lowers multilaboratory reproducibility.150

Conclusion
The way in which we study the immunological basis of 
sepsis must be approached anew and should consider the 
integration of multifactorial changes that occur at the 
molecular, cellular, organ, and systemic level. Addressing 
the gaps identified in this Review will help to better 
understand the immunological factors predisposing to 
sepsis, those participating in its pathogenesis, and, finally, 
those contributing to its complications in the long term 
(figure 3). Studying these gaps will consequently help to 
implement new immunology-based strategies to improve 
sepsis prevention, detection, and care.
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