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Abstract: Sunflower seeds, one of the main oilseeds produced around the world, are widely used in
the food industry. Mixtures of seed varieties can occur throughout the supply chain. Intermediaries
and the food industry need to identify the varieties to produce high-quality products. Considering
that high oleic oilseed varieties are similar, a computer-based system to classify varieties could be
useful to the food industry. The objective of our study is to examine the capacity of deep learning (DL)
algorithms to classify sunflower seeds. An image acquisition system, with controlled lighting and a
Nikon camera in a fixed position, was constructed to take photos of 6000 seeds of six sunflower seed
varieties. Images were used to create datasets for training, validation, and testing of the system. A
CNN AlexNet model was implemented to perform variety classification, specifically classifying from
two to six varieties. The classification model reached an accuracy value of 100% for two classes and
89.5% for the six classes. These values can be considered acceptable, because the varieties classified
are very similar, and they can hardly be classified with the naked eye. This result proves that DL
algorithms can be useful for classifying high oleic sunflower seeds.

Keywords: classification system; convolutional neural network; high oleic sunflower seed

1. Introduction

Agriculture and the food industry are facing issues to meet the demand of future
generations for higher food production and healthier food [1]. The global population
is estimated to rise to 9.7 billion people by 2064 [2]. Oilseeds are extensively cultivated
throughout the world because oilseed-derived products are used as inputs in several stages
of the food supply chain. The worldwide harvest of oilseeds in 2021/2022 amounted to
619.17 million metric tons [3]. The main producers of sunflowers (Helianthus annuus L.)
are Brazil, the United States, and China. The main oilseeds that are cultivated around the
world are sunflower seeds, soybean, and rapeseed [3].

Edible oil extract from oilseeds contains compounds with many health benefits and
quality attributes that are important for the food industry [4]. There are two main types
of food oils: conventional oil and high oleic oil. Conventional oil contains high contents
of linoleic acid, while high oleic oil has a content of oleic acid that is 80% or higher and
very low levels of linoleic acid. High oleic oil is the most stable type of oil for industrial
use [5]. Besides, there is evidence that high oleic oil is a healthy choice for use in food
production [6,7]. The food industry needs a substitute for trans fatty acids (TFA), which
are often used in fried snacks and bakery products and have been associated with health
problems [8]. Zambelli concluded that high oleic sunflower oil is the optimal substitute for
TFA, due to its fatty acid profile and good agronomic performance [9].
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Seeds, oil, and oilcake derived from sunflowers have numerous components suitable
for a healthy diet [10]. After the oil extraction process, the largest product obtained is the
oilseed press cake, which can be processed for human consumption [11], and is used in
animal feed [12]. Additionally, sunflower-derived products have important uses, such as
energy generation and industrial production of detergents, adsorbents, paints, lubricants,
and adhesives, among others [13–16].

Sunflower production has been increasing over recent years, in response to the de-
mands of the food industry and as a useful cash crop for farmers. Plant breeding methods
have been applied to develop sunflower varieties, improving oil content and quality for
industrial purposes [17]. The agronomic characteristics of sunflower varieties have also
been improved, so that varieties can be adapted to adverse growing environments [18,19].
There are sunflower varieties that can differ in oil quality, yield, and by-products, as a result
of genetic modifications [20]. Sunflower seed varieties may be mixed during harvesting,
transportation, and storage processes. Seed classification systems are therefore useful to
trade intermediaries and the food industry, to ensure that sunflower seeds are suitable for
industrial requirements.

The manual classification of seed varieties can be biased and time-consuming, since
physical attributes of seeds are normally hard to differentiate with the human eye. Re-
searchers have been applying conventional image processing to overcome this classification
problem successfully. In general, conventional approaches include: (i) a preprocessing
stage, where processes such as cropping, scaling, color conversion, noise filtering, and
normalization are applied [21]; (ii) a segmentation stage, where thresholding or watershed
techniques are applied [21,22]; (iii) a feature extraction stage, where shape, morphological,
texture, and color features are extracted [23,24]; and (iv) a classification stage, where classi-
cal machine learning techniques are applied, in the form of algorithms such as Gaussian
Naive Bayes, random forest (RF), support vector machines (SVM), k-nearest neighbors
(kNN), and artificial neural networks (ANN) [23–27]. Nevertheless, those traditional ap-
proaches, based on computer vision and feature extraction, could not guarantee a high
enough accuracy of classification in most cases.

Deep learning (DL) is a modern approach considered as a subset of machine learning.
It uses ANN to model high-level abstractions of data as the data volume increases. DL
algorithms can be divided into four categories: restricted Boltzmann machines (RBM),
autoencoders, sparse coding, and convolutional neural networks (CNN), the last-mentioned
being the most suitable algorithms in the classification of objects in images [28]. Various
CNN models have been tested to classify seeds [29–32], and researchers have suggested
modifications to some existing models [33,34]. Zhao et al. developed a system to detect
soybean seed surface defects with DL [35]; Nie et al. and Qiu et al. applied DL to classify
seeds using hyperspectral imaging [36,37]; Loddo et al. proposed a novel CNN model for
seed species classification [38]; and, Gao et al. developed a CNN model for the classification
and recognition of wheat varieties, through the combination of wheat plant images in the
tilling season, images of wheat plants in the flowering period, and images of the wheat
seed [39].

DL has become popular in seed classification [22]. Its popularity is due to its easy
application and high seed classification accuracy. It requires no further image processing
despite preprocessing [40] and, in general, DL offers better results than classical machine
learning approaches [41]. Lin et al. compared DL models with traditional hand-engineered
approaches for rice kernel classification. The accuracy values of traditional approaches
varied between 89.1% and 92.1%, while DL models achieved 95.5% [42]. Koklu et al.
compared the performance of ANN models, deep ANN models, and DL models, for the
classification of five varieties of rice, achieving classification accuracy values of 99.87%,
99.95%, and 100%, respectively [43]. Mukasa et al. tested multivariate machine learning and
DL models in the discrimination of triploid watermelon seeds from diploid and tetraploid
seeds. They reported accuracy values of 69.5% and 84.3% for multivariate machine learning,
and 95.5% in DL models [44]. Finally, Przybyło and Jabłoński, using DL models for the
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classification of oak acorns, achieved slightly higher accuracy values than those achieved
by human experts making manual predictions [40].

Regarding sunflower seeds, to the best of our knowledge, there are two studies that
applied CNN to classify sunflower seeds. Kurtulmuş, in 2021, achieved 95% accuracy
using a CNN model to classify sunflower seeds of some varieties cultivated in Turkey [45].
Li et al. developed a custom CNN model to sort sunflower seeds from inert material (leaves,
stones, and defective seeds), achieving accuracies between 97.33% and 99.56% [46].

The aim of the present study is to classify up to six different varieties of sunflower
seeds using a CNN model, and later assess the accuracies of the classification model. The
main novelty of this article with respect to the existing literature is the comparison of
accuracy achieved when increasing the number of varieties from two to six. Moreover, the
varieties chosen in this study are different from the ones chosen in other published articles,
and those seeds are visually less similar than the ones employed in this article.

2. Materials and Methods

A sunflower seed classifier system using a CNN model was implemented. The
following paragraphs describe the seeds to be classified, the image acquisition system,
the CNN model that was implemented to classify the seed varieties, and the hardware
equipment and software employed to perform all the underlying processing. Figure 1
shows a block diagram of the processing methodology applied in the present study.
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Figure 1. Block diagram of the processing methodology.

2.1. Sunflower Seeds

The following six sunflower (Helianthus annulus L.) seed varieties were classified:
Talissman, from RAGT Seeds Group (Ickleton, UK); MAS830 and MAS89, from Maïsadour
Cooperative (Haut-Mauco, France); Kaledonia, from Caussade Semences Group (Caussade,
France); Gibraltar, from Syngenta (Basel, Switzerland); and Orientes, from KWS SAAT SE
& Co. KGaA (Einbeck, Germany). All the sunflower seeds employed in this article were
harvested in the year 2020, and they were distributed to the authors by Sovena Oilseeds
España (Brenes, Spain). The seeds were manually cleaned of foreign material such as dirt,
char, leaf debris, dust, and stones. Immature and defective seeds were discarded before
image acquisition and only ripe and flawless seeds were selected for further processing.
Sunflower seeds were stored in plastic buckets and kept at room temperature (20–25 ◦C).
Sample images of these varieties are shown in Figure 2.



Sensors 2023, 23, 2471 4 of 15Sensors 2023, 23, x FOR PEER REVIEW 4 of 15 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. Example images of the six sunflower varieties used in the study: (a) Talissman, (b) 

MAS830, (c) MAS89, (d) Kaledonia, (e) Gibraltar, and (f) Orientes. 

2.2. Image Acquisition Setup 

The image acquisition system comprised: (i) a Nikon D90 camera equipped with a 60 

mm AFD Micro-Nikkor lens f/2.8 to acquire the images; (ii) a steel bracket to mount the 

camera; (iii) an LED ring light, 14 inches in diameter, with 180 LEDs and 36 watts of 

power, to illuminate the seeds; (iv) a circular reflective metal ring placed around the seeds 

for consistent lighting; (v) a remote shutter to avoid trepidation; and (vi) a grid to place 

groups of 24 sunflower seeds in a fixed position. The distance between the camera lens 

and the seeds was 32 cm. In the camera configuration: (i) the shutter speed was fixed to 

1/200, because lower speeds produced trepidation and results were no better at higher 

speeds; (ii) the working aperture was fixed at f:10 because wider apertures gave a worse 

depth of field and some details of the object were lost, and narrow apertures yielded a 

worse resolution and softer details; (iii) the ISO sensitivity was fixed at 200, because higher 

ISO produced more noise and, at a lower ISO, the results were no better and could 

provoke trepidation; and (iv) the white balance was fixed in flash mode to avoid variations 

of color temperature. Images were saved in JPG format at 4288 × 2848 resolution, 

employing the configuration in the camera that minimized the quality losses in the RAW 

to JPG conversion. The components of the image system acquisition in the position of seed 

sample preparation and also in the position of image capture are shown in Figure 3. 

  
(a) (b) 

Figure 2. Example images of the six sunflower varieties used in the study: (a) Talissman, (b) MAS830,
(c) MAS89, (d) Kaledonia, (e) Gibraltar, and (f) Orientes.

2.2. Image Acquisition Setup

The image acquisition system comprised: (i) a Nikon D90 camera equipped with a
60 mm AFD Micro-Nikkor lens f/2.8 to acquire the images; (ii) a steel bracket to mount
the camera; (iii) an LED ring light, 14 inches in diameter, with 180 LEDs and 36 watts of
power, to illuminate the seeds; (iv) a circular reflective metal ring placed around the seeds
for consistent lighting; (v) a remote shutter to avoid trepidation; and (vi) a grid to place
groups of 24 sunflower seeds in a fixed position. The distance between the camera lens and
the seeds was 32 cm. In the camera configuration: (i) the shutter speed was fixed to 1/200,
because lower speeds produced trepidation and results were no better at higher speeds;
(ii) the working aperture was fixed at f:10 because wider apertures gave a worse depth
of field and some details of the object were lost, and narrow apertures yielded a worse
resolution and softer details; (iii) the ISO sensitivity was fixed at 200, because higher ISO
produced more noise and, at a lower ISO, the results were no better and could provoke
trepidation; and (iv) the white balance was fixed in flash mode to avoid variations of color
temperature. Images were saved in JPG format at 4288 × 2848 resolution, employing the
configuration in the camera that minimized the quality losses in the RAW to JPG conversion.
The components of the image system acquisition in the position of seed sample preparation
and also in the position of image capture are shown in Figure 3.
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A total of 42 photos, with each photo containing a total of 24 seeds (Figure 3d), were
taken for each of the six sunflower seed varieties under study.

2.3. Splitting of Seed Images

As explained in the previous section, the employed acquisition setup took a photo-
graph of 24 seeds at the same time, placed in a grid of four rows and six columns (Figure 3d).
Thus, it was necessary to split each seed into a different image. This process was made
easier due to the use of a grid for the placement of the seeds, being achieved by using a
constant mask for each cell, since the seeds were always placed at the same location within
a bounding square. In this stage, the input images with 4288 × 2848 resolution containing
24 sunflower seeds were split to obtain images of individual seeds, with 712 × 712 pixels
for each one. In addition, the size of each image was later reduced to a resolution of
227 × 227 pixels to match the input size of the CNN classifier. The scaling of the images
was done using the OpenCV resize function in Python, with a default interpolation method.

After this stage, a dataset containing 6000 seed images, 1000 from each variety, was
generated and used in the subsequent classification process.

2.4. CNN Classifier

The CNN architecture employed for classifying sunflower seeds in this work was
AlexNet, originally proposed by Krizhevsky et al. [47]. This particular model was chosen,
after a careful review of the literature, due to it outperforming other existing models when
tackling similar problems to the one in this work.

Figure 4 shows the architecture of AlexNet, with all involved layers and connections,
while Table 1 shows the main parameters of each layer of this architecture.
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Table 1. Specific parameters of each layer of the AlexNet CNN architecture.

Layer Feature Map Size Kernel Size Stride Activation

Input Image 1 227 × 227 × 3 - - -
1 Convolution 96 55 × 55 × 96 11 × 11 4 relu

Max pooling 96 27 × 27 × 96 3 × 3 2 relu
2 Convolution 256 27 × 27 × 256 5 × 5 1 relu

Max pooling 256 13 × 13 × 256 3 × 3 2 relu
3 Convolution 384 13 × 13 × 384 3 × 3 1 relu
4 Convolution 384 13 × 13 × 384 3 × 3 1 relu
5 Convolution 256 13 × 13 × 256 3 × 3 1 relu

Max pooling 256 6 × 6 × 256 3 × 3 2 relu
6 FC - 9216 - - relu
7 FC - 4096 - -
8 FC - 4096 - - relu

Output FC - 1000 - - softmax

The CNN model that was implemented, AlexNet, was fitted with the parameters listed
in Table 1, and trained to maximize the classification accuracy using the Adam optimizer,
minimizing losses with the cross-entropy function. Six sunflower varieties were used to
implement and test the classifier model, varying the number of classes applied from two
to six: (i) two classes (MAS830 and MAS89); (ii) three classes (Kaledonia, MAS830, and
MAS89); (iii) four classes (Kaledonia, MAS830, MAS89, and Talissman); (iv) five classes
(Kaledonia, MAS830, MAS89, Orientes, and Talissman); (v) six classes (Gibraltar, Kaledonia,
MAS830, MAS89, Orientes, and Talissman). Table 2 shows the specific parameters of the
AlexNet CNN model used for each combination of classes.

Table 2. Specific parameters of the AlexNet CNN model.

Factor Value

Image input size 227 × 227 × 3
Epochs 50

Optimizer Adam
Loss function Cross-entropy

Batch size 32
Validation size 30
Learning rate 0.00001

Dropout 0.5

The distribution of the dataset was randomly divided into three parts: training,
validation, and test blocks. From the 1000 images of each variety, 700 images were used for
training (70%), 100 for the validation (10%), and 200 for the testing (20%). This division of
the dataset into training–validation–test was chosen following the same approach employed
in other similar articles, for a more direct comparison and also for the sake of obtaining a
unique set of parameters after training instead of several sets of parameters, which happens
when using cross-validation.

2.5. Evaluation of Results

Based on the results, the following evaluation metrics were employed: accuracy, recall,
precision, loss, F1-score, ROC (receiver operating characteristic) curve, AUC (area under
ROC curve), and the normalized confusion matrix.
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2.6. Hardware Equipment and Software

The hardware equipment for the processing was a workstation with Intel(R) Xeon(R)
CPU at 2.00 GHz, and an NVIDIA Tesla T4 graphic card with 16 GB of memory.

All the software involved in the processing in this article was programmed in Python,
language version 3. For programming all the software related to the AlexNet CNN model,
the TensorFlow library was used, in version 2.9.2.

3. Results

Different experiments were performed to analyse the AlexNet CNN model with the
configuration given in Table 2. These experiments were based on varying the number of
classes applied to the model from two to six: (i) two classes (MAS830 and MAS89); (ii) three
classes (Kaledonia, MAS830, and MAS89); (iii) four classes (Kaledonia, MAS830, MAS89,
and Talissman); (iv) five classes (Kaledonia, MAS830, MAS89, Orientes, and Talissman);
(v) six classes (Gibraltar, Kaledonia, MAS830, MAS89, Orientes, and Talissman).

Figure 5 shows five graphs, one per experiment, with both the accuracy and the
loss evolution during the training and validation phases, depending on the epoch. The
horizontal axis represents the number of epochs. The vertical axis represents the value of
the accuracies (red and yellow) and the losses (green and blue) during the training and
validation phases. The graph shows that: (i) initially, as the number of epochs increased, the
loss decreased, and therefore the accuracy increased; and (ii) when the number of epochs
reached four, the curves began to stabilize.
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(Kaledonia, MAS830, MAS89, and Talissman); (d) five classes (Kaledonia, MAS830, MAS89, Orientes,
and Talissman); (e) six classes (Gibraltar, Kaledonia, MAS830, MAS89, Orientes, and Talissman).

The test dataset was used to verify the configuration of the model. The results of the
model during this test phase are shown in Table 3 for the different experiments. These
results include values of recall, precision, F1-score, AUC, accuracy, and loss.

Table 3. Classification results during the test phase.

Classes Varieties Recall Precision F1-Score AUC Accuracy Loss

2
MAS830 1 1 1 1

1 0.00005MAS89 1 1 1 1

3
Kaledonia 0.9903 1 0.9951 0.9952

0.992 0.02415MAS830 1 0.9896 0.9948 0.9976
MAS89 1 1 1 1

4

Kaledonia 0.9948 0.9548 0.9744 0.9900

0.972 0.07590
MAS830 0.9907 0.9770 0.9838 0.9911
MAS89 0.9945 1 0.9972 0.9972

Talissman 0.9486 0.9951 0.9713 0.9734

5

Kaledonia 0.9417 0.9949 0.9676 0.9702

0.940 0.18497
MAS830 0.9786 0.9581 0.9683 0.9844
MAS89 1 1 1 1

Orientes 0.9904 0.9406 0.9649 0.9870
Talissman 0.9466 0.9653 0.9559 0.9689

6

Gibraltar 0.8019 0.8783 0.8384 0.8894

0.895 0.29350

Kaledonia 0.8955 0.8182 0.8551 0.9277
MAS830 0.9951 0.9444 0.9691 0.9915
MAS89 0.9953 1 0.9977 0.9977

Orientes 0.9066 1 0.9510 0.9533
Talissman 0.9843 0.9543 0.9691 0.9877

Besides the results shown in Table 3, the normalized confusion matrix for the different
experiments was computed, to obtain visual information on the test results, as shown in
Figure 6. In this figure: (i) the horizontal axis is the predicted results; (ii) the vertical axis is
the true values per class; (iii) the diagonal shows the classification accuracy per class of the
model; and (iv) the other cells represent the classification errors per class.
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Figure 6. Normalized confusion matrix for the different experiments: (a) two classes (MAS830 and
MAS89); (b) three classes (Kaledonia, MAS830, and MAS89); (c) four classes (Kaledonia, MAS830,
MAS89, and Talissman); (d) five classes (Kaledonia, MAS830, MAS89, Orientes, and Talissman);
(e) six classes (Gibraltar, Kaledonia, MAS830, MAS89, Orientes, and Talissman).

Figure 7 shows ROC curves and the AUC for each variety in each experiment. The
horizontal axis shows the false positive rate, and the vertical axis is the true positive rate.
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Figure 7. The ROC curves and AUC scores of the models with the highest accuracies for the different
experiments: (a) two classes (MAS830 and MAS89); (b) three classes (Kaledonia, MAS830, and
MAS89); (c) four classes (Kaledonia, MAS830, MAS89, and Talissman); (d) five classes (Kaledonia,
MAS830, MAS89, Orientes, and Talissman); (e) six classes (Gibraltar, Kaledonia, MAS830, MAS89,
Orientes, and Talissman).

According to the results shown in Table 3, Figures 6 and 7, it can be seen that (i) the
MAS89 variety was the best recognized seed; (ii) the Gibraltar variety was the worst
recognized seed; and (iii) the accuracy decreases with increasing number of classes, from
100% for two classes to 89.5% for six classes.

4. Discussion

In our study, a seed classification accuracy of 89.5% was achieved in the classifica-
tion with DL of six different varieties of high oleic sunflower seeds, Talissman, MAS830,
MAS89, Kaledonia, Gibraltar, and Orientes, when the training, validation, and testing
was performed with 1000 images of each variety, and the resolution of each image was
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227 × 227 pixels. When less than six varieties were used for classification, accuracies
reached values always higher than 94%, due to the Gibraltar variety being more difficult to
distinguish from the rest of the seeds.

The accuracy of DL classification of varieties of seeds from plants such as sunflow-
ers [45,46], chickpeas [34], maize [33], rice [43], grass [32], and mixed plants [48] has been
evaluated in the literature.

There are, to the best of the authors’ knowledge, only two studies in the literature on
sunflower seed classification with DL [45,46].

In the first one, Kurtulmuş identified four sunflower seed varieties (Armada, Reina,
Sirena, and Palanci) as shown in Figure 8b [45]. In that study, an approximate total
of 1200 seeds per variety (a total of 4800 seed samples) were imaged. Different CNN
architectures were trained and tested using three models (AlexNet, GoogleNet, and ResNet)
and two learning algorithms (AdaDelta and SGD). In their experiments, there was not a
significant difference between training and testing accuracies. All the models could obtain
classification accuracies over 90%. The GoogleNet model yielded the highest accuracy,
with a value of 95%, in distinguishing the sunflower seeds. AlexNet with AdaDelta, and
AlexNet with SGD, also provided relatively good classification performances (accuracy of
93%, AUC = 0.96), requiring notably short training times (a little less than one hour) than
the others (more than two hours). Moreover, no particular solver (AdaDelta and SGD) was
more prominent in performance.
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Figure 8. Images of varieties of seed classified in the literature. (a) Four high oleic sunflower seed
varieties classified in our study. (b) Four sunflower seed varieties classified by Kurtulmus [45].
(c) Five rice varieties classified by Koklu et al. [43]. (d) Six grass varieties classified by Eryigit and
Tugrul [32]. (e) Five maize varieties classified by Xu et al. [33]. (f) Four chickpea varieties classified
by Taheri-Garavand [34]. (g) Twenty-three seeds classified by Loddo et al. [48]. All figures have been
reproduced from their original papers with previous consent from the copyright holder.

Our study, and the study by Kurtulmuş, reached very close high performance rates.
In our study, the accuracy score achieved in discriminating between four varieties of seeds
was 97.2% (AUC = 0.99%) and in the Kurtulmuş study, when using AlexNet models, was
93% (AUC = 0.96). There are some differences in the methodologies that can explain the
small differences. Our optimizer, or solver, was Adam, in contrast with the solvers used
by Kurtulmuş, which were Ada Delta and SGD. Another difference is that the four seed
varieties of both studies are different, making the comparison between studies more difficult.
Nevertheless, in both studies, the performance metrics observed from the experiments
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were promising, with the fact that visually similar sunflower varieties could be identified
by the methods proposed. Overall, both studies showed that the identification of sunflower
seeds was feasible using deep learning techniques.

Figure 8a shows the sunflower seed varieties classified in our study and Figure 8b
shows the sunflower seed varieties classified in the study of Kurtulmuş. As can be seen in
both figures, the seeds of both studies look similar, and it is therefore coherent that both
studies reached similar accuracies.

In the second study in the literature on sunflower seed classification, Li et al. conducted
comparative experiments to compare the performance of the SeedSortNet network with
six representative CNN models, that included AlexNet. They classified sunflower and
maize seeds, though for the detection of abnormal seed images composed of leaves, stones,
defective seeds, and normal sunflower seeds [46]. Experimental results show that AlexNet
achieved accuracy rates of 99% and SeedSortNet of 99.56%, on sunflower seed dataset
classification. Nevertheless, their study is not comparable with our study, because abnormal
seed images are not sunflower seeds and therefore are easier to classify.

Some studies applying DL methods for classifying seeds reported accuracy values
higher than the values achieved in our study. Kotlu et al. reported 100% accuracy in the
classification of five rice varieties [43], Eryigit and Tugrul reported 99.4% accuracy for six
grass varieties [32], and Xu et al. reported values between 96.4% and 99.7% for five maize
varieties [33]. These higher accuracies could be due to a greater differentiation between the
classes to be classified in their studies. That reasoning is coherent, because the images of
the seeds in Figure 8c,d,f, visually differ in shape, size, color, and/or texture more than the
images of the seeds shown in Figure 8a.

Other studies in the DL classification of seeds reported accuracies similar to the
values found in our study, but lower than the aforementioned articles. Concretely, Taheri-
Garavand et al. reported a classification accuracy of 94.2% for five chickpea varieties [34],
and Loddo et al. reported accuracy values between 93.4% and 97.4% for 23 different
varieties of seeds [48]. Those relatively lower accuracy values could be due to two reasons.
The first one could be due to a smaller differentiation between the classes to be classified in
the studies. That reasoning is coherent, because the images of the seeds shown in Figure 8f
are more similar in shape, size, color, and texture than the images of the seeds shown in
Figure 8a. The second one could be the higher number of seed varieties to be classified.
That reasoning is also coherent, because twenty-three different seed classes are presented
in Figure 8g, whereas only four are presented in Figure 8a.

One of the limitations of our study is the relatively small number of seed varieties
employed, including only six sunflower varieties. Despite other studies also using only four
varieties, like Kurtulmuş [45], there is room for improvement by incorporating additional
varieties. In fact, the varieties used by Kurtulmuş were all different from the ones used by
our study, and other existing varieties could be used too.

Regarding the main strength of our study, we considered seed varieties very similar
in appearance, which made the differentiation of the classes more difficult. Moreover, the
performance comparison of the behavior of the classifier when changing the number of
classes showed the difficulties when adding new varieties, due to their similarity to one of
the previously existing classes.

The classifier developed in the present study can be applied in industrial applications
to rapidly analyze seed samples, since it uses a low-cost image acquisition system and
is a non-destructive method. As sunflower varieties can differ in oil quality, yield, and
by-products, the classifier can ensure that sunflower seeds meet the industrial requirements.

5. Conclusions

In summary, DL algorithms can be used to classify high oleic sunflower seeds with
high accuracy. The accuracy values of classification decreased when adding more classes,
varying from 100% to 89.5%. The largest decrease was observed with six classes, where
the similarities within varieties increased, specially between the varieties Gibraltar and
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Kaledonia. Future studies could increase classification accuracies with different approaches,
to advance this research. Varying specific parameters of the CNN model, such as the number
of varieties for classification and the size of the dataset, could be tested. Future studies
could also employ multispectral or hyperspectral images of high oleic sunflower seeds.
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