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Abstract
The Controller model is a heterogeneous parallel programming model implemented 
as a library. It transparently manages the coordination, communication and kernel 
launching details on different heterogeneous computing devices. It exploits native 
or vendor specific programming models and compilers, such as OpenMP, CUDA or 
OpenCL, thus enabling the potential performance obtained by using them. This work 
discusses the integration of FPGAs in the Controller model, using high-level synthe-
sis tools and OpenCL. A new Controller backend for FPGAs is presented based on 
a previous OpenCL backend for GPUs. We discuss new configuration parameters 
for FPGA kernels and key ideas to adapt the original OpenCL backend while main-
taining the portability of the original model. We present an experimental study to 
compare performance and development effort metrics obtained with the Controller 
model, Intel oneAPI and reference codes directly programmed with OpenCL. The 
results show that using the Controller library has advantages and drawbacks com-
pared with Intel oneAPI, while compared with OpenCL it highly reduces the pro-
gramming effort with negligible performance overhead.
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1 Introduction

FPGAs (Field Programmable Gate Arrays) have attracted a wider scope of HPC 
researchers in the recent years thanks to new programming languages and tech-
niques. Previously, they suffered from heavy and error-prone programming with 
HDLs (Hardware Description Language) such as Verilog [1] or VHDL [2]. With 
these tools, the user describes the computation as a high-level procedural pro-
gram in C-like languages, but needs to deal with many pitfalls associated with 
hardware design, such as avoiding metastability when crossing clock domains or 
communicating with memory controllers to access data. Thus, they require deep 
knowledge of electronics, which hinder their adoption by the HPC community. 
This has changed in the recent years thanks to the development of HLS (High 
Level Synthesis) languages and frameworks, such as the Intel FPGA SDK for 
OpenCL by Intel [3] or SDAccel by Xilinx [4], both based on OpenCL. HLS 
frameworks internally deal with the pitfalls associated with hardware design. 
Thus, the user can easily port algorithms implemented with C-like codes, that 
are seamlessly translated by the tools into HDL code, or working hardware on 
the FPGA. There are even higher-level approaches built on top of HDL and HLS 
technologies, also focusing on portability of codes with other types of devices, 
such as CPUs and GPUs. A promising example is the Intel oneAPI framework 
[5] based on SYCL [6], an extension to C++ leveraging modern compiler tech-
nologies and programming language features. These approaches typically advo-
cate a single source code for both host code and device kernels. In general, the 
current implementations rely on different and non-compatible compiler back-ends 
for different types of devices. Thus, the executables generated have limitations to 
choose the target device at run-time, and to operate with several combinations of 
devices.

A different approach can be found in the Controller [7, 8] model. It is a het-
erogeneous parallel programming model that enables performance portability 
across CPU-core sets (using OpenMP), GPUs of different types and vendors 
(using CUDA or OpenCL), and Xeon Phi accelerators. It is implemented as a 
classic C99 library. It integrates the use of different vendor specific technologies 
through different backends coordinated by the same runtime layer. It can generate 
executables which select the type of target device at runtime. Apart from generic 
portable kernels, the programmer can supply different versions of the same ker-
nel optimized for different devices, using the low-level programming models if 
needed. The runtime chooses the most appropriate one for the selected device.

The use of Controller decreases development effort compared with directly 
using native or vendor specific technologies, with little to no overhead, by lever-
aging their vendor specific tools. A first approach to integrate FPGAs in Control-
ler is presented in [9].

In this work, we present the following contributions: (1) a description of a new 
Controller backend for FPGAs, adapting a previous OpenCL backend designed for 
GPUs. It integrates the Intel technology and compiler for FPGAs using OpenCL, 
implementing all the Controller features. (2) A fully operational implementation 
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of host-tasks as another type of kernel asynchronously executed in the host. They 
are automatically synchronized by data dependencies with FPGA kernels or data 
transfers, and they can use system resources such as the input/output system, a 
feature needed in many streaming applications. (3) An experimental study that 
validates our proposal. This study compares programs developed with the Con-
troller model with equivalents programmed with Intel oneAPI, and with OpenCL 
directly. It includes comparisons in terms of performance, and in terms of four 
well-known development effort metrics. The rest of the paper is organized as fol-
lows: Sect. 2 outlines the related work. Section 3 describes the solution developed 
to integrate FPGAs in our model. Section  4 shows the experimentation results 
that validate our proposal. Finally, Sect. 5 presents the conclusion.

2  Related work

There are several projects that target the development of a high-level heterogeneous 
programming model, that is portable and efficient. EngineCL [10] is an OpenCL-
based runtime system that simplifies the co-execution of a single massive data-par-
allel kernel on all the devices of a heterogeneous system. The University of Thessal-
ly’s programming model [11] supports seamless execution on hybrid architectures 
with approximation semantics. Both models support the use of platforms with 
CPUs, GPUs and FPGAs, using OpenMP-like pragmas to annotate the program. 
They use OpenCL under the hood for every supported architecture. This can lead 
to higher overheads than using the vendor specific tools such as CUDA for Nvidia 
GPUs or OpenMP for CPUs.

EngineCL and SYCL [6] (including the DPC++ extension used in Intel oneAPI 
[5]) exploit modern C++ features such as variadic templates, initializer lists or 
rvalue references, leveraging sophisticated compiling techniques. The portability of 
the common kernel code may compromise the efficiency, and some device specific 
configurations, optimizations, or algorithm changes in the kernel, may be needed for 
specific devices such as FPGAs. Focusing on interoperability, there are implementa-
tions of SYCL for different low-level or vendor technologies. In general, they are in 
separated projects or the compilers should be recompiled to generate code for dif-
ferent devices. Thus, programs compiled for FPGAs do not support launching ker-
nels for other type of devices. For example, the DPC++ compiler in the main Intel 
oneAPI project only supports Intel devices. Programs can be compiled to support 
one of two options: Only Intel FPGAs kernels; or kernels for both CPUs and inte-
grated Intel GPUs. A different implementation of the DPC++ compiler implements 
a CUDA backend, but it generates executables that only support kernels for Nvidia 
GPUs. Other SYCL projects, such as HipSYCL [12], present a similar problem. The 
programmer should choose at compile time to support either CPUs, or Nvidia GPUs 
using CUDA, or AMD GPUs using ROCm.

There are other programming models or frameworks extending OpenMP or 
implementing OpenACC for FPGAs: OmpSs @FPGA [13], FPM [14], AnyHLS 
[15] or the OpenARC compiler [16]. They rely on non-standard directives to express 
parallelism and dependencies, and use a source-to-source compiler that translates 
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them into API calls to specific runtime systems. This complicates its usage in con-
junction with other vendor or device specific compilers. Thus, interoperability is 
also difficult.

The current implementations of most of these programming frameworks do not 
yet include a fully operative model of host-tasks that are automatically synchronized 
by data dependencies, have access to the input/output system, and are interoperable 
with FPGA kernels. For example, in current Intel oneAPI beta 10, CPU kernels do 
not support I/O operations, kernels cannot be queued in both cpu_selector and fpga_
selector in the same program, and possible workarounds such as using host_acces-
sor also fail at runtime according to our tests. Until a fully operative implementation 
is provided, extra synchronizations are sometimes needed in the host to ensure cor-
rectness, losing opportunities to overlap host and device computations.

3  FPGA support in Controller

The original Controller model introduced the Controller entity. Each Controller 
object transparently manages the coordination and communication of the host code 
with one device. See white shaded elements in Fig. 1. Data structures on the host 
are managed with HitTile objects, which are a kind of fat-pointer that stores sev-
eral meta-data including data sizes, data pointers in host and device, etc. The Hit-
Tile variables can be associated with a Controller and allocated in one side (internal 
variables), or in both host and device sides (tied variables). The host code launches 
requests to the Controller object queue. These requests include execution of device 
kernels, or data movements for tied variables from host to device or device to host. 
An execution policy module coordinates the execution of the requests, calling the 
internal API of the runtime backend that implements the proper technology for that 
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device. Previous runtime backends were developed for CPU cores (using OpenMP), 
Xeon Phi coprocessors (using Intel LEO/COI libraries), Nvidia GPUs (using 
CUDA), and AMD/Nvidia GPUs (using OpenCL).

3.1  Design of the new backend

A new runtime backend is proposed in this work for FPGA devices. Developing a 
new runtime backend for Controller implies implementing its functionalities with 
the new technology. Basic features of the model should be preserved to keep the 
functional and performance portability of the compiled programs when using differ-
ent types of devices: (a) Support of existing synchronous and asynchronous execu-
tion policies. (b) Uniform syntax and user interface for host codes, to allow porting 
Controller applications to the new device type by simply integrating the specific ker-
nels. (c) Independence of the compiler. Controller is implemented as a library in a 
compiler agnostic way. (d) Performance. The resulting programs exploit the specific 
compiler and runtime technology for the device. Thus, the Controller programs for 
FPGAs should obtain the same performance as OpenCL programs specifically tuned 
for them.

The new FPGAs backend design is shown in Fig. 1. The circled numbers indicate 
the order in which operations are executed: (1) host-tasks or device-kernels execu-
tion requests are launched to the Controller queue. Both host-tasks and device ker-
nels use the same launching interface. Data movement requests can be skipped in the 
host code, as they can be derived from data dependencies. (2) The execution-policy 
module calls the new backend to translate the requests into OpenCL commands. 
Host-tasks and kernels are queued in their respective OpenCL queues. The param-
eters used in the call are analyzed to determine data-dependencies with previous 
requests, based on the declared input/output role of the formal parameters. OpenCL 
data movement requests are queued if needed. OpenCL events are registered or 
updated, and synchronizations that depend on them are also added to the OpenCL 
queues. (3) The OpenCL driver takes care of the real execution of both FPGA ker-
nels and host-tasks, and the synchronization of them with data movements.

For this purpose, the HitTile structure is extended with new information. First, it 
includes an enumerated type field to trace the memory status. This field records if 
after the execution of all the previous requests, the data of the HitTile is consistent 
on both memory hierarchies, or if the latest updated image is in the host or in the 
device. Second, the new HitTile includes a set of OpenCL events that can be used to 
register the finalization of previous OpenCL queued tasks, and to synchronize future 
OpenCL tasks with them. Events to register the end of read and write data opera-
tions in the host side, and in the device side are included. Each request for a kernel 
or host-task execution activates a simple check for each real parameter one by one. 
The memory status and the input/output role determine if the real parameter can 
be used safely in the host or device, or if a data movement from the other memory 
hierarchy is needed to get the most updated data. The events allow to introduce in 
the queues wait conditions to ensure that previous kernels/host-tasks have finished 
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to update data before starting to move it, and to ensure that required data movements 
are finished before the computation starts.

3.2  FPGAs integration in the Controller framework

FPGAs differ from the architectures previously supported in Controller in several 
aspects that affect their integration.

Limitations of offline compilation: The original OpenCL backend for GPUs lever-
aged the online compilation feature of OpenCL by conveying kernel code as strings. 
The mandatory offline compilation for FPGAs removes this possibility. Slight modi-
fications of the original Controller API for kernel declarations have been introduced. 
The kernel code is declared in a block enclosed in curly brackets after the Control-
ler prototype specification. In the new API, the input/output roles of parameters are 
specified on the kernel prototype declaration. Offline compilation requires separate 
files for host and kernel codes. Thus, the backend is designed to expect two different 
files. The code conversions needed in the kernels file to generate correct C code for 
the AOC compiler are directly done by the preprocessor.

Pipeline configuration: The pipeline configuration is a decision with great impact 
on performance and that is specific for each particular version of the kernel. For 
that reason, the kernel prototype declaration has been extended with a new optional 
clause called PIPELINE. It can be used to set the number of SIMD lanes and/or 
compute units, and choose between the NDrange or Task model of execution. This 
new clause must always appear in kernel signatures for FPGAs. An example of a 
prototype or signature declaration for a matrix multiplication kernel is shown in 
Listing 1, along with a kernel launching call. Listing 2 shows an equivalent code 
in DPC++. The Controller PIPELINE declaration is a compact equivalent to 
the DPC++ declarations nd_range, nd_item, intel::num_simd_work_items, and 
intel::reqd_work_group_size. The Controller PARAMS declaration substitutes the 
DPC++ creation of accessors when the kernel is submitted to a queue. The kernel 
parameters declaration in Controller is skipped in the DPC++ example by imple-
menting the kernel as a lambda function that captures by reference all external vari-
ables, assuming that the kernel code is correct and does not introduce undesired side 
effects. In Controller, the possible parameters that PIPELINE can receive are: (1) 
TASK: Execute as a SWI (Single Work-Item or single-task) kernel; (2) NDRANGE: 
Execute as a NDrange kernel; (3) SIMD( M, wgx,wgy,wgz ): Execute in a pipeline 
with M lanes and workgroup dimensions ( wgx,wgy,wgz ); and (4) CU( N ): Execute 
in a pipeline replicated N times. Due to the restrictions in the lower level program-
ming model,

TASK and NDRANGE cannot be used together in the same signature. 
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Listing 1 Example of Controller code for a matrix multiplication kernel
CTRL KERNEL(Mult , FPGA, PIPELINE( NDRANGE,

SIMD( s imd l eve l , b l o ck s i z e , b l o ck s i z e , 1) ) ,
PARAMS( OUT, IN , IN , INVAL, INVAL ) ,
K f l oa t C, K f l oa t A, K f l o a t B, int awidth , int bwidth ) {

. . . k e r n e l code . . .
}

Ctr l l aunch ( fpga1 , mat range , Mult , c , b , a , s i z e , s i z e ) ;

Listing 2 Example of DPC++ code to introduce the same kernel
fpga1 queue . submit ( [& ] ( handler &h) {

auto a mat = a . g e t a c c e s s<acc e s s : : mode : : read>(h ) ;
auto b mat = b . g e t a c c e s s<acc e s s : : mode : : read>(h ) ) ;
auto c mat = c . g e t a c c e s s<acc e s s : : mode : : d i s ca r d wr i t e >(h ) ;
h . p a r a l l e l f o r <c l a s s mult> ( nd range<2>(mat range , l o c a l r a n g e ) ,

[= ] ( nd item<2> i j )
[ [ i n t e l : : num simd work items ( s imd l eve l ) ,

c l : : r eqd work group s i ze ( 1 , b l o ck s i z e , b l o ck s i z e ) ,
i n t e l : : k e r n e l a r g s r e s t r i c t ] ]
{

. . . k e r n e l code . . .
} ) ;

} ) ;

Support for the three execution modes: In addition to the ordinary execution 
mode, FPGAs support the profiling of kernels by instrumenting the pipeline with 
performance counters and the emulation on a CPU. Different object codes are gener-
ated for each mode using a different compiler flag. In Controller, different versions 
of the same kernel can coexist and be used from the same binary. Each time that 
an FPGA kernel is compiled in a specific mode, it is saved with an internal name 
indicating the mode. Thus, a kernel can be invoked in the desired mode and the 
runtime chooses the appropriate object code transparently. The same simple solution 
allows choosing at runtime the execution of instances of the same kernel with differ-
ent compile-time parameterizations.

Divergences and support for incongruent grid sizes: A computation can be issued 
for a grid size that is not multiple of any of the block dimensions. As a result, the 
last block in that dimension will have some idle work-items to avoid, for example, 
accessing unallocated memory positions. The original OpenCL backend of Control-
ler deals with this issue by conditionally executing the code only if the work-item 
index is inside the grid limits. This leads to a branch divergence. Although this solu-
tion works for GPUs, FPGAs cannot cope with branch divergence in SIMD pipe-
lines. They are not synthesizable. The AOC compiler issues a warning and the target 
is compiled with a single SIMD lane.

The alternative approach used in our new backend is the introduction of padding 
to the images of the data structures on the device. This solution might lead to minor 
performance improvements in general, and can be extended to every architecture 
supported by Controller with minor effort. Thus, in our prototype all dimensions of 
a data structure are aligned to 256 elements. 256 work-items are the default dimen-
sions assumed by AOC for a SIMD kernel with a synchronization point [3]. This 
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allows the use of SIMD with work-groups of up to 256 work-items in every dimen-
sion safely and transparently. The user does not need to change how the data ele-
ments are accessed in the kernel code.

4  Experimentation

This section discusses the experimentation conducted to verify that (1) our proto-
type implementation has a minimal effect on performance when compared to using 
the current OpenCL HLS technology for Intel FPGAs; and (2) the solution proposed 
offers a code implementation with much less programming effort than directly using 
OpenCL. We also conduct the same experimental work with DPC++ codes com-
piled with the Intel oneAPI framework, to show the advantages and drawbacks of 
our implementation. The full prototype implementation of Controller, along with all 
the application codes used for the experimentation are publicly available at https:// 
trasgo. infor. uva. es/ contr oller/.

4.1  Case studies

The experiments are conducted with three applications and different parameters in 
order to cover different scenarios related to load balance between data transfers and 
host/device computations, computation overlapping, etc. Two of them feature SWI 
kernels, and the other one an NDrange kernel.

Hotspot: This program is an adaptation of the Hotspot code in the Rodinia suite 
of benchmarks [17, 18]. It computes the stability point of the Poisson’s partial dif-
ferential equation (PDE) for heat diffusion in 2 dimensions. It is a 4-point stencil 
program that executes a fixed number of time iterations. The FPGA kernel selected 
exploits the shift register pattern for both spatial and temporal locality, and it is 
implemented as a SWI kernel. The program is tested with 400 iterations. The result 
matrix is transferred to the host after each device kernel operation, saving it in a dif-
ferent host buffer using a host-task. Thus, the results could be used to check partial 
results or to create an animation of the computation evolution. Matrices with input 
sizes from 1024 × 1024 to 4096 × 4096 are considered to test scenarios that range 
from more costly data transfers than computations, to more costly computations 
than data transfers.

Matrix power: This program is an evolution of the 2 and 3 mm programs in the 
PolyBench Benchmarks [19]. It generates a chain of matrix multiplications of arbi-
trary length k, using the following iterative process: Ck = Ck−1 × A ∶ k ∈ [1 ∶ n] 
where C0 = A . The kernel to multiply matrices is obtained from the Intel FPGA 
Support Resources. This optimized kernel uses local memory, loop unrolling and 
SIMD to take advantage of the FPGA resources. Each partial result Ci is transferred 
to the host. A host-task computes the normalization of the matrix and saves it in 
another buffer.

The program is tested with k = 30 iterations and input sizes from 640 × 640 to 
2560 × 2560 to generate different computation ratios between host and device.

https://trasgo.infor.uva.es/controller/
https://trasgo.infor.uva.es/controller/
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Sobel operator: The Sobel Operator is a common image processing filter. For this 
experimental study, we select an implementation that iteratively processes frames 
from a video in YUV format. The kernel was adapted from the one available at Intel 
FPGA Support Resources, also implemented as a SWI kernel. The program reads an 
input YUV video stream from a file, frame by frame. Each frame has three compo-
nents that are communicated to the device. The Sobel filter is applied to each com-
ponent. The resulting image is transferred back to the host to store it in an output 
video file. The computation of the Sobel filter is a very fast operation. Thus, this 
study case is very demanding in terms of concurrency exploitation and asynchro-
nous data-transfer executions. The program is tested with 120, 240, 300 and 360 
frames of a high-definition video (Full HD images of 1920 × 1080 pixels).

4.2  Experimental environment

For each case study, we have two reference OpenCL codes: a synchronous program 
that submits kernel and data-transfer operations to a single queue, and an asynchro-
nous version that uses more advanced synchronization mechanisms to keep the cor-
rectness while overlapping operations. Controller and oneAPI codes are developed 
for each case study. In Controller codes, the choice between synchronous and asyn-
chronous policy can be done at runtime. In oneAPI, the compiler analyzes the code 
and introduces automatically asynchronous operations. Due to the lack of support 
of a fully functional host-task implementation or interoperable CPU kernels while 
compiling for FPGAs, the programmer sometimes needs to include explicit synchro-
nizations to coordinate host-code execution with data transfers.

For a fair comparison, both Controller and oneAPI programs use the same opti-
mized kernel codes extracted from the references. Compilation and optimization 
parameters are the same, and the order of operations in the host code is also pre-
served. Table 1 presents the bitstream metrics for the kernels reported by the Intel 
AOC compiler. All kernels are compiled with a single compute unit. Hotspot and 
Sobel are implemented as SWI kernels, reporting initiation interval 1. Matrix mul-
tiplication kernel is implemented as NDrange, and we present results for two cases 
with different optimization/compilation parameters. Case (1) is tested for all pro-
gramming models. It uses SIMD=8 and blocksize = 16 × 16 . This is the best com-
bination experimentally found that is supported by oneAPI. Case (2) uses SIMD=4 
and blocksize = 64 × 64 . This is the best combination experimentally found for the 
reference and Controller programs, but it fails to compile with oneAPI beta 10 com-
piler. Small differences in the values between reference and Controller versions are 
mainly derived from the different parameter encapsulation using HitTiles.

The experimentation was conducted on nodes of the Paderborn Center for Par-
allel Computing ( PC2 ). Each node features 2 Intel(R) Xeon(R) Gold 6148 CPU 
@ 2.40 GHz (40 cores), with 192 GB of RAM, and two Intel Stratix 10 GX 2800 
FPGA with 32  GB of memory (Nittware 520  N cards). The O.S. is a CentOS 7 
Linux distribution. OpenCL and Controller programs are compiled with GCC v8.1.0 
using the Intel FPGA SDK for OpenCL, AOC v20.3. The oneAPI programs are 
compiled with the oneAPI Beta Update 10. The performance experiments measure 
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the clock time from the start of the first data transfer to the end of the last host-task. 
This includes data transfers, computation times, and system overheads.

4.3  Performance results

Each experiment is repeated 10 times, and average execution times are obtained. 
Figure 2 shows the experimental results for: (1) different input sizes (Sobel program 
is skipped as it works with images of fixed resolution); and (2) different number of 
iterations. Table 2 summarizes the overheads and percentage of overlap of the asyn-
chronous version of each code in comparison with the corresponding synchronous 
one using the same programming model.

The plots and table show very similar performance results for the Control-
ler programs in comparison with their respective OpenCL counterparts. For some 
programs and input sizes, the Controller programs show a slight positive overhead, 
while for some others, and specially in the Sobel case, the overhead is negative, indi-
cating a better performance of the Controller version.

The results for oneAPI in the case of Hotspot show a better performance than the 
OpenCL reference and Controller when comparing synchronous codes. In the case 
of asynchronous codes, it depends on the input size. For some sizes, oneAPI per-
forms much better, and for others (3000 and 3500), the oneAPI program is slightly 
outperformed by the reference and Controller version. The reason is that the oneAPI 
compiler is automatically transforming and optimizing the kernel, generating a dif-
ferent pipeline as reported by the Intel AOC compiler. This indicates that the refer-
ence code is not using the best possible kernel. The compiler technology in oneAPI 
is an advantage in case of kernels easily analyzable and optimizable at compile time. 
Controller needs to be provided with a better kernel to improve the oneAPI results. 
Kernels up to three times faster than the one in the reference program have been 
reported for this application [20].

The performance of the oneAPI matrix power program, using the same compi-
lation/optimization parameters than the reference or Controller programs, changes 
with the input size. The trend is that it is slower for small input data sizes, but faster 
when we arrive at the biggest input size. This indicates that oneAPI transformations 
are specially appropriate for big data sizes, and not so optimized for small ones. 
Nevertheless, in this case the compiler technology of oneAPI generates a more com-
plex kernel that exhausts the layout space of the FPGAs for big block sizes. The 
higher the block size, the more data reutilization and performance. The Controller 
model can always use exactly the same kernel as the reference without any modi-
fication, that in this case can be up to 64 × 64 . For this application, oneAPI fails to 
compile for block sizes higher than 16x16. The best combination of optimization 
parameters for the reference and Controller programs completely outperforms the 
best oneAPI program, being 7.5–10 times faster.

Finally, in the case of the Sobel filter, the oneAPI version presents a slightly lower 
performance than the reference counterparts, in both synchronous and asynchronous 
versions. An extra synchronization is needed to coordinate the reading of frames 
from the file with the data transfer and the kernel launching to process that frame. 
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Table 2  Performance comparison: (1) overheads observed in the Controller and oneAPI programs when 
compared to the reference OpenCL programs; and (2) percentage of overlap of data transfer and compu-
tation operations between the synchronous and asynchronous versions of each code

Hotspot

Size Impl. Overhead Sync (%) Overhead Async (%) Overlap (%)

1024 Ref 25.12
Ctrl 3.58 0.51 27.34
oneAPI −49.13 −54.65 33.25

2048 Ref 28.56
Ctrl 0.78 0.20 28.97
oneAPI −60.49 −63.15 33.38

3000 Ref 60.06
Ctrl 0.39 0.96 59.83
oneAPI −27.05 21.05 33.71

3500 Ref 57.89
Ctrl 0.68 2.93 56.95
oneAPI −26.27 10.23 37.04

4096 Ref 28.16
Ctrl −0.05 0.04 28.10
oneAPI −66.62 −67.32 29.67

Matrix power
640 Ref 9.11

Ctrl −1.67 −1.73 9.17
oneAPI 19.24 33.40 −1.68

1280 Ref 4.73
Ctrl −1.68 −1.67 4.73
oneAPI 4.33 9.57 −0.05

1920 Ref 3.22
Ctrl −1.64 −1.68 3.27
oneAPI 2.68 6.12 −0.02

2560 Ref 4.39
Ctrl −1.52 −1.37 4.24
oneAPI −11.36 −7.31 0.02

Sobel operator

N. fr. Impl. Overhead Sync Overhead Async Overlap

120 Ref 12.88
Ctrl −2.77 −14.75 23.62
oneAPI 6.81 9.51 10.68

240 Ref 12.25
Ctrl −1.21 −14.81 24.33
oneAPI 2.49 2.82 11.97



14007

1 3

Efficient heterogeneous programming with FPGAs using the…

This introduces an extra cost and prevents some proper operations from overlapping. 
The asynchronous Controller version clearly outperforms all the other ones. The 
synchronization and implementation mechanisms used in oneAPI are not as efficient 
as those used in the Controller model, that transforms the dependencies to the best 
chain of OpenCL event conditions in the low level queues as soon as the host code 
inserts the requests in the queue. This effect is noticeable in these kind of demand-
ing applications with bursts of very fast small kernels and data transfers.

Table 2  (continued)

Sobel operator

N. fr. Impl. Overhead Sync Overhead Async Overlap

300 Ref 12.30
Ctrl −1.54 −14.79 24.11
oneAPI 1.13 1.38 12.09

360 Ref 12.33
Ctrl −1.56 −14.81 24.13
oneAPI 0.17 0.33 12.19

(a) (b)

(c) (d) (e)

Fig. 2  Experimental results for the case studies with different input sizes (Hotspot and Matrix Power) 
and different number of iterations with a fixed input size. In Matrix Power, Ctrl-best and Ref-best are 
generated with the best block size experimentally found ( 64 × 64 ), while the rest are generated with the 
best size supported by oneAPI ( 16 × 16)
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In summary, sophisticated compiler technology is sometimes an advantage, spe-
cially for non-specialized programmers. But, the possibility to directly integrate 
optimized kernels using the lower-level or vendor technology ensures the best per-
formance in the long term. The Controller implementation of asynchronous opera-
tions and host-task model provides a fully operational and efficient form to overlap 
host computations with device kernels and data transfers.

4.4  Development effort measures

This section analyzes the differences in development effort after beautifying all the 
codes in the same way. Four classical development effort metrics are measured: 
number of lines of code, number of tokens, McCabe’s cyclomatic complexity [21] 
and Halstead development effort [22]. The first two metrics measure the volume of 
code that the programmer should develop. The third metric measures the rational 
effort needed to program it in terms of code divergences and potential issues that 
should be considered to develop, test and debug the program. The last metric uses 
both code complexity and volume indicators to obtain a comprehensive measure of 
the development effort. The measured codes include the kernel definitions, kernel 
characterization, the coordination host code, and data structures management.

The results shown in Table  3 indicate that programming using the Control-
ler library generates lower volume of code, a reduced cyclomatic complexity, and 
reduced Halstead measures than both, synchronous and asynchronous versions using 
OpenCL. This is specially significant for the asynchronous baseline versions, that 
introduce manually more complex mechanisms for kernel and data transfer synchro-
nizations. A close look at the codes indicates that the highest reduction is found 
in the parts of the host codes related to coordination, as expected. The results for 
oneAPI are even better for the Hotspot and Matrix Pow programs. Nevertheless, the 

Table 3  Measurements of 
development effort metrics: 
lines of code (LOC), number of 
code tokens (TOK), McCabe’s 
cyclomatic complexity (CCN) 
and the Halstead’s development 
effort metric (Halstead)

Case study Version LOC TOK CCN Halstead

Hotspot Ctrl 230 1772 40 919,321
oneAPI Sync 198 1699 40 882,338
oneAPI Async 196 1687 40 876,010
Ref Sync 339 2771 57 1,770,315
Ref Async 401 3273 53 2,332,285

Matrix Pow Ctrl 148 1509 21 525,721
oneAPI Sync 120 1193 22 483,196
oneAPI Async 119 1187 22 478,754
Ref Sync 211 1922 30 1,243,644
Ref Async 270 2348 29 1,646,456

Sobel Filter Ctrl 137 1231 22 907,566
oneAPI Sync 158 1527 24 913,728
oneAPI Async 156 1515 24 900,674
Ref Sync 202 1944 28 1,207,349
Ref Async 290 2561 38 1,689,124
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Controller version of the Sobel operator program shows better development effort 
measures than even oneAPI. The more complex the synchronization structure of the 
program, the better results of development effort for Controller.

5  Conclusion

In this work, we present an extension of the Controller model with a new backend 
that supports FPGAs. The experimental results show that it achieves similar per-
formance and overlap of computation with data transfers than manually optimized 
OpenCL versions. The asynchronous policy of Controller achieves overheads of less 
than 1% in most of the cases, and presents lower execution times than the baseline 
implementations in some scenarios. Programming effort is significantly lower in all 
the studied metrics with respect to the native OpenCL implementation. A compari-
son with oneAPI shows some conceptual and practical advantages and drawbacks 
that have an important impact in performance.

Finally, on-going and future work include: (1) a deeper study with more complex 
applications including several different kernels and more dynamic work-flows; (2) 
exploring the use of the OpenCL pipe feature to improve asynchronous overlapping 
when using more than one kernel in the same program, and (3) studying the pos-
sibility to introduce the ideas proposed in this paper into DPC++ or other SYCL 
compilers.
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