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Abstract
One of the ever present goals in biometrics research is to improve system performance.
Herein, an alternative method is proposed that is independent of the biometric
characteristic and the system, as this proposal, Score Ratio, is applied to the output
(comparison score) of the classifier. The Likelihood Ratio is widely used with probabilistic
classifiers because it performs well in these circumstances. However, when the classifiers
are non‐probabilistic, then this ratio is not used. This is our proposal: with non‐
probabilistic classifier based systems, the decision is taken solely through the score,
supposing that the biometric feature, X, belongs to the Claimant (H0 hypothesis), here, it
is also proposed to make use of the score considering that X does not belong to the
Claimant (H1 hypothesis); more specifically, using the ratio between these two scores: the
Score Ratio. For more objective results, benchmarking and reproducibility are used in the
experiments, applying our proposal with third‐party (benchmarking) experimental pro-
tocols, databases, classifiers and performance measures for fingerprint, iris and finger vein
recognition. Statistically significant improvements have been obtained when the Score
Ratio is used with regard to not using it in all cases tested.

1 | INTRODUCTION

Biometric recognition encompasses biometric verification and
identification. Here, the focus is on verification, but the pro-
posed technique could also be used for identification, as it is
applied at comparison score (score in short from now on) level,
to improve the discriminative capacity.

If we take a biometric feature (feature vector) X, the
verification problem can be written in the following form
(hypothesis test):
H0: X is from Claimant H1: X is not from Claimant.
The chosen hypothesis can be carried out as in equation (1),

using Claimant (C) [1] information only, or with the likelihood
ratio test shown in equation (2), in which ‘Non‐Claimant’ (NC)
information is included, with NC being any user other than the
Claimant. p(X/H0) and p(X/H1) are, respectively, the proba-
bility density functions for hypotheses H0 and H1 at input
instance X, while θ is the decision threshold.

pðX=H0Þ
≥θ Accept H0
<θ Reject H0

� �

ð1Þ

pðX=H0Þ

pðX=H1Þ

≥θ Accept H0
<θ Reject H0

� �

ð2Þ

The problem is approached using pattern recognition.
Under this approach, each Claimant C is represented by a
biometric model or template λC [1], its output (score) s(X/λC)
being used to estimate (approximate) p(X/H0). With regard to
the likelihood denominator (p(X/H1)), the NC class is also
represented by a model or template, λ

C
̄ , using the score

sðX=λ
C
̄ Þ to estimate p(X/H1); in Section 3, the different al-

ternatives found in the bibliography to model λ
C
̄ , which is not

an easy task, are shown.
From this pattern recognition approach, equation (1)

transforms into equation (3), while equation (2) transforms
into the Score Ratio that can be seen in equation (4).
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sðX=λCÞ
≥θ Accept H0
<θ Reject H0

� �

ð3Þ

sðX=λCÞ
sðX=λ

C
̄ Þ

≥θ Accept H0
<θ Reject H0

� �

ð4Þ

With probability‐based classifiers, such as Gaussian Mixture
Models or Hidden Markov Models, the system output s(X/λC)
is a probability, p(X/λC). With these classifiers, the decision is
generally carried out using the likelihood ratio pðX=λCÞ

pðX=λ
C
̄ Þ
test [2–4],

as a better performance is obtained. Nevertheless, this Score
Ratio (equation (4)) has not been used with non‐probabilistic
classifiers, to the best of our knowledge. Based on this idea, in
a previous work [5], we proposed also extending the ratio to
this type of classifiers.

That work, [5], focused principally on describing the new
proposal, Score Ratio, and carrying out a series of explor-
atory experiments, showing the promising advantages of us-
ing our Score Ratio in terms of performance improvements.
Here, we approach the application of the proposal in a broad
and detailed study, proving the advantages of using the Score
Ratio with respect to not using it, that is, with regard to
using, as is usual, only s(X/λC) to take the decision (equa-
tion (3)). The goal of this work is to show that the Score
Ratio is a real alternative to improve the performance of
biometric systems.

In Figure 1(b), our Score Ratio proposal is shown graph-
ically, and compared with a habitual system (Figure 1(a)) where
s(X/λC) is solely used to take the decision.

Several biometric characteristics have been tested to
broaden the study; fingerprint and iris, because they are
two of the most mature biometrics, and finger veins, which
is an emergent and very promising biometric technology.
Since a behavioural trait, that is, signature, was approached
in Ref. [5], we decided to focus here on the other type of
biometric characteristics, the static or biological ones. To
test the Score Ratio performance in the most objective way,

F I GURE 1 Main elements in a biometric system, without Score Ratio
(a) and with Score Ratio (b)

benchmark and public databases and systems are used,
following reference experimental and performance evalua-
tion protocols [6]. Our own systems have only been used
with the finger vein biometric characteristic to test under
different conditions (Section 8). All of the main scripts and
configuration files used in our experiments are publicly
available (the download links are shown in the corre-
sponding sections) to guarantee the reproducibility of the
experiments.

Focusing on the classifiers, the study is extended to non‐
probabilistic ones in general, including but not limited to the
distance‐based ones. The difference is the score (classifier
output) interpretation. In distance‐based classifiers,
sðX=λCiÞ < sðX=λCjÞ means that the input X is closer to the Ci
Claimant than the Cj Claimant. Nevertheless, there are non‐
probabilistic classifiers, as will be shown, where
sðX=λCiÞ < sðX=λCjÞ means just the opposite, that is, the input
X is closer to the Cj Claimant than the Ci Claimant. We refer to
the latter as probability‐like classifiers. For these, the decision
is taken as in equations (3) and (4). However, for distance‐
based ones, the decision must be changed, as shown in equa-
tions (5) and (6).

sðX=λCÞ
≤θ Accept H0
>θ Reject H0

� �

ð5Þ

sðX=λCÞ
sðX=λ

C
̄ Þ

≤θ Accept H0
>θ Reject H0

� �

ð6Þ

Distance‐based classifiers are tested with iris and finger
vein. Probability‐like classifiers are tested with finger vein and
fingerprint.

Another point of variability tested is the way to calculate
the Equal Error Rate (EER), used as the performance measure
(Section 5.3). This measure can be calculated with a different
threshold for each biometric data subject or with the same for
all; in the latter case, the use of score normalisation (Sec-
tion 5.1) usually improves the results. Following the reference
performance evaluations, the general or common threshold has
been used with fingerprint and iris; while the individual
threshold is the one tested with the finger vein. With the
common threshold, the performance of Score Ratio has been
tested both with and without the use of score normalisation
(Section 5.1.2).

Finally, the statistical significance of the improvements
has been measured. This is very important to confirm that
the improvement is due to Score Ratio and not simply to
chance.

The content is organised as follows. Section 2 provides the
notation so as to facilitate the reading of the work. Section 3
shows the theoretical background of our Score Ratio proposal
and the related works, followed by its description in Section 4.
Following the description of the general experimental setup in
Section 5, a more specific description of each biometric sys-
tem, the experimental protocol, the results and their analysis
can be seen in Sections 6–8. The conclusions are shown in
Section 9.
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2 | NOTATION

First of all, we shall fix the notation and terminology to be
used, herein, to make it easier to read. With regard to bio-
metrics, the standard vocabulary has been followed (ISO/IEC
2382‐37:2017).

� C is used to refer to the Claimant in general, that is, to any
biometric data subject (subject in short from now).

� Ci is a specific Claimant, that is, a specific subject.
� Cohort Set, ChS. Individuals contributing biometric data,
who are not subjects, and who are utilised to obtain
sðX=λ

C
̄ Þ, that is, the model or template for the Non‐

Claimant class.
� Chi is each element of the prior set: ChS ¼ {Ch1, Ch2, …,
ChH}, where H is the size of the set.

� N: the number of components of the cohort set (N ≤ H)
that are used to estimate sðX=λ

C
̄ Þ.

� M: the number of a priori selected components (M << H)
from the ChS to obtain sðX=λ

C
̄ Þ, with the goal of reducing

the computing load of the Score Ratio usage (Sec. 4.2).
� Normalisation Set, NrS. The set of individuals contrib-
uting biometric data, who are not subjects, used for score
normalisation (Sec. 5.1).

� Nri is each of the elements of the normalisation set:
NrS ¼ {Nr1, Nr2, …, NrR}, where R is the number of
elements of this set.

� E. Any element of the biometric database. The Claimant C,
the ChS elements and the NrS elements are all biometric
data records. All come from the same database, but the task
or role for which they are used is different. We then need a
general identifier: E (Element).

� λE is the biometric model or biometric template for E. λC,
λCi, λChi and λNri are particular examples of λE.

� X is used to refer to the biometric feature. It is a feature
vector X ¼ {x1, x2, …, xQ}, extracted from the biometric
sample (Figure 1), xk being the k component (which can also
be a vector) and Q being the number of them. This vector is
used for comparison.

3 | THEORETICAL BACKGROUND AND
RELATED WORKS

Likelihood rate is a concept closely linked to the statistical test,
where the problem to solve could be stated as shown in the
following.

Suppose that p(X/H0) and p(X/H1) are the two possible
distributions that X can have. This defines two Hypotheses:
H0: X has the probability density function p(X/H0)
H1: X has the probability density function p(X/H1)
From a statistical approach, the test can be built on the

basis of a straightforward idea: if X ¼ Xo is observed, where
Xo is an X observation, p(Xo/H1) > p(Xo/H0) is evidence
supporting option H1, otherwise, the evidence is in favour of
H0.

The likelihood ratio function L(X) is determined, from the
previous distributions, as can be seen in equation (7). The
statistical test can now be constructed since: if L(Xo) has a
small value, then this is evidence supporting H1, while if L(Xo)
has high values, it is evidence supporting H0. So, it is reason-
able to utilise L(X) to take the decision about which Hy-
pothesis to select, using a threshold value θ, such that the
hypothesis H0 will be rejected if and only if L(Xo) < θ. θ is
estimated with the significance level α ¼ p(L(X) < θ/H0), that
is, fixing the value of false‐negative probability.

LðXÞ ¼
pðX=H0Þ

pðX=H1Þ
ð7Þ

Having determined the value of θ, p(L > θ/H1), which is
the false‐positive probability, can be calculated. Neyman–
Pearson [7,8] showed that the use of the likelihood ratio
minimises the false‐positive probability, which makes the above
test more powerful.

There may sometimes be a set of distributions, {pk(X/H0)}
and/or {pi(X/H1)}, for Hypotheses H0 and/or H1, respec-
tively, instead of a single one, as in the previous. This happens
in our problem. Neyman–Pearson extended the likelihood ra-
tio function, as can be seen in equation (8).

LðXÞ ¼
maxkðpkðX=H0ÞÞ

maxiðpiðX=H1ÞÞ
ð8Þ

Focusing on Biometrics, the input value X must be clas-
sified as coming or not from the Target Class or Claimant C;
so, the initial Hypotheses become:
H0: X is from C H1: X is not from C.
In practice, p(X/H0) is estimated through the output, p(X/

λC), of a statistical model, λC, (such as GMM or HMM) of C;
while p(X/H1) is estimated through a model of the Non‐Target
Class (Non‐Claimant, NC, or biometric impostor in biometrics
terms), pðX=λ

C
̄ Þ. The problem is how to calculate or estimate

this last probability function.
Two methods to obtain this likelihood can be seen in the

literature: with a cohort set or representative set of the NC
class [2,4,9], or using a model to capture the behaviour of the
NC class [3,9].

When the second approximation is utilised to obtain
pðX=λ

C
̄ Þ, the model is achieved by means of numerous ex-

amples of NCs, that is, data from many individuals different
from the Claimant C. One example is the Universal Back-
ground Model, UBM, [3,9]. In this case, the Score Ratio is
carried out using the log likelihood: log pðX=λCÞ

pðX=UBMÞ, with λC being
attained by means of the adaptation of the UBM with the
biometric enrolment data records of the Claimant.

With the first approach, the cohort set, pðX=λ
C
̄ Þ, is esti-

mated using a composite hypothesis, that is, using a set of
probability functions fpðX=λChiÞg. The Neyman–Pearson
approach gives the solution (Eq. (8)). Nevertheless, in practice,
instead of using the maximum one only, in general, the N
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maximum probabilities are used [2,4,9], as a better
performance is thus achieved. The reason is that to use
the N > 1 ChS elements nearest to the claimant can
approximate, in general, λc̄ better than if only the closest
one, N ¼ 1, is used; equation (9) shows the likelihood ratio
function [4,10], where 1 ≤ N < H and fpðX=λChkÞg¼
fNmaxiðpðX=λChiÞÞg 1 ≤ i ≤H .

LðXÞ ¼
pðX=λCÞ
pðX=λ

C
̄ Þ
¼

pðX=λCÞ
∑N
k¼1pðX

�
λChkÞ

N

ð9Þ

4 | SCORE RATIO

4.1 | General approach

When non‐probabilistic classifiers are used, the problem with
Score Ratio (Figure 1 (b)) is to estimate sðX=λ

C
̄ Þ in equa-

tions (4) or (6). From the approaches seen in the previous
section to obtain pðX=λ

C
̄ Þ, only the cohort set one

can generally be applied, since many of the systems that use
non‐probabilistic classifiers are based on biometric templates,
and in this case, it is not possible to obtain a single impostor
model.

So, following equation (9), our Score Ratio proposal can be
seen in equation (10). Here, the identical strategy of utilising
the N ChS components nearest to the Claimant is used, but
with scores. Given a biometric probe X, the selection of these
components to apply the score ratio in equation (10) is:

� For distance‐based classifiers: since low scores imply high
similarity, those ChS elements with the minimal scores are
selected (fsðX=λChkÞg ¼ fNminiðsðX=λChiÞÞg 1 ≤i ≤H).

� For probability‐like classifiers: since high scores imply high
similarity, those ChS elements with the maximal scores are
selected (fsðX=λChkÞg¼ fNmaxi ðsðX=λChiÞÞg 1 ≤ i ≤H).

We call this proposal Score Ratio Basic Approach, SRBA.

SRBAðXÞ ¼
sðX=λCÞ
sðX=λ

C
̄ Þ
¼

sðX=λCÞ
∑N
k¼1sðX

�
λChkÞ

N

ð10Þ

In the experiments, different values of H (the size of the
ChS), and N are tested. The exact values are specified in each
case.

4.2 | Reduced calculations: A Priori Cohort
Selection

Given a feature vector X to classify, the application of Score
Ratio (equation (10)) supposes that H (the cohort set size)
additional scores must be calculated (fsðX=λChkÞg 1≤
k ≤ H ) with regard to using only s(X/λC) (equation (10)

numerator). In addition, these scores must be ordered to
select the N closest ones, though the computing load of
this operation is in fact negligible because of the ChS sizes
tested.

An analysis of the cost in time for those extra calcula-
tions was carried out in Ref. [5] to study whether this
prevents a real‐time system response; the conclusion is that
this depends on the system. However, as improving the
response time is interesting in all cases, an alternative to
decrease the computing load to estimate sðX=λ

C
̄ Þ is pro-

posed and tested.
The method proposed is based on reducing the number of

elements of the cohort set from which the N closest ones are
selected, to calculate equation (10) denominator. To achieve
this, M << H elements of the ChS closest to the Claimant are
first selected, and then, the score ratio is performed using this
subset instead of the entire cohort set.

The similarity between a certain Claimant C and each
element of the ChS Chi, s(Chi, C), is accomplished by means
of their respective models or templates, sðChi;CÞ
¼sðλChi; λCÞ. Using these scores, the M elements of the cohort
set, {Chv}, closest to C are selected as follows:

� For distance‐based classifiers: {Chv} ¼ {Mmini(s(Chi, C))}
1 ≤ i ≤ H.

� For probability‐like classifiers: {Chv} ¼ {Mmaxi(s(Chi,
C))} 1 ≤ i ≤ H.

The Score Ratio is carried out, as shown in equation (10),
yet now, only the preselected subset of elements from the
cohort set {Chv} 1 ≤ v ≤ M is used.

The s(Chi, C) calculation is system dependent. We can use
an example to provide a better understanding of this. Let us
suppose that we use a distance‐based classifier (the general-
isation for systems based on probability‐like classifiers is im-
mediate), and each subject of the biometric database, E, is
modelled using a T size template (λE ¼ fX1

E;X
2
E;…;XTEg),

where XjE is the feature vector extracted from the j biometric
enrolment data record of E. Then, for a Claimant C, his/her
template will be λC ¼ fX1

C ;X
2
C ;…;XTCg, and given a bio-

metric feature X, sðX=λCÞ ¼ f ðdðX=X
j
CÞÞ with 1 ≤ j ≤ T ,

with dðX=XjCÞ being the distance between X and X
j
Cf() will be

a mixture function of the T distances calculated, such as, for
example, min, max, mean, ∑, etc. Therefore,
sðChi;CÞ ¼ sðλChi; λCÞ ¼ f ðsðX

k
Chi=λCÞÞ with 1 ≤ k ≤ T .

We call this proposal Score Ratio a Priori Cohort Selec‐
tion, SRaPCS.

4.3 | Score Ratio in operation

We believe it is interesting, even though the results are set out
later, to show graphically how Score Ratio operates over the
Match and Non‐Match distributions to achieve improvements
in the system performance. This can give a better under-
standing of the proposal.
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For this study, we use a representative and statistically
significant example of the tests performed. In particular, the
example was extracted from the tests performed in fingerprint
recognition (Section 6). The classifier is probability‐like type.

Match and Non‐Match distributions of the example, with
and without Score Ratio, are shown in Figure 2(a). As can be
seen, the Score Ratio produces a narrowing in the score
distributions (Figure 2 (b) and (c)). In addition, the Non‐
Match distribution with Score Ratio is moved to the left with
respect to the distribution without Score Ratio (Figure 2(c)).
This displacement, though small in the figure, is statistically
highly significant (the Mann–Whitney–Wilcoxon test between
Non‐Match distributions with and without Score Ratio gives
a p‐value < 2.2 � 10� 16) and the system improvement
achieved is, as will be seen, also important. As the distribu-
tions are not Gaussian, the Mann–Whitney–Wilcoxon test
(using R software) has been used to measure whether the
difference between distributions is statistically significant; if
the p‐value > 0.05, the null hypothesis (H0: the population
distributions are identical) is not rejected, and rejected
otherwise.

In the end, Score Ratio decreases the overlap between
distributions (Figure 2 (d)), thus improving the results. This can
be seen in Figure 3, where the system performance with and
without Score Ratio is shown by means of a Detection error
trade‐off (DET) curve [11] for a more complete comparison.
The Score Ratio improves the system whatever the chosen
threshold, the improvement being of at least 15%.

5 | EXPERIMENTAL ENVIRONMENT

5.1 | Score normalisation

It is usual in biometrics that the Match and Non‐Match dis-
tributions of a system vary from one subject to another
(Figure 4a). To avoid this, if necessary, score normalisation
must be performed, since with this technique, the scores of the
Claimant matchers are transformed into a common domain
(Figure 4b).

Several score normalisation techniques [5] have been pro-
posed, but here, due to the number of samples used to build

(a) (b)

(c) (d)

F I GURE 2 Example of Match and Non‐Match distributions with and without Score Ratio (a). Match and Non‐Match distributions are only shown in
(b) and (c), respectively. The intersection zone is zoomed in on figure (d)
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the Claimant template (one in iris and fingerprint), only
Impostor‐Centric techniques can be used. From these, ZNorm
is one of the most commonly used in the literature:
sfnormg ¼ ðs � bμ

fNong
C Þ=bμfNongC , where bμfNongC and bμfNongC are

the mean and the standard deviation of the Non‐Match dis-
tribution for the Claimant C classifier, estimated using the
Normalisation Set , NrS (Section 5.2), as shown below. This
normalisation technique is the one tested here.

5.1.1 | Score normalisation without Score Ratio

s in the ZNorm equation is: s ¼ s(X/λC), if Score Ratio is not
applied.

The Non‐Match distribution is estimated as follows. From
each subject Nri of the NrS, a biometric sample (sample in
short from now on) is randomly selected, extracting from it the

feature vector XNri, thus forming the so‐called Normalisation
Gallery, NrG¼ fXNrig 1 ≤ i ≤ R, where R is, let us
remember, the Normalisation Set size. For a Claimant C, the
score for each element in NrG is obtained, achieving the Non‐
Match Score Set, NMSS ¼ fsðXNri=λCÞg 1 ≤ i ≤ R. This set is
an a priori estimation of the Non‐Match distribution for
Claimant C, that is, the impostor score distribution estimation
for this Claimant. Then, the mean and standard deviation of
NMSS are used to approximate bμfNongC and bμfNongC .

5.1.2 | Score normalisation with Score Ratio

Now, s¼ sðX=λCÞ
sðX=λ

C
̄ Þ
in the ZNorm equation. Then, it is necessary

to apply the Score Ratio to the sets utilised to estimate the
statistics.

So, NMSS becomes the NMSS_Score Ratio, NMSS_SR¼
f
sðXNri=λCÞ
sðXNri=λ

C
̄ Þ
g 1 ≤ i ≤ R. From NMSS_SR, bμfNongC and bμfNongC are

estimated.

5.2 | Experimental sets

Each biometric database was divided into the following
subsets:

� Normalisation Set, NrS. When score normalisation must
be accomplished (for fingerprint and iris, as will be seen),
this set is randomly selected from the corpus.

� Cohort Set, ChS. The components of this set are
randomly selected from the users in the database not
utilised for the NrS (fingerprint and iris) or from the
complete corpus (finger vein). The effects of the size of
this set on the Score Ratio performance were studied,
testing different sizes.

F I GURE 3 Example of system performance with and without Score
Ratio by means of a DET curve

(a) (b)

F I GURE 4 Visualisation of the score normalisation effect. The Match and Non‐Match distributions of two subjects, initially in different domains (a), are
moved to the same with its application (b)
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� Test Set (TS), used for testing, consists of the users not
included in the other sets. For more objective results, the
same set was used in all the tests carried out.

The size or sizes of the previous sets are specified in the
next sections, where each biometric system and the results are
shown.

5.3 | Performance measure

Performance measure can be accomplished by means of a
graphical representation, such as a DET plot [11] or a ROC
(Receiver Operator Characteristic) curve, or by means of a
measure based on a single number. This last is easier to handle
and simpler to understand when the amount of comparison is
high, which is the case here; so, this is the measure selected in
the experiments. More specifically, the EER, one of the most
commonly used in the biometric bibliography, is the one used
here.

To achieve the final EER of the test, two approaches can
be found in the literature:

� An individual EER is calculated for each Claimant in the
TS, the final EER being the mean of these individual EERs.
Under this approach, also called with individual threshold,
score normalisation (Section 5.1) is not necessary.

� A global EER is calculated using a Claimant scores set and
another with the impostors' scores, created by joining all the
genuine and impostor test results, respectively. Under this
approach, also called with global threshold, score normal-
isation (Section 5.1) is usually necessary.

Although the second approach is the most usual, here,
both are addressed.

5.4 | Statistical significance measure

We consider it is important to show the statistical significance of
the results achieved. More specifically, if the improvements or
the worsening in the system performance (in our case, the
difference between the result with and without Score Ratio)
are significant or not, that is, if they are ‘real’ or simply due to
chance.

The statistical confidence of the performance estimation is
not a straightforward problem in biometrics [12]. Several ap-
proximations have been proposed; for example, we can find
two rules that approach the relation between the confidence
bounds and the test size: the Rule of 3 [12] and the Rule of 30
[13]. We can also find the estimation of the confidence bounds
on the observed error rates [12]. However, all of these pro-
posals are based on one or more of the following approxi-
mations and are not always true in biometrics:

� Independent trials. This is not true if multiple samples per
person are used in the tests, which is the usual.

� Error equally distributed among classes. This is not true due
to the so‐called biometric menagerie, described first by
Doddington in speaker recognition [14], and noticed in
other biometrics [15].

� The observed error rates follow a Gaussian (or normal)
distribution.

To avoid these problems, the use of the Bootstrap non‐
parametric technique is proposed in Ref. [12] and incorporated
in the ISO/IEC 19795‐1:2006 standard about Biometric per‐
formance testing and reporting, Part 1: Principles and
framework. The advantage of the bootstrap estimation is that
it reduces the need to make assumptions about the underlying
distribution of the observed error rates and the dependencies
between attempts.

Following this technique, a bootstrap test set is created by
sampling with replacement from the original test set. The
original test set, as will be shown in the next sections, is
composed of S subjects, each having G biometric mated com-
parison trials (historically referred to as ‘genuine trials’) and I
biometric non‐mated comparison trials (‘impostor trials’). Each
bootstrap test set is constructed from the original one in a such
way that it replicates the structure and dependencies of this set:

1. S subjects, {Cbi}, are sampled with replacement. Sampling
with replacement means the list is likely to contain more
than one occurrence of the same item.

2. For each Cbi, G genuine trials are sampled with
replacement.

3. For each Cbi, I impostor trials are sampled with
replacement.

Many bootstrap test sets are generated and the EER is
calculated for each. The distribution of the bootstrap EER
values is used to approximate that of the observed EER.
Following Ref. [12], 1000 bootstrap test sets have been created
in each experiment to get 95% confidence in the statistical
calculations.

The statistical significance of the difference between the
system performance with and without Score Ratio is evaluated
as follows, in each of the experiments shown in the next
sections:

1. By means of the original test set, the EER of the experi-
ment is calculated with and without Score Ratio.

2. 1000 different bootstrap test sets are obtained and the EER
without Score Ratio is calculated for each.

3. Another 1000 different bootstrap test sets are obtained and
the EER with Score Ratio is calculated for each.

4. Figure 5 shows a typical distribution of the EERs calculated
in the previous two steps. It can be seen that the distribution
fits a Gaussian one. The mean of those distributions are,
very approximately, the corresponding EERs achieved with
the original test sets. For example, the EERs achieved with
and without Score Ratio with the original test set of Figure 5
are 2.66% and 3.13%, respectively; while the corresponding
means of the bootstrap sets are 2.65% and 3.11%.

VIVARACHO‐PASCUAL ET AL. - 133

 20474946, 2021, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/bm

e2.12011 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [22/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Then, under the conditions shown, the t‐test can be
applied to the EER distributions achieved by means of the
bootstrap test sets to determine whether the difference be-
tween the results with and without Score Ratio is statistically
significant or not. R software has been used for this test. If
the p‐value of the t‐test is greater than 0.05 with a 95%
confidence, we can say that the difference in the performance
is not significant (H0 is not rejected), being significant
otherwise. The lower the p‐value, the more significant that
difference will be.

6 | FINGERPRINT

Fingerprint is the biometric characteristic that has been used
for the longest: modern fingerprint identification methods
were provided at the end of nineteenth century. It is one of
the most well‐known biometrics and is by far the most
important technology in the biometrics market. As a very
mature mode, well established reference databases, experi-
mental protocols and systems can be found [6], and which
are used in our work, as can be seen in the next sections. The
main scripts and configuration files of fingerprint experi-
ments are available in http://www.infor.uva.es/cevp/Down-
load/Fingerprint.zip.

6.1 | Experimental setup

The MCYT biometric database [16] has been used. This
corpus is very popular in fingerprint recognition and can be
considered a benchmark [6]. Two types of acquisition devices
are used: CMOS‐based capacitive and optical. For each in-
dividual in the database, 12 different samples of each
fingerprint were acquired. For the tests, each finger is
considered a different subject [6] that is a different Claimant.
Then, we have 12 impressions (fingerprint images) for each
subject per sensor.

The acquisition control is accomplished in three levels:

� Three samples with low level of control: the individual puts
his/her finger on the screen sensor without any position
restrictions.

� Three more samples with medium level of control: in this
stage, the individual him/herself must observe the finger-
print in a computer screen while the finger is located on the
sensor.

� Six more samples with high level of control: the acquisition
is accomplished as in the above stage, but with more control
in the finger position.

The description of each subset in Section 5.2 and the test
performed is:

� Normalisation Set, NrS. Ten individuals were randomly
selected from the database. From each individual, one
sample of each fingerprint was selected (the same that was
used as the Claimant template). The size of this set is,
then: 10 individuals � 10 print/individual � 1 sample/
print ¼ 100 samples, for each device.

� Cohort Set, ChS. Sizes of 5, 10, 15 and 20 individuals were
tested. From each individual his/her 10 fingerprints were
used. Then, in fact, the sizes of this set tested are 50, 100,
150 and 200 subjects, respectively.

Here, besides the size of the ChS, the acquisition control
level was also tested. So, we have three ChSs for each ChS size
(H ¼ {50, 100, 150, 200}) tested: one consisted of fingerprints
with low control and the other two with middle‐ and high‐
control‐level fingerprints, respectively.

� Test Set (TS). Eighty‐three individuals were used. Thus,
the size of this set is: 83 individuals � 10 fingers/indi-
vidual ¼ 830 fingers (subjects or Claimants). Following the
reference protocol [6], one impression per finger with low
control during acquisition is used as template, this being
the first image acquired. The rest of the fingerprint samples
are used for biometric mated comparison trials. For non‐
mated ones, one impression per finger (that used for the
template) of the rest of the individuals in the TS different
from the Claimant are used. That is, we have 9130
(83 � 10 � 11) genuine trials and 68,060 (83 � 82 � 10)
impostor trials.

6.2 | Recognition system

Both here and in the next biometric characteristics, we shall
not give a detailed description of the biometric systems. Our
interest focuses on the Score Ratio usage, so only the
important parts of the system are described for a
better understanding of the work performed. A more in‐
depth description of the systems can be found in the
bibliography.

F I GURE 5 Bootstrap test sets EER distribution with and without
Score Ratio
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The public reference system NBIS11 (NIST Biometric
Image Software), release 5.0.0, has been used for fingerprint
recognition. The main system characteristics are:

� Feature extraction stage based on minutiae (ridge ending
and bifurcations, Figure 6) detection using the MINDTCT
package.

� From the minutiae extracted, the similarity between two
fingerprints is measured by means of the very well‐known
matching algorithm BOZORTH3 [17]. This algorithm uses
invariant measurements, such as the distance between two
minutiae or the angle between each minutia's orientation and
the intervening line between both minutiae (Figure 6). The
score achieved is the type probability‐like that is the higher
the score the more similar the fingerprints are.

Following the benchmark protocol [6], the global EER
approach (Section 5.3) is used here to measure system
performance.

6.3 | Results with optical device

Here, the results (EER) achieved with the optical device are
shown. In Table 1, those with the Score Ratio Basic Approach
are shown, both when score normalisation is applied and when
it is not. The results with the Score Ratio a Priori Cohort
Selection can be seen in Table 2.

6.4 | Results with capacitive device

The results with the capacitive device using the Score Ratio
Basic Approach are shown in Table 3, and those with the Score
Ratio a Priori Cohort Selection can be seen in Table 4. The

F I GURE 6 Example of fingerprint minutiae (a), the features extracted from each (b) and the invariant measures extracted from two minutiae (c)

TABLE 1 Fingerprint (optical device)
recognition performance (EER in %) using
and not using (N ¼ 0 row) Score Ratio Basic
Approach, and with and without score
normalisation. In ‘ChS‐H’, H means the
cohort set size. This size does not affect the
results without Score Ratio (ChS is only used
to apply Score Ratio, N≠0 rows), so, for a
better comparison, the EER of the N ¼ 0 row
has been repeated in all ChS‐H columns. The
ChS fingerprints control level appears in the
CL column: low (L), middle (M) and high (H)
(as was shown in the benchmarking protocol,
when Score Ratio is not used, N ¼ 0 row, CL
is not applicable). The cell colour code used is:
light grey for no significant differences
between results with and without Score Ratio,
dark grey for no improvements with Score
Ratio, and normal (white) when Score Ratio
significantly improves the reference system
(EER in N ¼ 0 row). Best results are in
boldface

No Score Normalisation Score Normalisation

N CL ChS‐50 ChS‐100 ChS‐150 ChS‐200 ChS‐50 ChS‐100 ChS‐150 ChS‐200

0 ‐ 3.57% 3.57% 3.57% 3.57% 3.13% 3.13% 3.13% 3.13%

1 L 3.21% 3.10% 3.09% 3.09% 2.99% 2.99% 2.93% 2.92%

M 3.22% 3.10% 3.06% 3.08% 3.10% 3.10% 2.85% 2.84%

H 3.28% 3.13% 3.04% 3.21% 2.92% 2.92% 2.87% 2.95%

3 L 2.97% 2.96% 2.94% 3.01% 2.85% 2.85% 2.85% 2.80%

M 3.00% 2.90% 2.86% 3.03% 2.89% 2.89% 2.70% 2.73%

H 3.15% 2.97% 2.92% 3.00% 2.71% 2.71% 2.65% 2.73%

5 L 2.91% 2.90% 2.95% 2.96% 2.79% 2.79% 2.83% 2.75%

M 2.96% 2.87% 2.88% 2.94% 2.84% 2.84% 2.67% 2.68%

H 2.99% 2.97% 2.86% 2.93% 2.68% 2.68% 2.69% 2.65%

10 L 2.93% 2.92% 2.89% 2.91% 2.72% 2.72% 2.77% 2.76%

M 2.86% 2.87% 2.85% 2.89% 2.72% 2.72% 2.65% 2.65%

H 2.90% 2.88% 2.86% 2.86% 2.63% 2.63% 2.65% 2.61%

1
The software and a complete description of it can be found in https://www.nist.gov/
services-resources/software/nist-biometric-image-software-nbis
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results of this section are interesting, as compared with the
previous one, to test the Score Ratio with the worst system
performance, as the images with the capacitive device are
worse than those with the optical one.

6.5 | Results analysis

The first important aspect to note is that significant im-
provements have been achieved with Score Ratio, both with

the Basic Approach and with the a Priori Cohort Selection.
These improvements have been achieved with both devices,
independently of the control level of the samples used in
the ChS and with and without score normalisation, showing
the consistency of the proposal with regard to the data.

Focusing on the Score Ratio parameters tested.

� With regard to N (let us remember that N is the number of
cohort set elements used to calculate the Score Ratio, equa-
tion (10), denominator), it is advisable to use values bigger

TABLE 2 Fingerprint (optical device) recognition performance (EER in %) using and not using (N ¼ 0 row) Score Ratio with a Priori Cohort Selection.
ChS‐200 is used to select the a priori M elements closest to the Claimant. If N > M, then the denominator in the Score Ratio equation (equation (10)) cannot be
calculated, so these rows are empty. The remaining columns and rows, as well as cell colour code, are the same as in the previous table

No Score Normalisation Score Normalisation

N CL M ¼ 5 M ¼ 10 M ¼ 15 M ¼ 20 M ¼ 25 M ¼ 5 M ¼ 10 M ¼ 15 M ¼ 20 M ¼ 25

0 ‐ 3.57% 3.57% 3.57% 3.57% 3.57% 3.13% 3.13% 3.13% 3.13% 3.13%

1 L 3.74% 3.54% 3.29% 3.23% 3.18% 3.66% 3.22% 3.13% 3.06% 2.94%

M 3.88% 3.44% 3.34% 3.33% 3.15% 3.56% 3.24% 3.10% 3.03% 2.94%

H 3.90% 3.65% 3.40% 3.32% 3.21% 3.62% 3.25% 3.10% 3.00% 2.91%

3 L 3.41% 3.18% 3.04% 3.05% 2.96% 3.17% 2.87% 2.76% 2.78% 2.69%

M 3.54% 3.16% 3.01% 3.03% 2.97% 3.11% 2.90% 2.83% 2.82% 2.71%

H 3.43% 3.30% 3.11% 3.00% 2.98% 3.04% 2.84% 2.81% 2.72% 2.66%

5 L 3.36% 3.03% 2.99% 2.95% 2.92% 3.03% 2.81% 2.69% 2.68% 2.58%

M 3.43% 3.07% 2.91% 2.94% 2.86% 3.01% 2.80% 2.71% 2.73% 2.66%

H 3.34% 3.11% 2.93% 2.99% 2.88% 2.93% 2.65% 2.65% 2.62% 2.58%

10 L 2.95% 2.85% 2.91% 2.78% 2.66% 2.60% 2.63% 2.52%

M 2.94% 2.86% 2.77% 2.77% 2.69% 2.69% 2.61% 2.58%

H 2.97% 2.75% 2.72% 2.71% 2.63% 2.56% 2.50% 2.46%

TABLE 3 Fingerprint (capacitive device)
recognition performance (EER in %) using
and not using (N ¼ 0 row) Score Ratio Basic
Approach. Columns and rows, as well as cell
colour code, are the same as in previous tables

No Score Normalisation Score Normalisation

N CL ChS‐50 ChS‐100 ChS‐150 ChS‐200 ChS‐50 ChS‐100 ChS‐150 ChS‐200

0 ‐ 6.84% 6.84% 6.84% 6.84% 5.91% 5.91% 5.91% 5.91%

1 L 6.39% 6.12% 6.10% 6.11% 5.58% 5.35% 5.46% 5.41%

M 6.60% 6.36% 6.38% 6.27% 5.77% 5.56% 5.57% 5.40%

H 6.54% 6.45% 6.37% 6.21% 5.95% 5.66% 5.54% 5.42%

3 L 6.22% 5.98% 5.97% 5.93% 5.37% 5.25% 5.21% 5.29%

M 6.36% 6.27% 6.19% 6.14% 5.47% 5.39% 5.36% 5.30%

H 6.28% 6.20% 6.26% 6.12% 5.59% 5.47% 5.39% 5.35%

5 L 6.14% 5.96% 5.96% 5.98% 5.30% 5.23% 5.21% 5.24%

M 6.30% 6.19% 6.21% 6.14% 5.34% 5.28% 5.34% 5.29%

H 6.26% 6.21% 6.25% 6.13% 5.49% 5.36% 5.40% 5.30%

10 L 6.22% 6.00% 5.90% 5.95% 5.32% 5.24% 5.21% 5.24%

M 6.24% 6.18% 6.14% 6.13% 5.29% 5.21% 5.26% 5.25%

H 6.28% 6.17% 6.21% 6.10% 5.41% 5.32% 5.32% 5.22%
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than 1. Although the performance is good for the rest of the
values, in general, the best results have been achieved with
N¼ 10. This allows us to conclude that using a large enough
N value is recommended. In addition, this value does not
affect the computer load of the proposal. In the next modes,
bigger values have been tested, showing that from a particular
value onwards the results do not improve, which is why we
previously said large enough.

� As for the cohort set size in the Basic Approach, improve-
ments have been achieved with all of them. However,
although with no very large differences, the best ones have
been achieved with the larger sizes: 150 and 200. This
parameter does affect the computer load of the Score Ratio
proposal. So, if this were important, we can use small ChS
sizes with a slightly worse Score Ratio performance, or we can
use the a Priori Cohort Selection approach, which, also
considerably reduces the computer load, as well as improving
the performance, as we will analyse next.

To show some concrete figures, the application of the Score
Ratio Basic Approach has achieved an improvement in the
system performance of 20%2 (from 3.57% to 2.85%) without
score normalisation and 17% (from 3.13% to 2.61%) with score
normalisation, using the optical device data; while, with the
capacitive ones, the best improvements have been 14% (from
6.84% to 5.90%) without score normalisation and 12% (from
5.91% to 5.21%) with score normalisation. With the a Priori
Cohort Selection approach, the best improvements have been
24% (from 3.57% to 2.71%), 21% (from 3.13% to 2.46%), 16%

(from 6.84% to 5.76%) and 14% (from 5.91% to 5.07%). As can
be seen, first, the better the reference system is, the bigger the
improvements that have been achieved with Score Ratio and,
second, the a Priori Cohort Selection approach not only reduces
the computational load, but has also improved the basic
Approach performance, as already pointed out.

Finally, focusing on the a Priori Cohort Selection
approach, the Score Ratio improves the reference system in all
of the tests except for N ¼ 1 and small values of M (5 and 10).
In general, the results improve as M and N increase. However,
good results can be found for small values of M, showing that
the Score Ratio can significantly improve the reference system
with a small computer load increase (remember that the value
of N does not affect the processing time).

7 | IRIS

Together with fingerprint, iris is the biometric characteristic
with the oldest biometrics solution for authentication on
computerised systems. Very important in the current biometric
market, it is also a very mature mode. As with fingerprint, the
benchmark database, and the experimental protocol and sys-
tem have been used in the experiments. Scripts and configu-
ration files of iris experiments are available in http://www.
infor.uva.es/cevp/Download/Iris.zip.

7.1 | Experimental setup

The BIOSECURID multimodal biometric database [18] has
been used. This database includes eight unimodal biometric

TABLE 4 Fingerprint (capacitive device) recognition performance (EER in %) using and not using (N ¼ 0 row) Score Ratio with a Priori Cohort Selection.
ChS‐200 is used to select the a priori M elements closest to the Claimant. If N > M, then the denominator in the Score Ratio equation (equation (10)) cannot be
calculated, so these rows are empty. The remaining columns and rows, as well as cell colour code, are the same as in previous tables

No Score Normalisation Score Normalisation

N CL M ¼ 5 M ¼ 10 M ¼ 15 M ¼ 20 M ¼ 25 M ¼ 5 M ¼ 10 M ¼ 15 M ¼ 20 M ¼ 25

0 ‐ 6.84% 6.84% 6.84% 6.84% 6.84% 5.91% 5.91% 5.91% 5.91% 5.91%

1 L 6.82% 6.73% 6.39% 6.28% 6.30% 6.17% 6.10% 5.83% 5.70% 5.62%

M 6.98% 6.83% 6.47% 6.36% 6.33% 6.40% 6.10% 5.85% 5.81% 5.67%

H 7.12% 6.60% 6.58% 6.39% 6.33% 6.37% 5.93% 5.84% 5.63% 5.64%

3 L 6.41% 6.27% 6.01% 5.91% 5.96% 5.68% 5.64% 5.43% 5.26% 5.27%

M 6.50% 6.49% 6.36% 6.22% 6.18% 5.91% 5.660% 5.58% 5.46% 5.38%

H 6.61% 6.21% 6.14% 6.02% 6.04% 5.85% 5.46% 5.56% 5.39% 5.40%

5 L 6.26% 6.09% 5.89% 5.85% 5.86% 5.56% 5.44% 5.24% 5.22% 5.20%

M 6.44% 6.36% 6.31% 6.20% 6.14% 5.78% 5.58% 5.49% 5.43% 5.29%

H 6.46% 6.11% 6.02% 5.93% 6.02% 5.61% 5.48% 5.48% 5.32% 5.34%

10 L 6.01% 5.80% 5.76% 5.79% 5.30% 5.10% 5.12% 5.07%

M 6.29% 6.20% 6.07% 6.12% 5.49% 5.35% 5.29% 5.28%

H 6.00% 6.01% 5.94% 5.89% 5.18% 5.32% 5.16% 5.20%

2
The improvement percentage is calculated as: ((EEENoSR � EERSR)/EERNoSR) * 100
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traits, namely: speech, iris, face, handwritten signature and
handwritten text, fingerprints, hand and keystroking. It is a
database acquired under realistic conditions and with balanced
gender and population distributions. Here, the iris part is used.
This part comprises 400 subjects: two eyes of 200 individuals
(as in fingerprint, each eye is considered a different subject).
Four samples of each eye were acquired in four different ses-
sions that is we have a total of 16 samples per subject. This
implies that the database includes 6400 iris images, being one
of the biggest public ones. As it is used in many works, this
database represents a good benchmark.

The iris database was split into the following subsets
(Section 5.2):

� Normalisation Set, NrS. Twenty‐five individuals were
randomly selected from the database. From each individual,
one sample of each eye was selected (the one that was used
as template). The size of this set is, then: 25 individuals � 2
eyes/individual� 1 sample/eye ¼ 50 samples.

� Cohort Set, ChS. Sizes of 30, 60 and 90 (15, 30 and 45
individuals, two eyes per individual) were tested. Bigger sizes
were tested at the beginning of the experiments, but, with
no improvements, we decided not to try larger sizes and
thus increase the TS.

� Test Set (TS). Two hundred and sixty subjects (130 in-
dividuals, two eyes each one) were used. Following the
reference experimental protocol [6], one iris image is used as
template, this being the first image acquired. The remaining
images were used for biometric mated comparison trials. For
impostor tests (biometric non‐mated comparison trials), one
image per eye (that used for the template) of the rest of the
individuals in the TS, different from the Claimant, were
used. That is, we had 3900 (260 � 15) genuine trials and
67,340 (260 � 259) impostor trials.

7.2 | Recognition system

The OSIRIS open‐source reference system [6] was used. This
system is inspired in Doughman's approach [19], which is the
main benchmark in iris recognition. Briefly, this approach
consists of:

� First, the iris is isolated from the image captured (Figure 7
left).

� The iris image is normalised into a fixed rectangular size and
enhanced (Figure 7 middle).

� Using two‐dimensional Gabor filters, the iris is finally
transformed into a binary pattern called iris code (Figure 7
right).

� Comparison between irises is made using the Hamming
distance, in which iris codes are compared using the XOR
technique. So, the iris system uses a distance‐based classifier.

As in fingerprint, the global EER approach (Section 5.3) is
used in the benchmark protocol [6] to measure system per-
formance and this approach is followed here.

7.3 | Results

In Tables 5 and 6, the results without Score Ratio compared
with those with Score Ratio basic Approach and a Priori
Cohort Selection, respectively, are shown.

7.4 | Results analysis

As with fingerprint, the application of Score Ratio has out-
performed the reference system with both the Basic Approach
(in all tests) and with the a Priori Cohort Selection (in all tests
except for N ¼ 1). Although the improvements are smaller
here, they are still statistically significant. The best figures are
6% (from 5.56% to 5.23%) without score normalisation and
7% (from 5.44% to 5.05%) with score normalisation when the
Basic Approach is applied; the same values are achieved with
the a Priori Cohort Selection approach.

Bigger values of N with regard to those tested in the
fingerprint mode have been proved here. However, values over
10 have only shown improvements with the a Priori Cohort
Selection approach. In the same way, a minimal value of N
(N ≥ 3) is necessary to achieve good results, as with fingerprint.

With regard to the ChS size, the conclusion in the Basic
Approach is similar here to that with fingerprint: the best
performance has been obtained, mainly, with the larger values
(60 and 90), but the reference system is also outperformed with
small values.

The good performance of the a Priori Cohort Selection
has also been demonstrated here: similar results to those with
the Basic Approach have been achieved. Moreover, the results
are, in general, better with this approach than with the general
one, even with small values of M (M ¼ 10, 15).

8 | FINGER VEIN

Finger vein is an emerging biometric characteristic based on
the vascular patterns that exist in the finger. Although used in
commercial systems, it has not been until very recently that
the scientific community has paid attention to it. Unlike the
previous mature modes addressed in this work, we can say
that there are no reference databases or systems in vein
recognition. It is not easy to find public databases either. One
of the largest and most complete is the University of Twente
Finger Vascular Pattern (UTFVP) database [20] (available in:
https://scs.ewi.utwente.nl/downloads/show,FingerThis is
what we have used here. Also, the experimental protocol in
the publications related to the UTFVP database [20,21]
isfollowed.

The interest in testing this biometric characteristic is to
prove Score Ratio under different conditions with respect to
those in fingerprint and iris. The most important are: i) first,
following the reference protocol in Ref. [20], individual
EER (Section 5.3) is used, with the intention of showing
that Score Ratio can also improve system performance at an
individual level; ii) second, and following the reference
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experimental protocol, the subject template is made up of
more than one sample, more specifically, two samples are
used. Scripts and configuration files of finger vein experi-
ments are available in http://www.infor.uva.es/cevp/Down-
load/Vein.zip.

8.1 | Experimental setup

The UTFVP database is made up of images of 60 individuals,
captured with a custom designed device. From each individual,
four images in two different sessions (two per session) where
acquired of six fingers that is 1440 images in total.

The database was split into the following subsets
(Section 5.2).

� Normalisation Set, NrS. This is not considered here, since
individual EER is used and the normalisation of each
Claimant Match and Non‐Match score distributions (Sec-
tion 5.3) is not necessary.

� Cohort Set, ChS. To maximise the TS, only sizes of 36 (6
individuals � 6 fingers) and 54 (9 individual � 6 fingers)
were tested.

� Test Set (TS). 306 subjects (51 individuals, six fingers
each one) were used. Following the reference protocol
[20,21], two finger vein images, in this case, the first
image acquired in each session, were used as the template.
The rest of the images are used as genuine tests, two per

subject. For impostor tests, in order not to have very
unbalanced test sets, one image (the first one acquired in
the first session) of a single finger (randomly selected) for
the rest of the individuals in the TS different from the
Claimant are used; that is we have 50 impostor tests per
subject.

8.2 | Recognition systems

Following the bibliography, the original infrared image is pre‐
processed prior to the feature extraction, isolating the finger
from the background, extracting the ROI (Region of Interest),
enhancing the vascular pattern and normalizing the size of the
final image (Figure 8).

Here, since the goal is to test Score Ratio, our own very
simple systems were used, looking for a variety of approaches:

� Discrete Fourier Transformation (DCT)‐based
approach. Feature extraction is accomplished by means of
DCT coefficients extraction. The feature vector is made up
of the 75 low‐frequency components. Feature vectors are
compared using Euclidean distance.

� Binarisation‐based approach. The pre‐processed image is
binarised, so that the feature vector is now a binary pattern.
Comparison between images is accomplished by means of
two different approaches:
� Applying the AND binary operation and counting the
number of ones in the result. Under this approach, the
score achieved is the type probability‐like that is the
higher the score, the more similar the finger vein patterns
are.

� Applying the Hamming distance. This approach is
similar to applying the XOR operation between the binary
images and counting the number of ones in the result.
Thus, we identify this approach as XOR in the results
section below.

8.3 | Results

The performance of the finger vein systems with and without
Score Ratio is shown in Tables 7 and 8, when the Score Ratio
Basic Approach and the a Priori Cohort Selection are used,
respectively. Remember that here, the system EER is the mean
of the individual EERs per Claimant.

F I GURE 7 Main modules (stages) of the iris recognition system

TABLE 5 Iris recognition performance (EER in %) using and not
using (N ¼ 0 row) Score Ratio Basic Approach. Columns and rows, as well
as cell colour code, are the same as in previous tables

No Score Normalisation Score Normalisation

N ChS‐30 ChS‐60 ChS‐90 ChS‐30 ChS‐60 ChS‐90

0 5.56% 5.56% 5.56% 5.44% 5.44% 5.44%

1 5.53% 5.33% 5.41% 5.28% 5.28% 5.30%

3 5.30% 5.23% 5.35% 5.23% 5.12% 5.27%

5 5.30% 5.25% 5.38% 5.18% 5.05% 5.10%

10 5.38% 5.30% 5.38% 5.15% 5.23% 5.05%

15 5.41% 5.33% 5.35% 5.18% 5.26% 5.13%

20 5.35% 5.33% 5.35% 5.23% 5.23% 5.21%

25 5.35% 5.35% 5.35% 5.33% 5.23% 5.18%
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8.4 | Results analysis

This third biometric mode once more proves that Score Ratio
can improve the reference systems, but now under different
experimental conditions with regard to those in the previous
tests. In spite of this, the same main conclusions as in the
previous modes can be extracted:

� Both Basic Approach and a Priori Cohort Selection
outperform the reference system in all of the tests, except
for N ¼ 1 in some cases.

� The second approach can achieve even better results than
those with the general one, besides reducing the computer
load.

� Good results have been achieved with small values of M
(M ¼ 10, 15) in the a Priori Cohort Selection, which implies
that the Score Ratio can improve the reference systems with
very small computer load increases.

The biggest improvements achieved here are: 13% (from
7.09% to 6.17%) in the DCT‐based system, 13% (from 7.17%
to 6.21%) in the XOR‐based system and 43% (from 14.35% to
8.11%) in the AND‐based system with the Basic Approach and
25% (from 7.09% to 5.3%), 21% (from 7.17% to 5.7%) and
41% (from 14.35% to 8.5%), respectively, with the a Priori
Cohort Selection approach.

9 | CONCLUSIONS

Herein, a proposal, named Score Ratio, for using Non‐
Claimant Class information in the biometric verification
problem with non‐probabilistic classifiers, has been shown and
widely tested.

The proposal has been tested on two very mature bio-
metric characteristics (fingerprint and iris) as well as an
emerging one (finger vein). Benchmark databases, experi-
mental protocols and/or systems have been used in the tests
for more objective results. Furthermore, their statistical sig-
nificance has been measured.

Two different approaches of Score Ratio have been
tested, the Basic Approach and the a Priori Cohort Selec‐
tion approach, with the aim of decreasing the computational
load of the Score Ratio, if necessary, with the second. The
results show that using Score Ratio improves the perfor-
mance of the reference systems in the great majority of the
experiments carried out. Furthermore, these improvements

TABLE 6 Iris recognition performance
(EER in %) using and not using (N ¼ 0 row)
Score Ratio with a Priori Cohort Selection.
ChS‐90 is used to select the a priori M
elements closest to the Claimant. If N > M,
then the denominator in the Score Ratio
equation (equation (10)) cannot be calculated,
so these rows are empty. The remaining
columns and rows, as well as cell colour code,
are the same as in previous tables

No Score Normalisation Score Normalisation

N M ¼ 5 M ¼ 10 M ¼ 15 M ¼ 20 M ¼ 25 M ¼ 5 M ¼ 10 M ¼ 15 M ¼ 20 M ¼ 25

0 5.56% 5.56% 5.56% 5.56% 5.56% 5.44% 5.44% 5.44% 5.44% 5.44%

1 5.56% 5.65% 5.67% 5.58% 5.62% 5.67% 5.66% 5.55% 5.49%% 5.44%

3 5.40% 5.48% 5.51% 5.48% 5.56% 5.41% 5.31% 5.30% 5.26% 5.27%

5 5.40% 5.41% 5.48% 5.42% 5.47% 5.31% 5.21% 5.22% 5.21% 5.26%

10 5.24% 5.38% 5.35% 5.42% 5.10% 5.15% 5.12% 5.17%

15 5.25% 5.29% 5.36% 5.15% 5.13% 5.11%

20 5.31% 5.34% 5.07% 5.11%

25 5.30% 5.08%

F I GURE 8 Main modules (stages) of the finger vein system

TABLE 7 Finger vein recognition performance (EER in %) using and
not using (N ¼ 0 row) Score Ratio Basic Approach, with all of the system
tested: DCT‐based and binarisation‐based applying XOR and AND
operations. Columns and rows, as well as cell colour code, are the same as
in previous tables

DCT XOR And

N ChS‐36 ChS‐54 ChS‐36 ChS‐54 ChS‐36 ChS‐54

0 7.09% 7.09% 7.17% 7.17% 14.35% 14.35%

1 7.67% 7.30% 7.76% 7.79% 9.78% 8.96%

3 7.03% 6.73% 7.01% 7.00% 9.08% 8.49%

5 7.01% 6.73% 6.84% 6.79% 9.03% 8.42%

10 6.61% 6.51% 6.48% 6.46% 8.62% 8.28%

15 6.48% 6.25% 6.39% 6.31% 8.59% 8.11%

20 6.42% 6.21% 6.29% 6.28% 8.56% 8.12%

25 6.33% 6.17% 6.21% 6.24% 8.50% 8.16%
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are statistically significant, thus strengthening the confidence
in the results.

Following all of the above, it can be concluded that Score
Ratio is an interesting alternative to improve non‐probabilistic
biometric based‐systems, in the same way that the likelihood
ratio is for the probabilistic based ones.
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TABLE 8 Finger vein recognition
performance (EER in %) using and not using
(N ¼ 0 row) Score Ratio with a Priori Cohort
Selection, with all of the system tested. ChS‐54
is used to select the a priori M (M ¼ 5/10/15/
20/25) elements closest to the Claimant. If
N > M, then the denominator in the Score
Ratio equation (equation (10)) cannot be
calculated, so these rows are empty. The
remaining columns and rows, as well as cell
colour code, are the same as in previous tables

N DCT XOR AND

0 7.1% 7.2% 14.4%

1 8.3%/8.1%/7.9%/7.7%/7.7% 9.9%/9.1%/9.3%/8.8%/8.6% 9.5%/9.1%/9.1%/9.0%/9.1%

3 6.5%/6.8%/6.9%/6.8%/6.9% 7.6%/7.5%/7.4%/7.2%/7.0% 9.5%/8.8%/8.6%/8.6%/8.6%

5 5.8%/6.3%/6.5%/6.6%/6.6% 6.1%/6.7%/6.9%/6.8%/6.7% 10.1%/8.9%/8.7%/8.7%/8.6%

10 ‐/5.4%/5.8%/6.1%/6.1% ‐/5.9%/6.3%/6.3%/6.3% ‐/9.6%/8.9%/8.6%/8.5%

15 ‐/‐/5 .3%/5.8%/5.9% ‐/‐/5.9%/5.9%/6.0% ‐/‐/9.7%/9.0%/8.6%

20 ‐/‐/‐/5.6%/5.7% ‐/‐/‐/5.7%/5.8% ‐/‐/‐/9.5%/8.8%

25 ‐/‐/‐/‐/5.6% ‐/‐/‐/‐/5.7% ‐/‐/‐/‐/9.1%
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