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a b s t r a c t 

The binary classification problem where an input is classified as belonging or not to a certain class, the 

so-called Target Class (TC), is approached here. This problem can be stated as a basic hypothesis test: X is 

from the TC ( H 0 ) vs. X is not from the TC ( H 1 ), where X is the classifier input. When probabilistic models 

are used (e.g., Hidden Markov Models or Gaussian Mixture Models), the likelihood ratio, p ( X / H 0 )/ p ( X / H 1 ), 

is an alternative widely used to improve the classification. However, as far as we know, this ratio is not 

usually applied with distance-based classifiers (e.g., Dynamic Time Warping). Following that idea, here we 

propose making the decision based not only on the score (“score” being the classifier output) assuming 

X to be from the TC ( H 0 ), but also using the score assuming X is not from the TC ( H 1 ), by means of 

the ratio between both scores: the score ratio. The proposal is tested in biometric person authentication 

using manuscript signature, with three different state-of-the-art systems based on distance classifiers. 

Different alternatives for applying the proposal are shown in order to reduce the computer load, should 

it prove necessary. Using the score ratio has led to improvements in most of the tests performed. The 

best verification results were achieved using our proposal, with the best ones without the score ratio 

being improved by an average of 22%. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

This paper focuses on the use of our “score ratio” proposal in

inary classification problems where we have a Target Class, TC,

nd the goal is to classify an input sample as belonging or not to

his TC. One representative, and very important example of this bi-

ary classification problem from the research and practical stand-

oint, is biometric person verification, with the score ratio being

ested here in that field of work. Below, we single out our proposal

n the biometric verification problem. Generalization to other fields

s immediate. 

The goal in biometric person verification is to authenticate the

ser or client C (the Target Class, here) by means of unique human

haracteristics (biometrics, e.g., iris, fingerprint, etc.). Fig. 1 shows

he main modules (stages) in a biometric recognition system. In

his figure, the signature is used as biometry, since it is the one

pproached in this paper, although the modules are the same for

ny other biometry. This work is focused on the Match stage. We
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ave approached the Feature Extraction and Decision stages in pre-

ious works, [1] and [2] . 

Given a test sample (feature vector) X ( Fig. 1 ), the problem of

iometric verification can be stated as a basic hypothesis test be-

ween two hypotheses: 

 0 : X is f rom client C H 1 : X is not f rom client C 

The decision between the two hypotheses can be made as

hown in Eq. (1) , using client information only, or can be made by

eans of the likelihood ratio test given by Eq. (2) , also using im-

ostor (the Non TC, NTC) information. p ( X / H 0 ) and p ( X / H 1 ) are, re-

pectively, the probability density functions for hypotheses H 0 and

 1 evaluated for the observed biometric sample X , and θ is the

ecision threshold. 

p(X/H 0 ) 

{
≥ θ Accept H 0 

< θ Re ject H 0 
(1) 

p(X/H 0 ) 

p(X/H 1 ) 

{
≥ θ Accept H 0 

< θ Re ject H 0 
(2) 

Biometric verification in general, and signature verification in

articular, are pattern recognition problems, where each client C is

epresented by means of a model λ , e.g., Hidden Markov Model
C 
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Fig. 1. Main modules (stages) in a usual biometric recognition system. Decision is performed with s ( X / λC ), i.e., without score ratio. 

Fig. 2. Biometric recognition system with score ratio. 
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(HMM), Gaussian Mixture Model (GMM), Support Vector Machine,

etc. The probability p ( X / H 0 ), whose calculation is not a straight-

forward task, is then estimated (approximated) by means of the

classifier output (score) s ( X / λC ) ( Fig. 1 ). The likelihood denomina-

tor, p ( X / H 1 ), is estimated by means of the score s (X/λ
C 
) , where

λ
C 

is the impostor model ( Fig. 2 ), with the “impostor” being any-

body other than the client. Since an accurate representation of

the impostor class is impossible, different λ
C 

model estimation ap-

proaches can be found in the literature. Several of these will be

shown in Section 3 . 

Following this pattern recognition approximation, Eq. (1) be-

comes Eq. (3) , and Eq. (2) becomes the score ratio shown in Eq.

(4) . 

s (X/λC ) 

{
≥ θ Accept H 0 

< θ Re ject H 0 
(3)

s (X/λC ) 

s (X/λC ) 

{
≥ θ Accept H 0 

< θ Re ject H 0 
(4)

When probability-based classifiers (e.g., HMM or GMM) are

used, the classifier output can be interpreted as a probability,

p ( X / λC ), and the decision has typically been performed using the

likelihood ratio 
p(X/λC ) 
p(X/λ

C 
) 

test [3–5] , since better performance is

achieved. However, when distance-based classifiers are used, as far

as we know, this score ratio ( Eq. (4) ) is not usually applied. Our

proposal of score ratio is shown graphically in Fig. 2 in compari-

son with a usual biometric system where the final decision is only

based on s ( X / λC ) ( Fig. 1 ). 

In [6] , an initial approach to this proposal was successfully

made, showing that use of the score ratio in biometric systems

based on distance classifiers can improve the system. In other

words, it can be an interesting alternative. Here, a more in-deep

twofold study is provided, that is: 

1. Firstly, the same score ratio “basic approach” as in [6] is tested,

but following a more realistic ( Section 6.3 ) experimental setup. 

2. Secondly, a practical study about the extra computing load in-

troduced by the s (X/λ
C 
) calculation is also undertaken. In ad-
dition to this analysis, different alternatives aimed at reducing

the extra calculations are proposed and tested. 

The study has been performed in biometric signature recogni-

ion. Of the several biometrics, signature is the second most im-

ortant in behavioral biometrics. Here, on-line signature (the sig-

ature is written in a digitizing device) is used. Depending on the

est conditions, two types of forgeries can be established: 

• Skilled forgery , where the impostor imitates the client signature.

• Random forgery , where the impostor uses his/her own signature

as a forgery. 

Three different state-of-the-art signature recognition systems

ased on distance classifiers [7–9] have been tested. 

The rest of the paper is organized as follows. In Section 2 , a no-

ation section is provided so as to make the paper easier to read. A

rief theoretical background of the score ratio problem is shown in

ection 3 , then followed by our score ratio proposal ( Section 4 ) to-

ether with proposals for reducing the computing load ( Section 5 ).

fter describing the experimental setup in Section 6 , the results

chieved both with and without score ratio in all of the tested

cenarios can be seen in Section 7 . The score ratio computing

oad analysis and the performance of the proposal to reduce it are

hown in Section 8 . Conclusions and future lines of research are

hown in Section 9 . 

. Notation 

For a better understanding of the proposal and of the various

ays the score ratio may be implemented, it is important to es-

ablish the notation and terminology used. The aim of this section

s to avoid becoming “lost in notation”. 

• C is used to refer to the user or client (Target Class) in general.

• C i is a specific client (specific TC). 

• Cohort S et, ChS . Set of representatives of the impostor class (Non

TC), i.e., it is a set of signatories different from the client used

to obtain s (X/λ
C 
) . 
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• Ch i . Each of the components of the cohort set: ChS =
{ C h 1 , C h 2 , . . . , C h H } , H being the size of this set. 

• N : number of elements from the ChS ( N ≤ H ) used to estimate

s (X/λ
C 
) . 

• M : number of elements ( M < < H ) a priori selected from the co-

hort set to estimate s (X/λ
C 
) in order to decrease the computing

load of the score ratio application. 

• Normalization S et , NoS . Set of signatories used to normalize the

score (see Section 6.1 ). 

• Cn i . Each of the components of the normalization set: NoS =
{ C n 1 , C n 2 , . . . , C h R } , R being the size of this set. 

• S . The client, the cohort set elements and the normalization set

elements are all of the same type, signatories in our case. All

are extracted from the same corpus, and the difference is the

role or task to be used. We then need a general identifier: S

(signatory). 

• λS is the S model, i.e., the model used to represent a signa-

tory in general. λC , λC i 
, λCh i 

and λCn i 
will be the client model

in general, an i client specific model, an i cohort set compo-

nent model and an i normalization set component model, re-

spectively. 

• X is used to refer to the generic input sample. This input sam-

ple is, in our case, the representation of a signature, i.e., the

feature vector, X = { x 1 , x 2 , . . . , x Q } , extracted from the signature

( Fig. 1 ), where, x k is the k component of the feature vector

(which will be a vector at the same time) and Q the number of

them. X 

j 
C 

will be used to identify the j sample (signature fea-

ture vector) of the client. In the same way, X 

j 
Ch i 

and X 

j 
Cn i 

are

the j samples of the cohort set and normalization set i element,

respectively. 

• Xa, Ya, Pr, Az and Al. A Wacom tablet is used to digitize the sig-

nature, obtained from each sampling instant (signature point):

position in X -axis (Xa), position in Y -axis (Ya), pressure (Pr), az-

imuth (Az) angle and altitude (Al) angle. 

• d ( A, B ) . It is the distance between A and B . 

. Theoretical background 

The concept of likelihood rate is strongly related with the statis-

ic test. The problem to resolve could be defined as follows. Sup-

ose that X can have one of two possible distributions ( p ( X / H 0 ) and

 ( X / H 1 )), that define two Hypotheses: 

H 0 : X has probability density function p ( X / H 0 ) 

H 1 : X has probability density function p ( X / H 1 ) 

From a statistical point of view, the test can be constructed

ased on a simple idea: if we observe X = X obs , with X obs being

n observation of X, p ( X obs / H 1 ) > p ( X obs / H 0 ) is evidence in favor

f alternative H 1 . Otherwise, the evidence supports the alternative,

 0 . 

From the previous distributions, the likelihood ratio function

 ( X ) is defined as shown in Eq. (5) , the statistical test now be-

ng constructed as: small values of L ( X obs ) are evidence in favor

f H 1 and, conversely, high values of L ( X obs ) are evidence in favor

f H 0 . Thus, it seems reasonable to use L ( X ), in short L , to decide

hich Hypothesis will be selected, determining a threshold value

, such that H 0 is rejected if and only if L < θ . The value θ is cal-

ulated with the significance level α = p(L < θ/H 0 ) , that is, setting

he false negatives probability value. 

 (X ) = 

p(X/H 0 ) 

p(X/H 1 ) 
(5) 

With the θ value determined, p ( L > θ / H 1 ) can be calculated,

hat is the probability that H 0 will not be rejected if it is false,

r the false positives probability. Neyman–Pearson [10,11] showed
hat, using the likelihood ratio, the above test is more powerful,

eaning that it minimizes the probability of false positives. 

On numerous occasions, we can have a set of distributions,

 p k ( X / H 0 )} and { p i ( X / H 1 )}, for Hypotheses H 0 and/or H 1 , instead of

 single one as until now. As will shortly be shown, this occurs

n our problem. Neyman–Pearson generalized the likelihood ratio

unction as shown in Eq. (6) . 

 (X ) = 

max k (p k (X/H 0 )) 

max i (p i (X/H 1 )) 
(6) 

When the goal is to classify an input sample X as belonging or

ot to the Target Class or client C , relating specifically to biometry,

he previous Hypotheses become the following: 

H 0 : X is from client C H 1 : X is not from client C 

In real systems, p ( X / H 0 ) is achieved by means of a statistical

odel, λC , (e.g., HMM or GMM) of the client, p ( X / λC ), and p ( X / H 1 )

s obtained by modeling the impostor (Non Target) class, p(X/λ
C 
) .

he problem is the calculation or estimation of this latter proba-

ility function. 

The literature offers two ways of obtaining this likelihood: us-

ng a cohort set (representative set) of the NTC [3,5,12] , or using a

ingle model to explain NTC behavior [4,12] . 

When a single model is used to estimate p(X/λ
C 
) , the model

s trained using samples provided by many users other than the

lient. An example can be found in [4] applied to biometric sig-

ature recognition. A User Adapted Universal Background Model

UA-UBM) based on a discrete HMM is proposed. First, a UBM

rained using signatures from many signatories is obtained. The

lient model is then achieved by adapting the UBM with enroll-

ent (training) client signatures. The score ratio is performed by

eans of the log likelihood: log 
p(X/λC ) 

p(X/UBM) 
. 

When the cohort set alternative is used, p(X/λ
C 
) is modeled

y means of a composite hypothesis, that is, a set of probability

unctions { p(X/λCh i 
) } . Neyman–Pearson approach ( Eq. (6) ) shows

he solution in this case, although, in practice, the N maximum

robabilities are generally used [3,5,12] , instead of the maximum

ne only, since better performance is achieved. This is because

 p(X/λCh i 
) } is an estimation or approximation of { p i ( X / H 1 )}. Using

he N > 1 cohort set elements closest to the client can thus gener-

lly estimate λc , better than by using only the closest one, N = 1 .

he likelihood ratio function is then as shown in Eq. (7) [5,13] ,

ith 1 ≤ N < H and { p(X/λCh k 
) } = N max i (p(X/λCh i 

)) 1 ≤ i ≤ H. 

 (X ) = 

p(X/λC ) 

p(X/λC ) 
= 

p(X/λC ) ∑ N 
k =1 p(X/λCh k 

) 

N 

(7) 

. Score ratio proposal: basic approach 

With a distance based system, the problem when applying the

core ratio ( Fig. 3 ) is to estimate s (X/λ
C 
) in Eq. (4) . Based on the

roposals for estimating p(X/λ
C 
) seen in the previous section, with

istance-based classifiers, it is not always possible to obtain a sin-

le impostor model, such that, the most general cohort set approx-

mation is adopted here. 

Thus, following Eq. (7) , our proposal for score ratio is shown

n Eq. (8) . The same approach of using the N cohort set elements

losest to the client is followed here, but, with distances, given an

nput sample X , the closest cohort set signatories to C will be those

ith the minimal scores ( { s (X/λCh k 
) } = N min i (s (X/λCh i 

)) 1 ≤ i ≤
), since low scores imply high similarity. These are selected to

erform the score ratio ( Eq. (8) ). 
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Fig. 3. Biometric system decision stage with score ratio. 
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This solution will be called Score Ratio Basic Approach, SRBA . 

SRBA (X ) = 

s (X/λC ) 

s (X/λC ) 
= 

s (X/λC ) ∑ N 
k =1 s (X/λCh k 

) 

N 

(8)

We performed the score ratio test by crossing two parameters:

the cohort set size H (50 and 100) and different values of N (1, 3, 5

and 10). These values were the same as used to test the proposals

in the following section. 

5. Score ratio proposal: reduced calculations 

Applying the score ratio seen in the previous section implies

an increase in H (the size of the ChS) in the number of score cal-

culations compared to using only s ( X / λC ) to classify X . Moreover,

ordering these scores to select the N lowest ones must be consid-

ered, although, the computing load of this latter operation is actu-

ally negligible due to the size of the ChS. 

A study of the time cost of the extra calculations involved was

performed (see Section 8.1 ) to determine whether this prevents

real time system response. This is system dependent, although

speeding up the system response is an interesting question in all

cases. As a result, three proposals to reduce the computing load of

s (X/λ
C 
) estimation are put forward: RSR1, RSR2 and RSR3. 

5.1. Basic approach modification (RSR1) 

The first proposal involves replacing the model, λCh i 
, with a sin-

gle sample (signature), X b 
Ch i 

, in the s (X/λ
C 
) estimation. Signature

X b 
Ch i 

is randomly chosen from those used to build the model. Un-

der this approach, Eq. (8) becomes Eq. (9) . 

RSR 1(X ) = 

s (X/λC ) 

s (X/λC ) 
= 

s (X/λC ) ∑ N 
k =1 s (X/X b 

Ch k 
) 

N 

(9)

As in SRBA, given an X sample, the N lowest scores

from { s (X/X b 
Ch i 

) } 1 ≤ i ≤ H are selected to estimate s (X/λ
C 
) , i.e.,

{ s (X/X Ch k 
) } = N min i (s (X/X b 

Ch i 
)) 1 ≤ i ≤ H. 

This approach will be called Reduced Score Ratio 1, RSR1 . 

5.2. A priori cohort selection (RSR2 and RSR3) 

In the previous score ratio approaches, given a test sample X ,

all of the scores for each cohort set element must be calculated,

using either model ( s (X/λCh ) 1 ≤ i ≤ H) for SRBA or using a single

i 
ample ( s (X/X b 
Ch i 

) 1 ≤ i ≤ H) for RSR1. Once these scores have been

alculated, the N lower ones are selected to estimate s (X/λ
C 
) . 

Here, a different approach is proposed by means of a priori co-

ort set elements subset selection. The idea is to select a priori

he M � H cohort set elements closest to the client, and then, to

erform the score ratio with this subset. 

From an S element, its first five signatures (samples) in the cor-

us { X 1 
S 
, X 2 

S 
, . . . , X 5 

S 
} are used to build the signatory model λS . If

he cohort set element model is used to perform the score ratio

as in SRBA), then the distance between client C and the cohort

et element Ch i is defined as shown in Eq. (10) . Using that dis-

ance, a subset of M ChS elements closest to the client is selected

 { Ch v } = M min i (d(Ch i , C)) 1 ≤ i ≤ H). Score ratio is then performed

y means of Eq. (8) , but, now, using only the preselected cohort set

lements subset { Ch v } 1 ≤ v ≤ M . If M = N, it is not necessary to

ort the { s (X/λCh v ) } 1 ≤ v ≤ M scores in order to select the N low-

st ones for each X . This proposal will be called Reduced Score Ratio

, RSR2 . 

(C h i , C ) = min 

j 
(s (X 

j 

Ch i 
/λC )) with j = 1 , . . . , 5 (10)

If a single signature X b 
Ch i 

from each element of the cohort set is

sed to perform the score ratio (as in RSR1), the distance between

lient C and each cohort set element Ch i is defined as shown in Eq.

11) . Score ratio is performed as shown in Eq. (9) , but, as in the

revious approach, using only the preselected cohort set elements

ubset ({ Ch v } 1 ≤ v ≤ M ), i.e., those cohort set elements closest to

he client, now using, the distance in Eq. (11) . Likewise, if M = N, it

s not necessary to sort the { s (X/X b 
Ch v 

) } 1 ≤ v ≤ M scores in order

o select the N lowest ones. This proposal will be called Reduced

core Ratio 3, RSR3 . 

(C h i , C ) = s (X 

b 
Ch i 

/λC ) (11)

. Experimental setup 

.1. Score normalization 

Given a learning paradigm, its Match (client scores) and Non-

atch (impostor scores) distributions vary from the classifier

rained to distinguish one user from another (see Fig. 4 a). For this

eason, score normalization is essential to transform the scores of

he client matchers into a common domain ( Fig. 4 b). 

The main score normalization techniques for signature recogni-

ion [14] have been tested here: 

Impostor-centric techniques: 

IC1: s norm 

= s − ˆ μN 
C 

IC2: s norm 

= s − ( ̂  μN 
C 

+ ˆ σ N 
C 

) 

IC3: s norm 

= (s − ˆ μN 
C ) / ̂  σ

N 
C 

here ˆ μN 
C 

and ˆ σ N 
C 

are the mean and the standard deviation of

he Non-Match distribution for the client C classifier, estimated

y means of the Normalization Set , { Cn i } ( Section 6.3 ), as will be

hown in Sections 6.1.1 and 6.1.2 . 

Target-centric techniques: 

TC1: s norm 

= s − ˆ μM 

C 
TC2: s norm 

= s − ( ̂  μM 

C 
+ ˆ σ M 

C 
) 

TC3: s norm 

= (s − ˆ μM 

C ) / ̂  σ
M 

C 

here ˆ μM 

C 
and ˆ σ M 

C 
are the mean and the standard deviation of the

atch distribution for the client C classifier, estimated by means of

he signatures used to build λC using the leave-one-out technique,

s will be shown in Sections 6.1.1 and 6.1.2 . 

Target-impostor technique: 

TI1: s norm 

= s − s E E R C 
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a b

Fig. 4. Example of Match and Non-Match distributions of two users, (a) without score normalization and (b) with score normalization. 
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total. 
here s E E R C is the a priori decision threshold of client C at the

qual Error Rate point (see Section 6.5 ), obtained from the Non-

atch and Match distributions estimation. 

.1.1. Statistics estimation without score ratio 

When score ratio is not used, s = s (X/λC ) in the previous equa-

ions. 

As pointed out, the first five signatures of the signatory in

he corpus ( Section 6.2 ), { X 1 C , X 
2 
C , . . . , X 

5 
C 
} , are used to build the

lient model, λC . As posited, Match distribution estimation is per-

ormed by means of this set. Using the leave-one-out technique,

he following Match (client) Scores Set, MSS, is estimated: MSS =
 s (X 

g 
C 
/λg 

C 
) } , with g = 1 , . . . , 5 and the λg 

C 
model built using the sub-

et { X j 
C 
} 1 ≤ j ≤ 5 and j � = g. Then, ˆ μM 

C 
and ˆ σ M 

C 
are the mean and

tandard deviation of the MSS. 

To estimate the Non-Match distribution, a specific set of signa-

ories called the Normalization Set is used. From each element Cn i 
f this set, a sample e is randomly selected, forming the so-called

ormalization Gallery , NoG = { X e 
Cn i 

} 1 ≤ i ≤ R, with R being the size

f the Normalization Set . Given a client C , the scores for each ele-

ent in the NoG set are calculated, obtaining the Non-Match (im-

ostor) Score Set, NMSS = { s (X e 
Cn i 

/λC ) } 1 ≤ i ≤ R . This set is an a

riori impostor score distribution estimation for client C . It is then

sed to estimate ˆ μN 
C 

and ˆ σ N 
C 

, these being the mean and standard

eviation of NMSS. 

.1.2. Statistics estimation with score ratio 

Using the score ratio, s = 

s (X/λC ) 
s (X/λ

C 
) 

in the score normalization

quations of Section 6.1 . The score ratio must then also be applied

o the sets used to estimate the corresponding means and standard

eviations. 

More specifically, MSS here becomes the MSS_Score Ratio,

SS _ SR = { s (X 
g 
C 
/λg 

C 
) 

s (X 
g 
C 
/λ

C 
) 
} 1 ≤ g ≤ 5 , with g and λg 

C 
defined as in the

revious section, and NMSS becomes the NMSS_Score Ratio,

MSS _ SR = { s (X e 
Cn i 

/λC ) 

s (X e 
Cn i 

/λ
C 
) 
} 1 ≤ i ≤ R . From MSS_SR, ˆ μM 

C and ˆ σ M 

C are es-

imated, while ˆ μN 
C and ˆ σ N 

C are estimated by means of NMSS_SR. 

.2. Corpus 

The MCYT database [15] has been used. This database is one of

he most popular and largest in signature verification, and can be

onsidered a benchmark. Signatures were acquired with a WACOM

raphic tablet. The sampling frequency of the acquired signals was

et to 100 Hz, obtaining from each sampling instant: position in x -

xis (Xa) and y -axis (Ya), pressure (Pr), azimuth (Az) and altitude

Al) angles. Samples from 333 different people were acquired. Each
ser produced 25 genuine signatures, and 25 skilled forgeries were

lso captured for each user. These skilled forgeries were produced

y the five subsequent users by observing the static images of the

ignature to imitate, attempting to copy them (at least 10 times),

nd then producing the valid acquired forgeries fluidly (i.e., each

ndividual acting as a forger is requested to sign naturally, with-

ut artifacts, such as breaks or slowdowns). In this way, shape-

ased natural dynamics of highly skilled forgeries are obtained. A

tudy of the statistical significance of the results achieved with this

atabase can be found in [16] . 

.3. Experimental sets 

The corpus was split into three different subsets, as in [6] , but

n a different and more realistic way, since the three subsets are

ompletely independent here. In [6] , the elements from the cohort

et not selected to perform the score ratio (i.e., those different from

he N with the lower scores) were used for score normalization.

his was done so as to obtain a large and significant test set (183

lements) and a large ( H = 150 elements) cohort set. From the re-

ults in [6] , testing a cohort set size of 150 elements is not neces-

ary, since the results do not improve those achieved with H = 50

nd H = 100 . As a result, this size is not tested here. Consequently,

he corpus was split into: 

• Normalization S et, NoS. 50 signatories were randomly selected

from the corpus to create this set. 

• Cohort S et, ChS. From the signatories in the corpus not used

for the NoS, 100 were randomly selected to create this set. Two

different sizes were tested in order to gauge how this parame-

ter impacted on score ratio performance: (i) H = 50 signatories

(ChS-50), (ii) H = 100 signatories (ChS-100). 

• Test set (TS). This was used to test and consists of 183 signato-

ries not used in the previous sets. The same TS was used in all

of the tests performed for objective comparison purposes. 

The following tests were performed for each user of this set: 

– Genuine test. While the first five signatures were used to

build the signatory (client C ) model, the twenty remaining

ones were used for genuine tests. That is, 3660 (20x183)

genuine tests. 

– Skilled forgery tests. The 25 skilled forgeries captured for

each user were used. That is, 4575 (25x183) skilled forgery

tests. 

– Random forgery tests. One signature out of 100 randomly

selected users in the TS (different from the client) were used

for random forgery tests, that is, 18,30 0 (10 0x183) tests in
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Table 1 

Choosing the best score normalization technique for VQSys. 

Best results are bold face emphasized. System error is mea- 

sured by means of the EER (%). 

No score ratio Score ratio 

ChS-100 ChS-100, N = 5 

Technique Random Skilled Random Skilled 

No norm. 1.15 6.56 0.71 4.56 

IC1 0.87 9.81 0.85 10.90 

IC2 0.96 11.77 1.28 12.62 

IC3 1.03 15.60 0.64 8.70 

TC1 3.37 12.16 2.27 9.26 

TC2 3.36 12.24 2.43 9.68 

TC3 18.36 26.56 19.86 26.60 

TI1 1.04 7.08 0.82 5.60 
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6.4. Signature verification systems 

Before describing the systems tested, we define the � oper-

ator, since it is used in the feature extraction stage of two sys-

tems. Given a sequence Z = { z 1 , z 2 , . . . , z n } , �z k is defined as �z k =
z k +1 − z k . In our case, z k will be a feature extracted from a signa-

ture point. The signature is a time series, and, in this kind of sig-

nals, dynamic information at time k can be extracted by means of

the derivative at this point: 
z k +1 −z k 

t k 
, with t k being the time interval

between z k +1 and z k . Here, t k is fixed for all of the points (10 ms.)

and can be eliminated, converting the derivative into the �. Then,

� is used to introduce dynamic information into the feature vec-

tor. 

The following three state-of-the-art systems based on distances

were tested: 

Vector Q uantization-based system (VQSys) . The system shown in

[8] is used. This system achieves very good performance with a

reduced computational requirement, which is lower than DTW.

In addition, the system improves database storage requirements

due to vector compression. The feature vector X = { x 1 , x 2 , . . . , x Q }
( Section 2 ) comprises the sequence of features extracted from each

signature point: x k = { Xa k , Ya k , �Xa k , �Ya k , �P r k , T k } with 1 ≤ k ≤
Q, where T k is the point timestamp. From each of the model sig-

natures, { X j 
S 
} 1 ≤ j ≤ 5 , and using the Linde–Buzo–Gray (LBG) algo-

rithm, 256 centroids (a codebook size of 256) are extracted. Thus,

λ j 
S 

= { 256 codebook } ∀ j and λS = { λ j 
S 
} 1 ≤ j ≤ 5 . Then, s (X/λS ) =

d(X, { λ1 
S , λ

2 
S , λ

3 
S 
, λ4 

S , λ
5 
S 
} ) . The Euclidean distance is used to calcu-

late the nearest centroid of λS to each x i component of X and to

calculate the distortion (distance) between this component and the

corresponding nearest centroid. 

Dynamic T ime W arping-based system (DTWSys) . Our state-of-

the-art system based on DTW is used here [9] . This was among

the best in the latest signature recognition evaluation performed

(ESRA’2011). It is an evolution of the system used to partici-

pate in the BSEC’2009 signature recognition evaluation, where

it was the second best system [1] . Simple but highly effective

feature extraction is accomplished, extracting from each signa-

ture point the following two deltas: x k = { �Xa k , �Ya k } , then X =
{{ �Xa 1 , �Ya 1 } , { �Xa 2 , �Ya 2 } , . . . , { �Xa Q−1 , �Ya Q−1 }} . In this sys-

tem, the feature vector of each of the five signatures used to build

the model is directly the S signatory model: λS = { X 1 
S 
, X 2 

S 
, . . . , X 5 

S 
} .

In order to obtain s ( X / λS ), the distances, using DTW between X and

each of the model signatures is calculated, the minimum one being

the final score: s (X/λS ) = min i (d(X, X i 
S 
)) 1 ≤ i ≤ 5 . 

Fractional distances-based system (FraDisSys) . Our low-cost pro-

posal shown in [7] is used. This system has fewer computational

and storage requirements than the previous ones. The signature

points number is normalized to a fixed value (15 points here).

Signatures can thus be matched by means of a simple distance cal-

culation. Due to their better performance, fractional distances are

used ( Eq. (12) ). Compared to that used in [7] , improved feature ex-

traction was achieved here, since new features have been added. In

the original proposal, from each point in the normalized signature

the following features were used: x k = { Xa k , Ya k , P r k , Az k , Al k } . The

new added ones for each point are: point number (Pn), signature

section length in the x coordinate (SlXa) and in the y coordinate

(SlYa), as well as direction changes per section in both coordinates

(DcXa and DcYa). The signature duration (Sd) global feature is also

used. The 151-dimensional feature vector with this system is thus:

X = { Xa 1 , Ya 1 , P r 1 , Az 1 , Al 1 , P n 1 , SlXa 1 , SlYa 1 , DcXa 1 , DcYa 1 , . . . , Xa 15 , 

Ya 15 , Pr 15 , Az 15 , Al 15 , Pn 15 , SlXa 15 , SlYa 15 , DcXa 15 , DcYa 15 , Sd }. The

S signatory model is: λS = { X 1 S , X 
2 
S , . . . , X 

5 
S 
} . The distance between

two signatures can be seen in Eq. (12) , with p = 0.2. To calculate

the final score, the minimum function is used, as with DTW:

 

a  
 (X/λS ) = min i (d(X, X i 
S 
)) 1 ≤ i ≤ 5 . 

ist(Y, Z) = 

( 

151 ∑ 

i =1 

| Y i − Z i | p 
) 

1 
p 

(12)

.5. Performance measure 

Verification systems can be evaluated using the False Match

ate (FMR, situations where an impostor is accepted) and the False

on-Match Rate (FNMR, situations where a user is incorrectly re-

ected), also known in detection theory as False Alarm and Miss,

espectively. A trade-off between both errors usually has to be es-

ablished by adjusting a decision threshold. The performance can

e plotted on an ROC (Receiver Operator Characteristic) or on a

ET (Detection error trade-off) plot [17] . 

However, if the number of comparisons is high, using a sin-

le number measure is more useful and easier to understand. The

ost widely used one in the literature is The Equal Error Rate

EER), that is the error of the system when the decision threshold

s such that the FMR, P fa , equals the FNMR, P miss (in the DET curve,

he point where the diagonal cuts the curve). This is the measure

sed here. 

. Results: S core R atio B asic A pproach 

Here, the results with SRBA ( Section 4 ) are shown. Score nor-

alization performance is system dependent. So, firstly, we choose

he best score normalization technique with and without the score

atio for each system. A cohort set size of 100 users was chosen for

hese tests, using N = 5 for the score ratio. A criterion based on the

owest average between random forgery EER and skilled forgery

ER is used to choose the best score normalization technique in

ach case. 

.1. Vector Q uantization-based system (VQSys) 

When VQSys is used, the best system configuration is, excep-

ionally, without using score normalization for both with and with-

ut score ratio ( Table 1 ). Once the best score normalization tech-

ique is fixed (here, none), the comparative study for this system

ith and without the score ratio can be seen in Table 2 . The small-

st error is achieved using the score ratio for both random and

killed forgeries, with a cohort set of 100 signatories and N = 3 ,

nd a cohort set of 50 signatories and N = 10 , respectively. 

.2. Dynamic T ime W arping-based system (DTWSys) 

When DTWSys is used, the best score normalization techniques

re TI1 without the score ratio and TC1 when the score ratio is
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Table 2 

With and without ( N = 0 row) score ratio performance 

comparison for VQSys. The results for all of the cohort 

set sizes and N values are shown. System error is mea- 

sured by means of the EER (%). Best results are bold 

face emphasized. 

ChS-50 ChS-100 

N Random Skilled Random Skilled 

0 1.19 6.55 1.15 6.56 

1 0.66 5.03 0.63 4.72 

3 0.63 4.51 0.57 4.50 

5 0.63 4.67 0.71 4.56 

10 0.69 4.45 0.71 4.48 

Table 3 

Choosing the best score normalization technique for DTWSys. 

Best results are bold face emphasized. System error is mea- 

sured by means of the EER (%). 

No score ratio Score ratio 

ChS-100 ChS-100, N = 5 

Technique Random Skilled Random Skilled 

No norm. 14.45 20.55 0.79 9.01 

IC1 1.75 7.65 21.83 39.74 

IC2 2.49 9.66 33.00 44.23 

IC3 2.34 10.18 1.09 20.54 

TC1 2.54 5.87 0.77 6.28 

TC2 2.67 6.04 1.48 8.26 

TC3 7.65 9.70 8.52 15.54 

TI1 1.68 4.66 1.26 10.73 

Table 4 

With and without ( N = 0 row) score ratio performance 

comparison for DTWSys. The results for all of the co- 

hort set sizes and N values are shown. System error is 

measured by means of the EER (%). Best results are bold 

face emphasized. 

ChS-50 ChS-100 

N Random Skilled Random Skilled 

0 1.85 4.64 1.68 4.66 

1 1.23 7.62 1.12 7.34 

3 0.77 6.82 0.82 6.62 

5 0.71 6.66 0.77 6.28 

10 0.66 6.44 0.68 6.34 
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Table 5 

Choosing the best score normalization technique for FraDisSys. 

Best results are bold face emphasized. System error is mea- 

sured by means of the EER (%). 

No score ratio Score ratio 

ChS-100 ChS-100, N = 5 

Technique Random Skilled Random Skilled 

No norm. 2.73 8.63 1.39 6.83 

IC1 2.56 9.80 6.20 20.73 

IC2 3.50 12.00 10.73 26.58 

IC3 2.38 9.79 2.62 13.79 

TC1 2.00 6.08 1.33 6.33 

TC2 2.68 7.34 2.18 7.67 

TC3 10.19 14.29 9.04 14.69 

TI1 2.19 6.88 2.23 8.61 

Table 6 

With and without ( N = 0 row) score ratio performance 

comparison for FraDisSys. The results for all of the co- 

hort set sizes and N values are shown. System error is 

measured by means of the EER (%). Best results are bold 

face emphasized. 

ChS-50 ChS-100 

N Random Skilled Random Skilled 

0 1.99 6.08 2.00 6.08 

1 1.85 7.21 1.72 7.24 

3 1.47 6.33 1.40 6.49 

5 1.40 6.12 1.33 6.33 

10 1.34 5.90 1.31 6.03 
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2 The percentages have been calculated as follow: ( E E R 1 −E E R 2 
E E R 1 

) · 100 with E E R 1 > 

E E R 2 . Here, E E R 1 = best E E R without SR and E E R 2 = best E E R with SR . The same 

equation is used in the rest of the paper with the corresponding errors. 
pplied ( Table 3 ). Once the best score normalization technique is

xed, the comparative study for this system with and without the

core ratio is shown in Table 4 . The smallest error for random

orgery is achieved using the score ratio with a cohort set of 50

ignatories and N = 10 . However, for skilled forgery, the best error

alue has been achieved without the score ratio and with a cohort

et of 50 signatories. 

.3. Fractional distance-based system (FraDisSys) 

When FraDisSys is used, the best score normalization technique

s TC1 for both with and without score ratio ( Table 5 ). Once the

est score normalization technique is fixed, the comparative study

or this system with and without the score ratio can be seen in

able 6 . The smallest error is achieved using the score ratio for

oth random and skilled forgeries, with a cohort set of 100 signa-

ories and N = 10 and a cohort set of 50 signatories and N = 10 ,

espectively. 

.4. Results analysis 

From the previous results, the first important consideration is

hat the use of the score ratio has improved all of the cases stud-
ed except one, skilled forgeries with DTW. For random forgeries,

reat improvements have been achieved with all of the classifiers: 2 

0% for VQSys (ChS-100, N = 3 ), 61% for DTWSys (ChS-50, N = 10 )

nd 34% for FraDisSys (ChS-100, N = 10 ), compared to the best re-

ults without the score ratio, respectively. For skilled forgeries, the

ollowing improvements have been achieved: 32% for VQSys (ChS-

0, N = 10 ) and 3% for FraDisSys (ChS-50, N = 10 ) compared to the

est results without the score ratio, respectively. It is interesting to

ote that the skilled forgery tests are used only in signature recog-

ition, while, for the rest of biometrics, impostor tests are per-

ormed by means of random samples (i.e., samples of other users),

hich is where the biggest improvements have been achieved with

he use of the score ratio. 

From the systems without score ratio, the one based on DTW

chieved the best results for skilled forgeries, 4.64% (this can also

e seen in international competitions), while for random ones, the

est results are achieved with VQ, 1.15%. This is typical in signature

ecognition: improvements in one forgery type usually worsen the

ther. However, here, the use of the score ratio has allowed a sys-

em to be achieved with the best results for both forgeries on aver-

ge: 0.57% in random forgery and 4.5% in skilled forgery for VQSys,

ith ChS-100 and N = 3 . 

The size of the cohort set does not seem to have any great in-

uence on the results with score ratio. In general, the influence

f H is classifier and task (random-skilled forgery) dependent and

ifferences in results are very small. With regard to the N value,

he worst results were achieved, in general, with 1, although for

he rest of the values tested, differences in results are also very

mall. These results show that the score ratio proposal can be ap-

lied with small cohort sets and with small N values, which is very

mportant for real applications. 
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Table 7 

System response (in seconds) to perform feature 

extraction and matching operations with SRBA for 

VQSys, DTWSys and FraDisSys. 

VQSys DTWSys FraDisSys 

Score ratio 0.989 2.91 0.322 
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8. Results: reduced calculations 

A new element in the study has been indirectly introduced at

the end of the previous section: the computing load of the score

ratio proposal. As posited, this is important for real systems, and

thus merits analysis. A study of this question is shown in the

following section, before showing the results with the proposals

which aim to reduce the calculation number in the s (X/λ
C 
) esti-

mation ( Section 5 ). 

From the results analysis in the previous section, it can be con-

cluded that cohort set size H does not have a significant impact

on system performance. As a result, all the tests in this section

were only performed with the smallest cohort set, i.e., ChS-50. All

the results contained in this section are thus understood to be ob-

tained from using said set, such that, for the purpose of clarity,

they are not mentioned henceforth. 

8.1. SRBA computing load analysis 

From a practical point of view, the time response of the system

is an important question, and more specifically, whether the sys-

tem response is real time or not. In Table 7 , the time required to

perform a verification operation (to obtain the score s ) using SRBA

is shown from a technological point of view. This means that tests

focus on the classification algorithm, i.e., these times include fea-

ture extraction and matching operations, not taking into account

biometric sample acquisition and communication (for remote ac-

cess) times. 

Another important question with regard to the results in

Table 7 is that the software used (developed with Java) is op-

timized to perform experiments. In other words, it is developed

so as to easily make changes in the experimental setup and not

for quick execution of authentication operations. The times in

Table 7 are thus easy to improve in a real system. 

As can be seen in Table 7 , using the score ratio does not pre-

vent the response from being considered real time for VQSys and

FraDisSys, since the times in the table are, as posited, a pessimistic

estimation. However, with the DTW based system, which has the

largest computing load, the time response is not good enough for

real systems and must be improved. 

Having seen the system response with SRBA, the results of the

proposals to reduce computing load are now addressed. Here, the

goal is to reduce the times in Table 7 , while seeking to maintain

score ratio performance. 

8.2. Results 

For a better comparison, the results with all of the proposals for

reducing computing load are shown in the same table ( Table 8 ),

together with the results with the basic proposal (SRBA). The re-

sults are achieved with the same score normalization techniques

as the corresponding ones using SRBA. For greater clarity, results

with N = 1 , are not shown, since these are the worst. 

Three different values of M (number of a priori selected el-

ements from the Chs) have been tested: 5, 10 and 15, for the

RSR2 and RSR3 approaches. It should be remembered that (see

Section 5.2 ) if M = N it is not necessary to sort the cohort set

scores to estimate s (X/λ
C 
) . 
In order to compare the computing load, the number of opera-

ions to obtain s (X/λ
C 
) is added in each case ( N Ops column), with

operation” being a distance computation. For example, for SRBA

 Eq. (8) ), estimating s (X/λ
C 
) involves calculating 50 times the score

 (X/λCh i 
) , the size of ChS-50. Although the N lowest ones are those

sed to estimate s (X/λ
C 
) , all of the scores from the ChS must be

alculated before performing said selection. Since s ( X / λS ), gener-

lly, implies five distance calculations for all the systems: 

• For VQSys: s (X/λS ) = d(X, { λi 
S 
} ) 1 ≤ i ≤ 5 . 

• For DTWSys: s (X/λS ) = min i (d(X, X i 
S 
)) 1 ≤ i ≤ 5 . 

• For FraDisSys: s (X/λS ) = min i (d(X, X i 
S 
)) 1 ≤ i ≤ 5 . 

The final number of operations required to obtain s (X/λ
C 
) for

RBA will thus be 250 (50x5) for all of the systems. 

What differs is the time needed to compute the distance in

ach case. As a result, a time response estimation, following the

ame assumptions as those in Section 8.1 , is shown ( T column). 

From the results in Table 8 , it can be said that the aim of de-

reasing the score ratio computing load has been achieved. In all

ases, the number of operations required to obtain s (X/λ
C 
) has

een reduced without any loss in system performance. Real time

esponse has been achieved in all cases. What does prove system

ependent is the performance of RSR1, RSR2 and RSR3. We now

rovide a more detailed analysis. 

RSR1 worked very well in all cases. The computing load has

een reduced by a factor of approximately five, while the sys-

em EER has been maintained. In the worst case (VQSys, random

orgery), system performance fell by only 8% (from 0.63% with

RBA to 0.68% with RSR1). System performance has even improved

or skilled forgery with DTWSys and FraDisSys. Applying RSR1 has

chieved a real time response for all the systems, and is thus a

ood solution in all cases. 

VQSys is the only case where RSR2 and RSR3 performed bet-

er than RSR1. The best EERs for random forgeries were achieved

ith RSR2–M = 15 , and were even better than those with SRBA.

n interesting case is RSR3–M = 15 , since the best EER for ran-

om forgeries, 0.62%, is even better than the best one with SRBA,

.63%, and the EER for skilled forgeries was only 2% worse (from

.45 to 4.56%), while the operation time fell by 92% (from 0.989 to

.078 s). 

For DTWSys and FraDisSys, RSR2 and RSR3 performed worse

han RSR1. For FraDisSys, the quickest system, the best alternative

s RSR1, since the best performance was achieved with only 0.017 s

er operation. A more detailed analysis is advisable for DTWSys,

he slowest system. 

For DTWSys, a good rate between performance and comput-

ng load was achieved with RSR3 for M = 10 and M = 15 , with the

ost interesting being the second. With M = 15 , the best random

orgery EER, 0.77%, is 15% worse compared to the best with SRBA,

.66%, and RSR1, 0.67%, but is still much better than the EER with-

ut the score ratio (1.68%, in Table 4 ). Worsening in the skilled

orgery EER is only 1% compared to the best with RSR1 (from 6.33

o 6.4%), and is better than the best EER with SRBA, 6.44%. How-

ver, operation time decreases by 93% compared to SRBA (from

.91 to 0.195 s) and by 66% compared to RSR1 (from 0.557 to

.195 s). 

. Conclusions and future works 

To the best of our knowledge, the score ratio, generally applied

n probabilistic-based systems, has not been used with distance-

ased ones. Here, we show that it can also be an interesting pro-

osal for such systems. The present study was performed adopting

oth a theoretical and a practical approach. 

Based on the likelihood ratio, a basic score ratio approach has

een proposed and successfully tested with three different state-
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Table 8 

EER (in %) for all systems tested with the score ratio basic approach (SRBA) and the proposals 

RSR1, RSR2 and RSR3 to reduce the number of calculations. The extra operations number to 

obtain s (X/λC ) is added ( N Ops column). An estimation to the time per authentication opera- 

tion in seconds is also included ( T column) for better comparison. 

VQSys 

Random Skilled 

N N 

M 3 (%) 5 (%) 10 (%) 3 (%) 5 (%) 10 (%) N Ops T (s) 

SRBA 0.63 0.63 0.69 4.51 4.67 4.45 250 0.989 

RSR1 0.68 0.71 0.71 4.63 4.62 4.63 50 0.205 

RSR2 

5 0.76 0.85 5.27 5.38 25 0.117 

10 0.66 0.60 0.70 4.70 4.67 4.86 50 0.213 

15 0.57 0.57 0.57 4.66 4.59 4.70 75 0.313 

RSR3 

5 0.75 0.68 5.00 5.14 5 0.041 

10 0.68 0.71 0.71 4.74 4.68 4.75 10 0.060 

15 0.68 0.62 0.68 4.56 4.59 4.59 15 0.078 

DTWSys 

Random Skilled 

N N 

M 3 (%) 5 (%) 10 (%) 3 (%) 5 (%) 10 (%) N Ops T (s) 

SRBA 0.77 0.71 0.66 6.82 6.66 6.44 250 2.910 

RSR1 0.77 0.67 0.68 6.91 6.72 6.33 50 0.577 

RSR2 

5 1.31 1.12 7.34 7.32 25 0.320 

10 1.03 0.90 0.83 7.08 7.01 6.58 50 0.557 

15 1.01 0.81 0.73 6.99 6.90 6.44 75 0.782 

RSR3 

5 1.22 1.06 7.18 7.21 5 0.108 

10 1.01 0.84 0.84 7.15 6.99 6.55 10 0.154 

15 0.90 0.77 0.77 6.99 6.85 6.40 15 0.195 

FraDisSys 

Random Skilled 

N N 

M 3 (%) 5 (%) 10 (%) 3 (%) 5 (%) 10 (%) N Ops T (s) 

SRBA 1.47 1.40 1.34 6.33 6.12 5.90 250 0.309 

RSR1 1.47 1.42 1.34 6.23 5.98 5.85 50 0.017 

RSR2 

5 2.24 2.08 7.38 6.95 25 0.036 

10 2.10 1.93 1.80 7.45 6.90 6.80 50 0.067 

15 1.77 1.69 1.65 6.83 6.49 6.35 75 0.097 

RSR3 

5 2.19 2.02 6.93 6.84 5 0.012 

10 2.21 2.12 2.02 7.23 6.93 6.58 10 0.012 

15 1.77 1.66 1.59 6.63 6.47 6.08 15 0.013 
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f-the-art biometric signature systems based on distance classi-

ers. Except for one case, improvements have been achieved in

ll of the tested scenarios. The best results are achieved using the

core ratio for both random and skilled forgeries, improving the

esults obtained with the reference systems tested. 

Several cohort set sizes and values of N (number of users used

o obtain the impostor score) have been tested, showing that even

ith small values of both, good results can be achieved with the

core ratio application. 

From a practical point of view, studying the extra comput-

ng load introduced for use of the score ratio is important. Said

tudy was performed and three different proposals (RSR1, RSR2

nd RSR3) for reducing the extra calculations were successfully

roposed and tested. 

The computing load study, based on the system response time,

as shown that use of the score ratio does not prevent real time

ystem response, although this is system dependent. Regardless of

his, however, speeding up system response is important for any

m

ractical application. In this sense, the proposals put forward for

educing calculations performed well, since they have drastically

ut the number of operations required whilst scarcely reducing

ystem performance compared to SRBA, and have even improved

t in some cases. Real time response has been achieved with all of

he system. 

These results encourage us to continue with the proposal put

orward in this work, and to test with other biometrics, where, in

ddition, impostor tests are carried out using only random forg-

ries, where the greatest improvements have been achieved apply-

ng the score ratio. 
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