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The binary classification problem where an input is classified as belonging or not to a certain class, the
so-called Target Class (TC), is approached here. This problem can be stated as a basic hypothesis test: X is
from the TC (Hp) vs. X is not from the TC (H;), where X is the classifier input. When probabilistic models
are used (e.g., Hidden Markov Models or Gaussian Mixture Models), the likelihood ratio, p(X/Ho)/p(X/H1),
is an alternative widely used to improve the classification. However, as far as we know, this ratio is not
usually applied with distance-based classifiers (e.g., Dynamic Time Warping). Following that idea, here we
propose making the decision based not only on the score (“score” being the classifier output) assuming
X to be from the TC (Hp), but also using the score assuming X is not from the TC (H;), by means of
the ratio between both scores: the score ratio. The proposal is tested in biometric person authentication
using manuscript signature, with three different state-of-the-art systems based on distance classifiers.
Different alternatives for applying the proposal are shown in order to reduce the computer load, should
it prove necessary. Using the score ratio has led to improvements in most of the tests performed. The
best verification results were achieved using our proposal, with the best ones without the score ratio
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being improved by an average of 22%.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper focuses on the use of our “score ratio” proposal in
binary classification problems where we have a Target Class, TC,
and the goal is to classify an input sample as belonging or not to
this TC. One representative, and very important example of this bi-
nary classification problem from the research and practical stand-
point, is biometric person verification, with the score ratio being
tested here in that field of work. Below, we single out our proposal
in the biometric verification problem. Generalization to other fields
is immediate.

The goal in biometric person verification is to authenticate the
user or client C (the Target Class, here) by means of unique human
characteristics (biometrics, e.g., iris, fingerprint, etc.). Fig. 1 shows
the main modules (stages) in a biometric recognition system. In
this figure, the signature is used as biometry, since it is the one
approached in this paper, although the modules are the same for
any other biometry. This work is focused on the Match stage. We
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have approached the Feature Extraction and Decision stages in pre-
vious works, [1] and [2].

Given a test sample (feature vector) X (Fig. 1), the problem of
biometric verification can be stated as a basic hypothesis test be-
tween two hypotheses:

Hy: X is from client C Hy: X is not from client C

The decision between the two hypotheses can be made as
shown in Eq. (1), using client information only, or can be made by
means of the likelihood ratio test given by Eq. (2), also using im-
postor (the Non TC, NTC) information. p(X/Hy) and p(X/H;) are, re-
spectively, the probability density functions for hypotheses Hy and
H; evaluated for the observed biometric sample X, and € is the
decision threshold.

>6 Accept Hy
p(X/Ho) {<9 Reject Hy (1)

M >0 Accept Hy @)
p(X/H;) |<6@ Reject Hg

Biometric verification in general, and signature verification in
particular, are pattern recognition problems, where each client C is
represented by means of a model Ac, e.g., Hidden Markov Model
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Fig. 1. Main modules (stages) in a usual biometric recognition system. Decision is performed with s(X/A¢), i.e., without score ratio.
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Fig. 2. Biometric recognition system with score ratio.

(HMM), Gaussian Mixture Model (GMM), Support Vector Machine,
etc. The probability p(X/Hp), whose calculation is not a straight-
forward task, is then estimated (approximated) by means of the
classifier output (score) s(X/A¢) (Fig. 1). The likelihood denomina-
tor, p(X/H;), is estimated by means of the score s(X/Az), where
Ag is the impostor model (Fig. 2), with the “impostor” being any-
body other than the client. Since an accurate representation of
the impostor class is impossible, different Az model estimation ap-
proaches can be found in the literature. Several of these will be
shown in Section 3.

Following this pattern recognition approximation, Eq. (1) be-
comes Eq. (3), and Eq. (2) becomes the score ratio shown in Eq.

(4).

S(X/A0) {>9 Accept  Hy

<0 Reject Hy (3)

S(X/Ac) |=0 Accept Hy (4)
s(X/Az) <8 Reject Hj

When probability-based classifiers (e.g., HMM or GMM) are
used, the classifier output can be interpreted as a probability,
p(X[/Ac), and the decision has typically been performed using the

likelihood ratio p&(ﬁc; test [3-5], since better performance is

achieved. However, When distance-based classifiers are used, as far
as we know, this score ratio (Eq. (4)) is not usually applied. Our
proposal of score ratio is shown graphically in Fig. 2 in compari-
son with a usual biometric system where the final decision is only
based on s(X/Ac) (Fig. 1).

In [6], an initial approach to this proposal was successfully
made, showing that use of the score ratio in biometric systems
based on distance classifiers can improve the system. In other
words, it can be an interesting alternative. Here, a more in-deep
twofold study is provided, that is:

1. Firstly, the same score ratio “basic approach” as in [6] is tested,
but following a more realistic (Section 6.3) experimental setup.
2. Secondly, a practical study about the extra computing load in-
troduced by the s(X/Az) calculation is also undertaken. In ad-

dition to this analysis, different alternatives aimed at reducing
the extra calculations are proposed and tested.

The study has been performed in biometric signature recogni-
tion. Of the several biometrics, signature is the second most im-
portant in behavioral biometrics. Here, on-line signature (the sig-
nature is written in a digitizing device) is used. Depending on the
test conditions, two types of forgeries can be established:

« Skilled forgery, where the impostor imitates the client signature.
» Random forgery, where the impostor uses his/her own signature
as a forgery.

Three different state-of-the-art signature recognition systems
based on distance classifiers [7-9] have been tested.

The rest of the paper is organized as follows. In Section 2, a no-
tation section is provided so as to make the paper easier to read. A
brief theoretical background of the score ratio problem is shown in
Section 3, then followed by our score ratio proposal (Section 4) to-
gether with proposals for reducing the computing load (Section 5).
After describing the experimental setup in Section 6, the results
achieved both with and without score ratio in all of the tested
scenarios can be seen in Section 7. The score ratio computing
load analysis and the performance of the proposal to reduce it are
shown in Section 8. Conclusions and future lines of research are
shown in Section 9.

2. Notation

For a better understanding of the proposal and of the various
ways the score ratio may be implemented, it is important to es-
tablish the notation and terminology used. The aim of this section
is to avoid becoming “lost in notation”.

- Cis used to refer to the user or client (Target Class) in general.

« C; is a specific client (specific TC).

« Cohort Set, ChS. Set of representatives of the impostor class (Non
TC), i.e., it is a set of signatories different from the client used
to obtain s(X/Ag).
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« Ch;. Each of the components of the cohort set: ChS=
{Chy,Chy, ..., Chy}, H being the size of this set.
« N: number of elements from the ChS (N < H) used to estimate
M: number of elements (M < <H) a priori selected from the co-
hort set to estimate s(X/Az) in order to decrease the computing
load of the score ratio application.
Normalization Set, NoS. Set of signatories used to normalize the
score (see Section 6.1).
Cn;. Each of the components of the normalization set: NoS =
{Cnq,Cny, ..., Chg}, R being the size of this set.
S. The client, the cohort set elements and the normalization set
elements are all of the same type, signatories in our case. All
are extracted from the same corpus, and the difference is the
role or task to be used. We then need a general identifier: S
(signatory).
As is the S model, i.e., the model used to represent a signa-
tory in general. A, Ac;, )~Ch,- and Acp, will be the client model
in general, an i client specific model, an i cohort set compo-
nent model and an i normalization set component model, re-
spectively.
X is used to refer to the generic input sample. This input sam-
ple is, in our case, the representation of a signature, i.e., the
feature vector, X = {x1,x,,...,Xq}, extracted from the signature
(Fig. 1), where, x; is the k component of the feature vector
(which will be a vector at the same time) and Q the number of
them. Xg will be used to identify the j sample (signature fea-

ture vector) of the client. In the same way, Xgh. and Xgn. are
1 1

the j samples of the cohort set and normalization set i element,
respectively.

Xa, Ya, Pr, Az and Al. A Wacom tablet is used to digitize the sig-
nature, obtained from each sampling instant (signature point):
position in X-axis (Xa), position in Y-axis (Ya), pressure (Pr), az-
imuth (Az) angle and altitude (Al) angle.

d(A, B). It is the distance between A and B.

3. Theoretical background

The concept of likelihood rate is strongly related with the statis-
tic test. The problem to resolve could be defined as follows. Sup-
pose that X can have one of two possible distributions (p(X/Hg) and
p(X/H7)), that define two Hypotheses:

Hy: X has probability density function p(X/Hg)
H;: X has probability density function p(X/Hy)

From a statistical point of view, the test can be constructed
based on a simple idea: if we observe X = X, with X,,s being
an observation of X, p(Xyps/H1) > p(Xops/Hp) is evidence in favor
of alternative H;. Otherwise, the evidence supports the alternative,
Ho.

From the previous distributions, the likelihood ratio function
L(X) is defined as shown in Eq. (5), the statistical test now be-
ing constructed as: small values of L(X,,s) are evidence in favor
of Hy and, conversely, high values of L(X,,s) are evidence in favor
of Hy. Thus, it seems reasonable to use L(X), in short L, to decide
which Hypothesis will be selected, determining a threshold value
6, such that Hy is rejected if and only if L < 8. The value 6 is cal-
culated with the significance level @ = p(L < 8/Hy), that is, setting
the false negatives probability value.

p(X/Ho)
< 5
p(X/Hy) ©)
With the 6 value determined, p(L > 6/H;) can be calculated,

that is the probability that Hy will not be rejected if it is false,
or the false positives probability. Neyman-Pearson [10,11] showed

LX) =

that, using the likelihood ratio, the above test is more powerful,
meaning that it minimizes the probability of false positives.

On numerous occasions, we can have a set of distributions,
{pk(X/Hp)} and {p;(X/H1)}, for Hypotheses Hy and/or Hy, instead of
a single one as until now. As will shortly be shown, this occurs
in our problem. Neyman-Pearson generalized the likelihood ratio
function as shown in Eq. (6).

max; (py(X/Ho))

LX) = hax (i X/HD))

(6)

When the goal is to classify an input sample X as belonging or
not to the Target Class or client C, relating specifically to biometry,
the previous Hypotheses become the following:

Hy: X is from client C  Hq: X is not from client C

In real systems, p(X/Hg) is achieved by means of a statistical
model, A, (e.g., HMM or GMM) of the client, p(X/\¢), and p(X/H1)
is obtained by modeling the impostor (Non Target) class, p(X/Az).
The problem is the calculation or estimation of this latter proba-
bility function.

The literature offers two ways of obtaining this likelihood: us-
ing a cohort set (representative set) of the NTC [3,5,12], or using a
single model to explain NTC behavior [4,12].

When a single model is used to estimate p(X/Ag), the model
is trained using samples provided by many users other than the
client. An example can be found in [4]| applied to biometric sig-
nature recognition. A User Adapted Universal Background Model
(UA-UBM) based on a discrete HMM is proposed. First, a UBM
trained using signatures from many signatories is obtained. The
client model is then achieved by adapting the UBM with enroll-
ment (training) client signatures. The score ratio is performed by
means of the log likelihood: log p‘(’)((%%%.

When the cohort set alternative is used, p(X/Az) is modeled
by means of a composite hypothesis, that is, a set of probability
functions {p(X/AChi)}. Neyman-Pearson approach (Eq. (6)) shows
the solution in this case, although, in practice, the N maximum
probabilities are generally used [3,5,12], instead of the maximum
one only, since better performance is achieved. This is because
{p(X/AC,.,I_)} is an estimation or approximation of {p;(X/H;)}. Using
the N > 1 cohort set elements closest to the client can thus gener-
ally estimate Ac, better than by using only the closest one, N = 1.
The likelihood ratio function is then as shown in Eq. (7) [5,13],
with 1 < N < H and {p(X/kChk)} = Nmax;(p(X/Acp,)) 1 <i<H.

PX/Ae) _ p(X/ro)
P(X/he) i PX/han)
N

LX) = (7)

4. Score ratio proposal: basic approach

With a distance based system, the problem when applying the
score ratio (Fig. 3) is to estimate s(X/Az) in Eq. (4). Based on the
proposals for estimating p(X/Az) seen in the previous section, with
distance-based classifiers, it is not always possible to obtain a sin-
gle impostor model, such that, the most general cohort set approx-
imation is adopted here.

Thus, following Eq. (7), our proposal for score ratio is shown
in Eq. (8). The same approach of using the N cohort set elements
closest to the client is followed here, but, with distances, given an
input sample X, the closest cohort set signatories to C will be those
with the minimal scores ({s(X/)LChk)} = Nmin;(s(X/Acp)) 1=is<
H), since low scores imply high similarity. These are selected to
perform the score ratio (Eq. (8)).
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Fig. 3. Biometric system decision stage with score ratio.

This solution will be called Score Ratio Basic Approach, SRBA.
sSX/Ac) _ s(X/Ac)

SRBAX) = SX/Az) T X sK/ray)
L )

(8)

We performed the score ratio test by crossing two parameters:
the cohort set size H (50 and 100) and different values of N (1, 3, 5
and 10). These values were the same as used to test the proposals
in the following section.

5. Score ratio proposal: reduced calculations

Applying the score ratio seen in the previous section implies
an increase in H (the size of the ChS) in the number of score cal-
culations compared to using only s(X/Ac) to classify X. Moreover,
ordering these scores to select the N lowest ones must be consid-
ered, although, the computing load of this latter operation is actu-
ally negligible due to the size of the ChS.

A study of the time cost of the extra calculations involved was
performed (see Section 8.1) to determine whether this prevents
real time system response. This is system dependent, although
speeding up the system response is an interesting question in all
cases. As a result, three proposals to reduce the computing load of
$(X/Ag) estimation are put forward: RSR1, RSR2 and RSR3.

5.1. Basic approach modification (RSR1)

The first proposal involves replacing the model, AChi, with a sin-
gle sample (signature), Xé’hi, in the s(X/Az) estimation. Signature
Xgh,- is randomly chosen from those used to build the model. Un-
der this approach, Eq. (8) becomes Eq. (9).
SX/h0) __sX/ho)

SX/Ap)  Tiaseixg)
N

RSR1(X) = 9)

As in SRBA, given an X sample, the N lowest scores
from {s(X/Xé’hv)} 1<i<H are selected to estimate s(X/Ag), ie.,

{S(X/Xcn, )} = Nmin;(s(X/X2, )) 1 <i <H.
This approach will be called Reduced Score Ratio 1, RSR1.

5.2. A priori cohort selection (RSR2 and RSR3)
In the previous score ratio approaches, given a test sample X,

all of the scores for each cohort set element must be calculated,
using either model (s(X/Acp,) 1 <i < H) for SRBA or using a single

sample (S(X/Xgh,-) 1 <i < H) for RSR1. Once these scores have been
calculated, the N lower ones are selected to estimate s(X/Ag).

Here, a different approach is proposed by means of a priori co-
hort set elements subset selection. The idea is to select a priori
the M <« H cohort set elements closest to the client, and then, to
perform the score ratio with this subset.

From an S element, its first five signatures (samples) in the cor-
pus {XJ.X2,....X3} are used to build the signatory model As. If
the cohort set element model is used to perform the score ratio
(as in SRBA), then the distance between client C and the cohort
set element Ch; is defined as shown in Eq. (10). Using that dis-
tance, a subset of M ChS elements closest to the client is selected
({Chy} = Mmin;(d(Ch;,C)) 1 < i < H). Score ratio is then performed
by means of Eq. (8), but, now, using only the preselected cohort set
elements subset {Ch,}1 < v < M. If M =N, it is not necessary to
sort the {s(X/Acp,)} 1 <v <M scores in order to select the N low-
est ones for each X. This proposal will be called Reduced Score Ratio
2, RSR2.

d(Ch;,C) = min(s(X}, /Ac)) with j=1,....5 (10)
j 1

If a single signature Xgh_ from each element of the cohort set is
1

used to perform the score ratio (as in RSR1), the distance between
client C and each cohort set element Ch; is defined as shown in Eq.
(11). Score ratio is performed as shown in Eq. (9), but, as in the
previous approach, using only the preselected cohort set elements
subset ({Ch,}1 < v < M), i.e., those cohort set elements closest to
the client, now using, the distance in Eq. (11). Likewise, if M = N, it
is not necessary to sort the {s(X/Xé’hv)} 1 <v <M scores in order
to select the N lowest ones. This proposal will be called Reduced
Score Ratio 3, RSR3.

d(Ch;, C) = s(XZ, /Ac) (11)
6. Experimental setup
6.1. Score normalization

Given a learning paradigm, its Match (client scores) and Non-
Match (impostor scores) distributions vary from the classifier
trained to distinguish one user from another (see Fig. 4a). For this
reason, score normalization is essential to transform the scores of
the client matchers into a common domain (Fig. 4b).

The main score normalization techniques for signature recogni-
tion [14] have been tested here:

Impostor-centric techniques:

IC1: Sporm =5 — AN
IC2: Sporm =S — (ﬁg +6)
IC3: Sporm = (s — ﬂc)/aév

where Y and 6 are the mean and the standard deviation of
the Non-Match distribution for the client C classifier, estimated
by means of the Normalization Set, {Cn;} (Section 6.3), as will be
shown in Sections 6.1.1 and 6.1.2.

Target-centric techniques:

TC1: Sporm = s — A
TC2: sporm = s — (/l% + 6%\/1)
TC3: Sporm = (s — @) /61

where ﬂg’ and 6CM are the mean and the standard deviation of the
Match distribution for the client C classifier, estimated by means of
the signatures used to build A using the leave-one-out technique,
as will be shown in Sections 6.1.1 and 6.1.2.

Target-impostor technique:

TI1: Sporm =S — SEERC
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Fig. 4. Example of Match and Non-Match distributions of two users, (a) without score normalization and (b) with score normalization.

where sggg. is the a priori decision threshold of client C at the
Equal Error Rate point (see Section 6.5), obtained from the Non-
Match and Match distributions estimation.

6.1.1. Statistics estimation without score ratio

When score ratio is not used, s = s(X/A¢) in the previous equa-
tions.

As pointed out, the first five signatures of the signatory in
the corpus (Section 6.2), {X}!.X2,....X2}. are used to build the
client model, Ac. As posited, Match distribution estimation is per-
formed by means of this set. Using the leave-one-out technique,
the following Match (client) Scores Set, MSS, is estimated: MSS =
{s(X¢/A¢)}. with g=1,....5 and the AZ model built using the sub-
set {XCj} 1<j<5and j#g Then, 2¥ and 6¥ are the mean and
standard deviation of the MSS.

To estimate the Non-Match distribution, a specific set of signa-
tories called the Normalization Set is used. From each element Cn;
of this set, a sample e is randomly selected, forming the so-called
Normalization Gallery, NoG = {Xgn,-} 1 <i <R, with R being the size
of the Normalization Set. Given a client C, the scores for each ele-
ment in the NoG set are calculated, obtaining the Non-Match (im-
postor) Score Set, NMSS = {s( cen,-/)‘C)} 1 <i<R. This set is an a
priori impostor score distribution estimation for client C. It is then
used to estimate ﬂy and 6CN , these being the mean and standard
deviation of NMSS.

6.1.2. Statistics estimation with score ratio

Using the score ratio, s = 28%5; in the score normalization
C

equations of Section 6.1. The score ratio must then also be applied
to the sets used to estimate the corresponding means and standard
deviations.
More specifically, MSS here becomes the MSS_Score Ratio,
_sxERE)
MSS_SR = {s o)
previous section, and NMSS becomes the NMSS_Score Ratio,
S(Xgni/)»c)
NMSS_SR = {W
timated, while 1Y and 6Y are estimated by means of NMSS_SR.

} 1 <g<5, with g and )\g defined as in the

} 1 <i <R From MSS_SR, aM and 6 are es-

6.2. Corpus

The MCYT database [15] has been used. This database is one of
the most popular and largest in signature verification, and can be
considered a benchmark. Signatures were acquired with a WACOM
graphic tablet. The sampling frequency of the acquired signals was
set to 100 Hz, obtaining from each sampling instant: position in x-
axis (Xa) and y-axis (Ya), pressure (Pr), azimuth (Az) and altitude
(Al) angles. Samples from 333 different people were acquired. Each

user produced 25 genuine signatures, and 25 skilled forgeries were
also captured for each user. These skilled forgeries were produced
by the five subsequent users by observing the static images of the
signature to imitate, attempting to copy them (at least 10 times),
and then producing the valid acquired forgeries fluidly (i.e., each
individual acting as a forger is requested to sign naturally, with-
out artifacts, such as breaks or slowdowns). In this way, shape-
based natural dynamics of highly skilled forgeries are obtained. A
study of the statistical significance of the results achieved with this
database can be found in [16].

6.3. Experimental sets

The corpus was split into three different subsets, as in [6], but
in a different and more realistic way, since the three subsets are
completely independent here. In [6], the elements from the cohort
set not selected to perform the score ratio (i.e., those different from
the N with the lower scores) were used for score normalization.
This was done so as to obtain a large and significant test set (183
elements) and a large (H = 150 elements) cohort set. From the re-
sults in [6], testing a cohort set size of 150 elements is not neces-
sary, since the results do not improve those achieved with H = 50
and H = 100. As a result, this size is not tested here. Consequently,
the corpus was split into:

- Normalization Set, NoS. 50 signatories were randomly selected
from the corpus to create this set.

« Cohort Set, ChS. From the signatories in the corpus not used
for the NoS, 100 were randomly selected to create this set. Two
different sizes were tested in order to gauge how this parame-
ter impacted on score ratio performance: (i) H = 50 signatories
(ChS-50), (ii) H = 100 signatories (ChS-100).

« Test set (TS). This was used to test and consists of 183 signato-
ries not used in the previous sets. The same TS was used in all
of the tests performed for objective comparison purposes.

The following tests were performed for each user of this set:

- Genuine test. While the first five signatures were used to
build the signatory (client C) model, the twenty remaining
ones were used for genuine tests. That is, 3660 (20x183)
genuine tests.

- Skilled forgery tests. The 25 skilled forgeries captured for
each user were used. That is, 4575 (25x183) skilled forgery
tests.

- Random forgery tests. One signature out of 100 randomly
selected users in the TS (different from the client) were used
for random forgery tests, that is, 18,300 (100x183) tests in
total.
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6.4. Signature verification systems

Before describing the systems tested, we define the A oper-
ator, since it is used in the feature extraction stage of two sys-
tems. Given a sequence Z = {zq,2, ..., 2a}, Az, is defined as Az, =
Zk41 — Zx. In our case, z, will be a feature extracted from a signa-
ture point. The signature is a time series, and, in this kind of sig-
nals, dynamic information at time k can be extracted by means of
the derivative at this point: W with ¢, being the time interval
between z;,; and z,. Here, t; is fixed for all of the points (10 ms.)
and can be eliminated, converting the derivative into the A. Then,
A is used to introduce dynamic information into the feature vec-
tor.

The following three state-of-the-art systems based on distances
were tested:

Vector Quantization-based system (VQSys). The system shown in
[8] is used. This system achieves very good performance with a
reduced computational requirement, which is lower than DTW.
In addition, the system improves database storage requirements
due to vector compression. The feature vector X = {x,x3,...,Xq}
(Section 2) comprises the sequence of features extracted from each
signature point: x, = {Xay, Ya, AXay, AYay, APr, T} with 1 <k <
Q, where T is the point timestamp. From each of the model sig-
natures, {ij} 1 < j <5, and using the Linde-Buzo-Gray (LBG) algo-
rithm, 256 centroids (a codebook size of 256) are extracted. Thus,
AL = {256 codebook} Vj and As={A{} 1<j<5. Then, s(X/As) =
d(X, {rl,A2,A3, 24 22}). The Euclidean distance is used to calcu-
late the nearest centroid of As to each x; component of X and to
calculate the distortion (distance) between this component and the
corresponding nearest centroid.

Dynamic Time Warping-based system (DTWSys). Our state-of-
the-art system based on DTW is used here [9]. This was among
the best in the latest signature recognition evaluation performed
(ESRA’2011). It is an evolution of the system used to partici-
pate in the BSEC'2009 signature recognition evaluation, where
it was the second best system [1]. Simple but highly effective
feature extraction is accomplished, extracting from each signa-
ture point the following two deltas: x;, = {AXay, AYa,}, then X =
{{AXaq, AYaq}, {AXay, AYay}, ..., {AXag_1, AYag_1}}. In this sys-
tem, the feature vector of each of the five signatures used to build
the model is directly the S signatory model: As = {X{,X2,.... X3}.
In order to obtain s(X/As), the distances, using DTW between X and
each of the model signatures is calculated, the minimum one being
the final score: s(X/As) = min;(d(X, X;)) 1<i<5.

Fractional distances-based system (FraDisSys). Our low-cost pro-
posal shown in [7] is used. This system has fewer computational
and storage requirements than the previous ones. The signature
points number is normalized to a fixed value (15 points here).
Signatures can thus be matched by means of a simple distance cal-
culation. Due to their better performance, fractional distances are
used (Eq. (12)). Compared to that used in [7], improved feature ex-
traction was achieved here, since new features have been added. In
the original proposal, from each point in the normalized signature
the following features were used: x, = {Xay, Yay, Pry, Az, Al }. The
new added ones for each point are: point number (Pn), signature
section length in the x coordinate (SIXa) and in the y coordinate
(SlYa), as well as direction changes per section in both coordinates
(DcXa and DcYa). The signature duration (Sd) global feature is also
used. The 151-dimensional feature vector with this system is thus:
X = {XCH ,Yaq, Pry, Az, All ,Pnq, SlXal s SlYa1 ,DcXaq, DcYay, ..., Xays,
Ya15, Pr15, AZ15, Al]5, Pﬂ]s, SlXal5, SlYa15, DCXa15, DCYa15, Sd} The
S signatory model is: As = {X{.X2,....X2}. The distance between
two signatures can be seen in Eq. (12), with p = 0.2. To calculate
the final score, the minimum function is used, as with DTW:

Table 1

Choosing the best score normalization technique for VQSys.
Best results are bold face emphasized. System error is mea-
sured by means of the EER (%).

No score ratio Score ratio
ChS-100 ChS-100, N=5
Technique Random  Skilled Random  Skilled
No norm. 115 6.56 0.71 4.56
IC1 0.87 9.81 0.85 10.90
1C2 0.96 11.77 1.28 12.62
1C3 1.03 15.60 0.64 8.70
TC1 3.37 12.16 2.27 9.26
TC2 3.36 12.24 243 9.68
TC3 18.36 26.56 19.86 26.60
T 1.04 7.08 0.82 5.60
s(X/As) = min;(d(X,X{)) 1 <i<5.
1
151
dist(Y.2) = | Y - Z[? (12)
i=1

6.5. Performance measure

Verification systems can be evaluated using the False Match
Rate (FMR, situations where an impostor is accepted) and the False
Non-Match Rate (FNMR, situations where a user is incorrectly re-
jected), also known in detection theory as False Alarm and Miss,
respectively. A trade-off between both errors usually has to be es-
tablished by adjusting a decision threshold. The performance can
be plotted on an ROC (Receiver Operator Characteristic) or on a
DET (Detection error trade-off) plot [17].

However, if the number of comparisons is high, using a sin-
gle number measure is more useful and easier to understand. The
most widely used one in the literature is The Equal Error Rate
(EER), that is the error of the system when the decision threshold
is such that the FMR, Py, equals the FNMR, Py (in the DET curve,
the point where the diagonal cuts the curve). This is the measure
used here.

7. Results: Score Ratio Basic Approach

Here, the results with SRBA (Section 4) are shown. Score nor-
malization performance is system dependent. So, firstly, we choose
the best score normalization technique with and without the score
ratio for each system. A cohort set size of 100 users was chosen for
these tests, using N = 5 for the score ratio. A criterion based on the
lowest average between random forgery EER and skilled forgery
EER is used to choose the best score normalization technique in
each case.

7.1. Vector Quantization-based system (VQSys)

When VQSys is used, the best system configuration is, excep-
tionally, without using score normalization for both with and with-
out score ratio (Table 1). Once the best score normalization tech-
nique is fixed (here, none), the comparative study for this system
with and without the score ratio can be seen in Table 2. The small-
est error is achieved using the score ratio for both random and
skilled forgeries, with a cohort set of 100 signatories and N = 3,
and a cohort set of 50 signatories and N = 10, respectively.

7.2. Dynamic Time Warping-based system (DTWSys)

When DTWSys is used, the best score normalization techniques
are TI1 without the score ratio and TC1 when the score ratio is
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Table 2

With and without (N = 0 row) score ratio performance
comparison for VQSys. The results for all of the cohort
set sizes and N values are shown. System error is mea-
sured by means of the EER (%). Best results are bold
face emphasized.

ChS-50 ChS-100
N Random  Skilled Random  Skilled
0 119 6.55 115 6.56
1 0.66 5.03 0.63 4.72
3 0.63 4,51 0.57 4.50
5 0.63 4.67 0.71 4.56
10 0.69 4.45 0.71 4.48
Table 3

Choosing the best score normalization technique for DTWSys.
Best results are bold face emphasized. System error is mea-
sured by means of the EER (%).

No score ratio Score ratio

ChS-100 ChS-100, N =5
Technique  Random  Skilled Random  Skilled
No norm. 14.45 20.55 0.79 9.01
IC1 175 7.65 21.83 39.74
12 249 9.66 33.00 44.23
IC3 2.34 10.18 1.09 20.54
TC1 2.54 5.87 0.77 6.28
TC2 2.67 6.04 148 8.26
TC3 7.65 9.70 8.52 15.54
TI1 1.68 4.66 1.26 10.73

Table 4

With and without (N = 0 row) score ratio performance
comparison for DTWSys. The results for all of the co-
hort set sizes and N values are shown. System error is
measured by means of the EER (%). Best results are bold
face emphasized.

ChS-50 ChS-100
N Random  Skilled Random  Skilled
0 1.85 4.64 1.68 4.66
1 1.23 7.62 112 734
3 0.77 6.82 0.82 6.62
5 0.71 6.66 0.77 6.28
10 0.66 6.44 0.68 6.34

applied (Table 3). Once the best score normalization technique is
fixed, the comparative study for this system with and without the
score ratio is shown in Table 4. The smallest error for random
forgery is achieved using the score ratio with a cohort set of 50
signatories and N = 10. However, for skilled forgery, the best error
value has been achieved without the score ratio and with a cohort
set of 50 signatories.

7.3. Fractional distance-based system (FraDisSys)

When FraDisSys is used, the best score normalization technique
is TC1 for both with and without score ratio (Table 5). Once the
best score normalization technique is fixed, the comparative study
for this system with and without the score ratio can be seen in
Table 6. The smallest error is achieved using the score ratio for
both random and skilled forgeries, with a cohort set of 100 signa-
tories and N = 10 and a cohort set of 50 signatories and N = 10,
respectively.

7.4. Results analysis

From the previous results, the first important consideration is
that the use of the score ratio has improved all of the cases stud-

Table 5

Choosing the best score normalization technique for FraDisSys.
Best results are bold face emphasized. System error is mea-
sured by means of the EER (%).

No score ratio Score ratio

ChS-100 ChS-100, N=5
Technique Random  Skilled Random  Skilled
No norm. 2.73 8.63 1.39 6.83
IC1 2.56 9.80 6.20 20.73
12 3.50 12.00 10.73 26.58
IC3 2.38 9.79 2.62 13.79
TC1 2.00 6.08 133 6.33
TC2 2.68 734 218 7.67
TC3 10.19 14.29 9.04 14.69
T 219 6.88 223 8.61

Table 6

With and without (N = 0 row) score ratio performance
comparison for FraDisSys. The results for all of the co-
hort set sizes and N values are shown. System error is
measured by means of the EER (%). Best results are bold
face emphasized.

ChS-50 ChS-100
N Random  Skilled Random  Skilled
0 1.99 6.08 2.00 6.08
1 1.85 7.21 1.72 724
3 1.47 6.33 1.40 6.49
5 1.40 6.12 133 6.33
10 134 5.90 1.31 6.03

ied except one, skilled forgeries with DTW. For random forgeries,
great improvements have been achieved with all of the classifiers:?
50% for VQSys (ChS-100, N = 3), 61% for DTWSys (ChS-50, N = 10)
and 34% for FraDisSys (ChS-100, N = 10), compared to the best re-
sults without the score ratio, respectively. For skilled forgeries, the
following improvements have been achieved: 32% for VQSys (ChS-
50, N = 10) and 3% for FraDisSys (ChS-50, N = 10) compared to the
best results without the score ratio, respectively. It is interesting to
note that the skilled forgery tests are used only in signature recog-
nition, while, for the rest of biometrics, impostor tests are per-
formed by means of random samples (i.e., samples of other users),
which is where the biggest improvements have been achieved with
the use of the score ratio.

From the systems without score ratio, the one based on DTW
achieved the best results for skilled forgeries, 4.64% (this can also
be seen in international competitions), while for random ones, the
best results are achieved with VQ, 1.15%. This is typical in signature
recognition: improvements in one forgery type usually worsen the
other. However, here, the use of the score ratio has allowed a sys-
tem to be achieved with the best results for both forgeries on aver-
age: 0.57% in random forgery and 4.5% in skilled forgery for VQSys,
with ChS-100 and N = 3.

The size of the cohort set does not seem to have any great in-
fluence on the results with score ratio. In general, the influence
of H is classifier and task (random-skilled forgery) dependent and
differences in results are very small. With regard to the N value,
the worst results were achieved, in general, with 1, although for
the rest of the values tested, differences in results are also very
small. These results show that the score ratio proposal can be ap-
plied with small cohort sets and with small N values, which is very
important for real applications.

2 The percentages have been calculated as follow: (EZERIZEER2) . 100 with EER1 >
EER2. Here, EER1 = best EER without SR and EER2 = best EER with SR. The same
equation is used in the rest of the paper with the corresponding errors.
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Table 7

System response (in seconds) to perform feature
extraction and matching operations with SRBA for
VQSys, DTWSys and FraDisSys.

VQSys
Score ratio 0.989 291 0.322

DTWSys  FraDisSys

8. Results: reduced calculations

A new element in the study has been indirectly introduced at
the end of the previous section: the computing load of the score
ratio proposal. As posited, this is important for real systems, and
thus merits analysis. A study of this question is shown in the
following section, before showing the results with the proposals
which aim to reduce the calculation number in the s(X/Az) esti-
mation (Section 5).

From the results analysis in the previous section, it can be con-
cluded that cohort set size H does not have a significant impact
on system performance. As a result, all the tests in this section
were only performed with the smallest cohort set, i.e., ChS-50. All
the results contained in this section are thus understood to be ob-
tained from using said set, such that, for the purpose of clarity,
they are not mentioned henceforth.

8.1. SRBA computing load analysis

From a practical point of view, the time response of the system
is an important question, and more specifically, whether the sys-
tem response is real time or not. In Table 7, the time required to
perform a verification operation (to obtain the score s) using SRBA
is shown from a technological point of view. This means that tests
focus on the classification algorithm, i.e., these times include fea-
ture extraction and matching operations, not taking into account
biometric sample acquisition and communication (for remote ac-
cess) times.

Another important question with regard to the results in
Table 7 is that the software used (developed with Java) is op-
timized to perform experiments. In other words, it is developed
so as to easily make changes in the experimental setup and not
for quick execution of authentication operations. The times in
Table 7 are thus easy to improve in a real system.

As can be seen in Table 7, using the score ratio does not pre-
vent the response from being considered real time for VQSys and
FraDisSys, since the times in the table are, as posited, a pessimistic
estimation. However, with the DTW based system, which has the
largest computing load, the time response is not good enough for
real systems and must be improved.

Having seen the system response with SRBA, the results of the
proposals to reduce computing load are now addressed. Here, the
goal is to reduce the times in Table 7, while seeking to maintain
score ratio performance.

8.2. Results

For a better comparison, the results with all of the proposals for
reducing computing load are shown in the same table (Table 8),
together with the results with the basic proposal (SRBA). The re-
sults are achieved with the same score normalization techniques
as the corresponding ones using SRBA. For greater clarity, results
with N = 1, are not shown, since these are the worst.

Three different values of M (number of a priori selected el-
ements from the Chs) have been tested: 5, 10 and 15, for the
RSR2 and RSR3 approaches. It should be remembered that (see
Section 5.2) if M =N it is not necessary to sort the cohort set
scores to estimate s(X/Ag).

In order to compare the computing load, the number of opera-
tions to obtain s(X/Az) is added in each case (N Ops column), with
“operation” being a distance computation. For example, for SRBA
(Eq. (8)), estimating s(X/Az) involves calculating 50 times the score
$(X/Acp,), the size of ChS-50. Although the N lowest ones are those
used to estimate s(X/Az), all of the scores from the ChS must be
calculated before performing said selection. Since s(X/As), gener-
ally, implies five distance calculations for all the systems:

« For VQSys: s(X/As) =d(X,{Al}) 1 <i<5.
« For DTWSys: s(X/As) = min;(d(X,Xi)) 1 <i <5.
« For FraDisSys: s(X/As) = min;(d(X. X)) 1 <i<5.

The final number of operations required to obtain s(X/Ag) for
SRBA will thus be 250 (50x5) for all of the systems.

What differs is the time needed to compute the distance in
each case. As a result, a time response estimation, following the
same assumptions as those in Section 8.1, is shown (T column).

From the results in Table 8, it can be said that the aim of de-
creasing the score ratio computing load has been achieved. In all
cases, the number of operations required to obtain s(X/Ag) has
been reduced without any loss in system performance. Real time
response has been achieved in all cases. What does prove system
dependent is the performance of RSR1, RSR2 and RSR3. We now
provide a more detailed analysis.

RSR1 worked very well in all cases. The computing load has
been reduced by a factor of approximately five, while the sys-
tem EER has been maintained. In the worst case (VQSys, random
forgery), system performance fell by only 8% (from 0.63% with
SRBA to 0.68% with RSR1). System performance has even improved
for skilled forgery with DTWSys and FraDisSys. Applying RSR1 has
achieved a real time response for all the systems, and is thus a
good solution in all cases.

VQSys is the only case where RSR2 and RSR3 performed bet-
ter than RSR1. The best EERs for random forgeries were achieved
with RSR2-M = 15, and were even better than those with SRBA.
An interesting case is RSR3-M = 15, since the best EER for ran-
dom forgeries, 0.62%, is even better than the best one with SRBA,
0.63%, and the EER for skilled forgeries was only 2% worse (from
4.45 to 4.56%), while the operation time fell by 92% (from 0.989 to
0.078 s).

For DTWSys and FraDisSys, RSR2 and RSR3 performed worse
than RSR1. For FraDisSys, the quickest system, the best alternative
is RSR1, since the best performance was achieved with only 0.017 s
per operation. A more detailed analysis is advisable for DTWSys,
the slowest system.

For DTWSys, a good rate between performance and comput-
ing load was achieved with RSR3 for M = 10 and M = 15, with the
most interesting being the second. With M = 15, the best random
forgery EER, 0.77%, is 15% worse compared to the best with SRBA,
0.66%, and RSR1, 0.67%, but is still much better than the EER with-
out the score ratio (1.68%, in Table 4). Worsening in the skilled
forgery EER is only 1% compared to the best with RSR1 (from 6.33
to 6.4%), and is better than the best EER with SRBA, 6.44%. How-
ever, operation time decreases by 93% compared to SRBA (from
291 to 0.195 s) and by 66% compared to RSR1 (from 0.557 to
0.195 s).

9. Conclusions and future works

To the best of our knowledge, the score ratio, generally applied
in probabilistic-based systems, has not been used with distance-
based ones. Here, we show that it can also be an interesting pro-
posal for such systems. The present study was performed adopting
both a theoretical and a practical approach.

Based on the likelihood ratio, a basic score ratio approach has
been proposed and successfully tested with three different state-
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Table 8

EER (in %) for all systems tested with the score ratio basic approach (SRBA) and the proposals
RSR1, RSR2 and RSR3 to reduce the number of calculations. The extra operations number to
obtain s(X/Az) is added (N Ops column). An estimation to the time per authentication opera-
tion in seconds is also included (T column) for better comparison.

VQSys
Random Skilled
N N
M 3(%) 5(% 10 (%) 3(%) 5(% 10(%) N Ops T (s)
SRBA 0.63 0.63 0.69 4.51 4.67 4.45 250 0.989
RSR1 0.68 0.71 0.71 4.63 4.62 4.63 50 0.205
5 0.76 0.85 5.27 538 25 0.117
RSR2 10 0.66 0.60 0.70 4.70 4.67 4.86 50 0.213
15 057 0.57 0.57 4.66 4.59 4.70 75 0.313
5 0.75 0.68 5.00 5.14 5 0.041
RSR3 10 0.68 0.71 0.71 4.74 4.68 4.75 10 0.060
15 068 0.62 0.68 4.56 4.59 4.59 15 0.078
DTWSys
Random Skilled
N N
M 3(%) 5% 10 (%) 3(%) 5(%) 10(%) NOps T (s)
SRBA 0.77 0.71 0.66 6.82 6.66 6.44 250 2.910
RSR1 0.77 0.67 0.68 6.91 6.72 6.33 50 0.577
5 131 112 7.34 732 25 0.320
RSR2 10 103 0.90 0.83 7.08 7.01 6.58 50 0.557
15 101 0.81 0.73 6.99 6.90 6.44 75 0.782
5 1.22 1.06 718 721 5 0.108
RSR3 10 101 0.84 0.84 715 6.99 6.55 10 0.154
15 0.90 0.77 0.77 6.99 6.85 6.40 15 0.195
FraDisSys
Random Skilled
N N
M 3% 5(% 10 (%) 3(%) 5(%) 10(%) N Ops T (s)
SRBA 147 1.40 134 6.33 6.12 5.90 250 0.309
RSR1 147 142 1.34 6.23 5.98 5.85 50 0.017
5 224 2.08 738 6.95 25 0.036
RSR2 10 210 193 1.80 7.45 6.90 6.80 50 0.067
15 177 1.69 1.65 6.83 6.49 6.35 75 0.097
5 219 2.02 6.93 6.84 5 0.012
RSR3 10 221 212 2.02 7.23 6.93 6.58 10 0.012
15 177 1.66 1.59 6.63 6.47 6.08 15 0.013

of-the-art biometric signature systems based on distance classi-
fiers. Except for one case, improvements have been achieved in
all of the tested scenarios. The best results are achieved using the
score ratio for both random and skilled forgeries, improving the
results obtained with the reference systems tested.

Several cohort set sizes and values of N (number of users used
to obtain the impostor score) have been tested, showing that even
with small values of both, good results can be achieved with the
score ratio application.

From a practical point of view, studying the extra comput-
ing load introduced for use of the score ratio is important. Said
study was performed and three different proposals (RSR1, RSR2
and RSR3) for reducing the extra calculations were successfully
proposed and tested.

The computing load study, based on the system response time,
has shown that use of the score ratio does not prevent real time
system response, although this is system dependent. Regardless of
this, however, speeding up system response is important for any

practical application. In this sense, the proposals put forward for
reducing calculations performed well, since they have drastically
cut the number of operations required whilst scarcely reducing
system performance compared to SRBA, and have even improved
it in some cases. Real time response has been achieved with all of
the system.

These results encourage us to continue with the proposal put
forward in this work, and to test with other biometrics, where, in
addition, impostor tests are carried out using only random forg-
eries, where the greatest improvements have been achieved apply-
ing the score ratio.
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