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A B S T R A C T

This work focuses on the limit analysis or plastic calculation of slender beam planar frames using a new
method. Sufficient static equilibrium equations are proposed by the Principle of Virtual Displacements (PVD)
and kinematic compatibility equations are proposed by the Principle of Virtual Forces (PVF). The load level is
increased and the structure is solved step by step until the plastic collapse. Equilibrium equations are posed
by virtual problems in displacements and compatibility equations are posed by simple virtual problems in
equilibrium. The method provides the following results: the collapse load factor, the final collapse mechanism,
the bending moments and the accumulated rotations in the plastic hinges in each load step of the structure.
This method has advantages over the classical methods; first, with respect to the step-by-step method based
on matrix formulation, especially in the case of beams and/or columns with uniform distributed load, and
secondly, with respect to the kinematic direct method, since the sequential method provides more information
on the quantities involved in the plasticization process of the structure and also goes directly to the calculation
of the collapse mechanism without the need to test or combine possible mechanisms.
1. Introduction

Researchers and engineers devote their time to determining appro-
priate structural solutions concerning safety, serviceability and cost
saving. A huge volume of steel is used in construction every year. Over
the last 40 years, the theories of plasticity and computing technology
have enabled great achievements and the framed structures are, as
always, the test bench.

The plastic-zone or the plastic-hinge approach is adopted to cap-
ture the material inelasticity of a framed structure. In the plastic-
zone method, a structure member is discretized into a mesh of finite
elements. However, the plastic-zone method is still considered an ex-
pensive method requiring a considerable computing burden. On the
other hand, in the plastic-hinge approach, only one beam–column
element per physical member is considered, which leads to a significant
reduction in the computation time.

According to many authors, the notion of the plastic hinge and
the collapse mechanism were first pointed out by Kazinczy [1]. The
terminology plastic hinge is used to indicate a section (zero-length) on
which all points are within the plastic range. The collapse mechanism
refers to the final state of a frame, where a deformable geometric
system is considered. The aim of the analysis is to determine the
maximum safe load for a frame that is fully specified.

The two fundamental theorems of limit analysis, the static, kine-
matic and uniqueness theorems, were first established by Gvozdev [2].
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At the same time, the static shakedown theorem was first proved by
Melan. Twenty years later, the kinematic theorem for the shakedown
analysis of frames was derived by Neal [3].

Fundamental theorems lead to the static and kinematic approaches
called direct methods, and which are based on combining mecha-
nisms [4–6]. The terminology ‘‘direct’’ means that the load multiplier
is directly found without any intermediate structural state [7–10].

The kinematic or direct method has important drawbacks from the
point of view of its practical application: first, it is not systematic or
general; and second, it requires possible collapse mechanisms to be
tested. Even with only a few plastic hinges being involved, this implies
many possible collapse mechanisms that will have to be tested and
verified. On the other hand, the step-by-step methods, based on the
matrix formulation, are systematic and efficient for concentrated load
cases at the nodes of the structure. They are, however, very inefficient
and imprecise for analyzing structures with uniform distributed loads
because position of the active interelement hinges change continuously
during the structural load process [11–13].

These drawbacks have been solved in this work by using a step-by-
step method and as many equilibrium and compatibility equations as
critical sections. A set of cases has been solved, both with point loads
and with a uniformly distributed load, in reduced calculation times.

The entire formulation has been simplified by means of a vector
method that systematizes the equations required in the direct kinematic
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method (equilibrium equations and compatibility equations) to know
the progress of the formation of plastic hinges. These equations are
applied for each step of the load application.

Although the computational capacity of a desktop computer has
increased considerably in recent years, one could think of performing a
suitable plastic zone analysis using FE software, the practice is that such
an approach tends to give numerical instability problems sometimes
even after the formation of the first plastic hinge and is difficult to
solve. However, even for medium and large structures, the application
of the proposed method is a practical and useful solution.

This paper has been organized as follows: after this brief introduc-
tion, the methodology is presented, which is then verified by solving
two cases, one with concentrated loads and the other with a uniformly
distributed load. It is then applied to two practical cases: the first is a
gabled frame with point loads and distributed loads, while the second
consists of a double gabled frame with distributed loads. Finally, the
main conclusions and contributions of the work are summarized.

2. Methodology

The most important work on the matrix method based on the
plastic hinge analysis is due to V. Hoang [10,13]. The advantages and
disadvantages are known: the main advantage is that the calculation is
direct from the initial structure to the final collapse mechanism, and
the disadvantage is the calculation effort required.

The formulation developed in this work combines the two classical
methods indicated in the Introduction: it is a step-by-step method, but
all the equations necessary to solve the plastic problem are proposed by
means of the Principle of Virtual Displacements (PVD) and the Principle
of Virtual Forces (PVF) [14,15]. It should be clarified that the work of
this paper proposes a vector method, which works with force vectors
and not displacements, with which the calculation effort required is less
than in matrix methods.

2.1. Hypothesis

• The beams and columns are assumed to be slender rectilinear
lines of constant section.

• They are assumed to be free of residual or initial stresses.
• Plastic collapse implies unlimited displacement at constant load,

and the level of load that causes it is called the collapse load.
• The plastic moment depends on the material and the section, and

its possible reduction is neglected due to the effect of the rest of
the forces transmitted by, for instance, the section, axial and shear
forces.

• The formation of each plastic hinge is supposed to take place in
a sudden and concentrated way in the section where the bending
moment reaches the value of the plastic moment.

• The hypothesis of small displacements and rotations of the sec-
tions of the structure at the moment of collapse is assumed;
therefore, the accumulated rotations between bars in the plastic
hinges must also be small.

.2. Principle of virtual displacements (PVD)

The Principle of Virtual Displacements (PVD) makes use of a virtual
r auxiliary problem in displacements, the integral expression provides
quilibrium equations for the analyzed structure [7]:
𝑛𝑃
∑

𝑗=1
𝑃𝑗𝛿𝑣𝑗 +

𝑛𝑞
∑

𝑙=1
∫

𝐿𝑙

0
𝑞𝑙(𝑥)𝛿𝑣𝑙𝑑𝑥 =

𝑛𝑝𝑃𝐻
∑

𝑖=1
𝑀𝑖𝛿𝜃𝑖 (1)

here 𝑛𝑃 is the number of sections with point loads, 𝑃𝑗 is the point
oad, 𝛿𝑣𝑗 is the transverse displacement that depends on the accumu-
ated rotations in the plastic hinges, 𝑛𝑞 is the number of beams and/or
olumns with uniform distributed load, 𝑞𝑙 is the value of the distributed
1681

oad, 𝑛𝑝𝑃𝐻 is the number of possible plastic hinges in the structure, 𝑀𝑖
s the bending moment and 𝛿𝜃𝑖 is the accumulated rotation in those
ections in the virtual problem [8].

As virtual problems, it is common to use problems with rigid body
ovements that imply zero deformations [16,17].

.3. Principle of virtual forces (PVF)

The Principle of Virtual Forces (PVF) is posed using a virtual or
uxiliary problem in equilibrium, then the integral expression provides
ompatibility equations [7].
𝑛𝑃
∑

𝑗=1
𝛿𝑃𝑗𝑣𝑗 =

𝑛𝑏
∑

𝑘=1
∫

𝐿𝑘

0
𝑀(𝑥)

𝛿𝑚(𝑥)
𝐸𝐼𝑦

𝑑𝑥 +
𝑛𝑝𝑃𝐻
∑

𝑖=1
𝛿𝑚𝑖𝜃𝑖 (2)

here 𝑛𝑃 is the number of sections with point loads, 𝛿𝑃𝑗 are the virtual
oint loads, 𝑣𝑗 is the transverse displacement, 𝑛𝑏 is the number of beams
nd columns in the structure, 𝐿𝑘 is the length of the element, beam
r column, 𝑀(𝑥) is the bending moment in the beams and columns of
he structure, 𝛿𝑚(𝑥) is the bending moment of the auxiliary or virtual
roblem, 𝐸𝐼𝑦 is the bending stiffness of the beam/column and 𝜃𝑖 is the
ccumulated rotation in the plastic hinges [8].

As virtual problems, it is common to use problems with only point
oads and even with zero external loads [16,17].

.4. Case a: Concentrated loads

In the case of point loads (see Fig. 1), it is known that the sections
f the structure that are candidates for forming a possible plastic hinge
re: the nodes (joints between bars), the fixed supports, the section of
pplication of the loads and section changes, and the total number of
ossible plastic hinges is called (npPH).

The steps to follow in the Sequential Plastic Method (SPM) are listed
elow:

1. Equilibrium Equations (EEs)
The Principle of Virtual Displacements (PVD) requires auxiliary
problems to be posed in compatible displacements, which can be
mechanisms that involve null deformations and stresses (hypoth-
esis of small displacements and rotations has been assumed).
A total of (𝑛𝐸𝐸) equilibrium equations is required, this number
is obtained from (𝑛𝑝𝑃𝐻 − 𝑛𝐶𝐸), where (𝑛𝐶𝐸) is the degree of
hyperstaticity of the structure.
According to the methodology of this work, the simplest thing is
to formulate the (PVD) with mechanisms as auxiliary problems.
For the case of Fig. 1, it is necessary to propose (nEE) different
mechanisms (𝑀𝑖), while the mechanism (𝑀1) is independent of
the mechanism (𝑀2), see Figs. 2 and 3.
The equations of equilibrium are:

𝑃1𝐿 = −𝑀𝑏 + 2𝑀𝑐 −𝑀𝑑

𝑃2𝐿 = −𝑀𝑎 +𝑀𝑏 −𝑀𝑑 +𝑀𝑒
(3)

2. Compatibility Equations (CEs)
The Principle of Virtual Forces (PVF) requires auxiliary problems
in balance to be posed. This then is simple, at least in principle,
as it only includes concentrated forces and/or moments, a total
of (𝑛𝐶𝐸) compatibility-behavior equations is also required.
Taking advantage of the formulation, a system of homogeneous
equations results if the terms of loads are made null in the
equilibrium Eqs. (3). The virtual problems in forces must satisfy
the previous equilibrium equations with zero loads:

0 = 𝛿𝑚𝑏 − 2𝛿𝑚𝑐 + 𝛿𝑚𝑑 (4)

0 = 𝛿𝑚𝑎 − 𝛿𝑚𝑏 + 𝛿𝑚𝑑 − 𝛿𝑚𝑒
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Fig. 1. Methodology. Concentrated loads case.

Fig. 2. Virtual problem in displacements. Mechanism 1 (𝑀1).

Fig. 3. Virtual problem in displacements. Mechanism 2 (𝑀2).
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Fig. 4. Methodology. Uniform distributed loads case.
It can be expressed in a matrix form and the matrix of coeffi-
cients (𝐴) can then be defined:

𝐴 ⋅ 𝛿𝑚𝑇
𝑖 =

(

0 1 −2 1 0
1 −1 0 1 −1

)

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛿𝑚𝑖,𝑎
𝛿𝑚𝑖,𝑏
𝛿𝑚𝑖,𝑐
𝛿𝑚𝑖,𝑑
𝛿𝑚𝑖,𝑒

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; 𝑖 = 1… 𝑛𝐶𝐸;

(5)

⎛

⎜

⎜

⎝

𝛿𝑚1,𝑗
𝛿𝑚2,𝑗
𝛿𝑚3,𝑗

⎞

⎟

⎟

⎠

= 𝑁(𝐴) =
⎛

⎜

⎜

⎝

1 0 0 0 1
−2 −1 0 1 0
2 2 1 0 0

⎞

⎟

⎟

⎠

; 𝑛𝐶𝐸 = 3; 𝑗 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒;

(6)

From a mathematical point of view, it is known as the null space
of a matrix A (see Annex B). This allows (nCE) sets of values
of linearly independent virtual moments to be obtained. When
taken to the integral expression of the PVF, this then provides the
compatibility equations necessary to calculate the accumulated
rotations in the plastic hinges:
𝐿(2𝑀𝑎 +𝑀𝑏 +𝑀𝑑 + 2𝑀𝑒)

𝐸𝐼𝑦
+ 6(𝜃𝑎 + 𝜃𝑒) = 0

𝐿(4𝑀𝑑 +𝑀𝑒 − 5𝑀𝑎 − 6𝑀𝑏)
6𝐸𝐼𝑦

+ 𝜃𝑑 − 2𝜃𝑎 − 𝜃𝑏 = 0

𝐿(6𝑀𝑎 + 11𝑀𝑏 + 6𝑀𝑐 +𝑀𝑑 )
𝐸𝐼𝑦

+ 6(2𝜃𝑎 + 2𝜃𝑏 + 𝜃𝑐 ) = 0

(7)

3. Step 0: elastic-linear analysis (𝜃𝑖 = 0)
This step consists of solving the (𝑛𝑝𝑃𝐻) equations with zero
accumulated rotations (it is assumed that no plastic hinge has
yet been formed). Therefore, the unknowns are the values of
the bending moments in the sections (𝑀𝑖,0) considered for the
nominal loads.

4. Step 1: first Plastic Hinge (𝑃𝐻1)
In the previous step, the maximum moment occurs in section a,
for example, so that is where the first plastic hinge is formed.
In that section a, the value of the bending moment is 𝑀𝑎,1 =
𝑠𝑖𝑔𝑛(𝑀𝑎,0) ⋅ 𝑀𝑦,𝑅𝑘, and the system of equations can be solved
again. Notice that now we have one more equation and one more
unknown; after solving it we obtain values for 𝑀𝑖,1 and 𝜃𝑎 (for i
= 1 … npPH).

5. Step 2: second Plastic Hinge (𝑃𝐻2)
Again, the maximum value of the bending moment is sought.
1683

This results in 𝑀𝑚𝑎𝑥 = |𝑀𝑏,1|, and the following plastic hinge is
formed in b. We can then add the equation 𝑀𝑏,2 = 𝑠𝑖𝑔𝑛(𝑀𝑏,0) ⋅
𝑀𝑦,𝑅𝑘, and solve to get 𝑀𝑖,2, 𝜃𝑎 and 𝜃𝑏.

6. Step 3: third Plastic Hinge (𝑃𝐻3)
Ditto for section d, 𝑀𝑑,3 = 𝑠𝑖𝑔𝑛(𝑀𝑑,0) ⋅𝑀𝑦,𝑅𝑘, and it is solved to
obtain 𝑀𝑖,3, 𝜃𝑎, 𝜃𝑏 and 𝜃𝑑 .

7. Step 𝑛: 𝑛th Plastic Hinge (𝑃𝐻𝑛)
The last plastic hinge is formed in section e, the value of the
bending moment in this section reaches the maximum value
𝑀𝑒,4 = 𝑠𝑖𝑔𝑛(𝑀𝑒,0)⋅𝑀𝑦,𝑅𝑘, but it does not have time to accumulate
rotation, therefore, 𝜃𝑒 = 0. Solving the system of equations gives
a solution to the following unknowns: 𝑀𝑖,4, 𝜃𝑎, 𝜃𝑏, 𝜃𝑑 and 𝜃𝑒,
which is null.

In this case 𝑛 = 4, the collapse mechanism is complete because it
involves the formation of 𝑛𝐶𝐸 + 1 plastic hinges.

2.5. Case b: Uniform distributed loads

In the case of beams with distributed load (see Fig. 4), additionally,
plastic hinges can be formed in the intermediate sections of the beams
with applied uniform distributed load. Logically, it is then necessary
to carry out the corresponding checks from the bending moments
calculated at the nodes of the structure.

The Sequential Plastic Method raises a minimum number of equa-
tions, in this case 𝑛𝑝𝑃𝐻 = 4, which corresponds to the values of the
bending moments at the nodes of the structure, sections a, b, c and d.

The steps to follow to carry out the plastic analysis are the same as
in the case of concentrated loads. However, it is necessary to keep in
mind:

1. The correct calculation of the external work of the applied loads
when raising the PVD.

2. To check the values of the bending moments in intermediate
sections of the beams with uniform distributed load, because
a plastic hinge can also form in them during the advance of
plasticization:

𝑀𝑒 = 𝑓 (𝑞1,𝑀𝑎,𝑀𝑏); 𝑥𝑒 = 𝑔(𝑞1,𝑀𝑎,𝑀𝑏)

𝑀𝑓 = 𝑓 (𝑞2,𝑀𝑏,𝑀𝑐 ); 𝑥𝑓 = 𝑔(𝑞2,𝑀𝑏,𝑀𝑐 )
(8)

It is important to bear in mind that if a plastic hinge is produced
in an intermediate section (for example in section e) in step 2, then
its location at the beam (given by parameter 𝑥𝑒) can be modified
during the plasticizing process, up until the formation of the collapse

mechanism.
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Fig. 5. Fixed–fixed frame. Concentrated loads case.
For the last state of the structure, it can be verified (in case of doubt)
that it is a mechanism called Collapse Mechanism (CM) using the matrix
method of calculation of structures, by means of the Working Model
software or others.

In addition, the solution must be compatible, that is, it requires that
the bending moments and accumulated rotations in the plastic hinges
to have the same sign (𝑀 ⋅ 𝜃 ≥ 0), a condition that ensures that the
energy is dissipated in the plastic hinges (a monotonous loading process
is assumed).

3. Numerical results and discussion

In this section, the methodology is verified through two simple
examples and then the sequential plastic method is applied to the study
of the gabled frames of industrial buildings, one simple and the other
double.

3.1. Numerical data

All the columns and beams have the same mechanical and geometric
properties, the numerical data in common for all the problems are: 𝑃 =
1.0 kN; 𝑞 = 1.0 kN∕m; 𝐸 = 2.1 ⋅ 108 kN∕m2; 𝐼𝑦 = 8360.0 ⋅ 10−8 m4; 𝑊𝑝𝑙,𝑦 =
628.0 ⋅ 10−6 m3; 𝑓𝑦 = 275.0 ⋅ 103 kN∕m2; 𝑀𝑦,𝑅𝑘 = 𝑊𝑝𝑙,𝑦 ⋅ 𝑓𝑦 = 172.7 kNm,
where 𝑃 is the value of the concentrated loads, 𝑞 the intensity of the
distributed load, 𝐸 is Young’s module, 𝐼𝑦 the moment of inertia, 𝑊𝑝𝑙,𝑦
the section plastic module, 𝑓𝑦 the yield strength of the steel, and 𝑀𝑦,𝑅𝑘
the characteristic value of resistance to bending moments about the y–y
axis.

3.2. Validation problems (VP)

In this section, a basic frame fixed ended in the base of both columns
and two load cases are solved: a first case includes only concentrated
loads (see Fig. 5), while in the second case, uniform load is applied
in the left column of the frame (see Fig. 6). Solution by the direct
kinematic method for both cases can be consulted in Annex C.

3.2.1. VPa: Concentrated loads
This case consists of a basic frame fixed ended in the base of both

columns (both columns of length 𝐿), with the beam length (2𝐿), whose
loads are as indicated in Fig. 5. Both concentrated loads are of the 𝑃
value type. The additional data are: 𝐿 = 4m.
1684
The methodology outlined in Section 2 is applied using a Mathe-
matica notebook that systematically solves the plastic problem. To do
so, it first calculates the equilibrium equations (𝑛𝐸𝐸 = 2, see Eqs. (9)):

𝑃𝐿 = −𝑀𝑏 + 2𝑀𝑐 −𝑀𝑑

𝑃𝐿 = −𝑀𝑎 +𝑀𝑏 −𝑀𝑑 +𝑀𝑒
(9)

And the compatibility equations (𝑛𝐶𝐸 = 3, see Eqs. (10)) for this
problem are:
𝐿(2𝑀𝑎 +𝑀𝑏 +𝑀𝑑 + 2𝑀𝑒)

𝐸𝐼𝑦
+ 6(𝜃𝑎 + 𝜃𝑒) = 0

𝐿(4𝑀𝑑 +𝑀𝑒 − 5𝑀𝑎 − 6𝑀𝑏)
6𝐸𝐼𝑦

+ 𝜃𝑑 − 2𝜃𝑎 − 𝜃𝑏 = 0

𝐿(6𝑀𝑎 + 11𝑀𝑏 + 6𝑀𝑐 +𝑀𝑑 )
𝐸𝐼𝑦

+ 6(2𝜃𝑎 + 2𝜃𝑏 + 𝜃𝑐 ) = 0

(10)

The derivation of the equilibrium and compatibility equations can
be consulted in the book by Doblaré–Gracia [4].

The first step of the method provides the elastic solution, and the
development of the first plastic hinge is simple, it consists in equaling
the maximum absolute value of the bending moments in the candidate
sections to the plastic moment and obtaining the corresponding load
factor.

For the rest of the plastic hinges, it is necessary to take into account
the final value of the bending moments of the previous step and the size
of the increase of said values in the next step, in order to know which
will be the next plastic hinge and to evaluate the value of the next load
factor.

The plastic hinge process can be followed step by step until the Col-
lapse Mechanism (CM) is reached. In this case, the collapse mechanism
of the structure involves the formation of plastic hinges in sections e,
d, c and a. Table 1 shows the value of the bending moment and Table 2
shows the accumulated rotation in the plastic hinges for each loading
step.

3.2.2. VPb: Uniform distributed load
This section shows the methodology in the case of applying a

distributed load on the structure (see Fig. 6). This case is interesting
because the loads include a uniform distributed load along the total
length of the lefthand column, which can, for example, simulate the
action of the wind. The data in this case are: 𝐿𝑝 = 3m; 𝐿𝑑 = 5m, where
𝐿 is the height of the column and 𝐿 is the beam length.
𝑝 𝑑
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i
o

Fig. 6. Fixed–fixed frame. Uniform distributed load.
Fig. 7. Fixed–fixed frame. Virtual problem in displacements. Mechanism 1.
o

a
c
b
o

e

Table 1
VPa. Concentrated loads. Plastic Hinges process. Bending moments.

𝑀𝑎 𝑀𝑏 𝑀𝑐 𝑀𝑑 𝑀𝑒 𝑃

step PH x𝑀𝑦,𝑅𝑘 (kN ⋅m) (kN)

0 – −0.2125 −0.01250 0.3000 −0.3875 0.4125 1
1 e −0.5152 −0.03030 0.7273 −0.9394 1 104.6
2 d −0.5821 −0.01493 0.7761 −1 1 110.8
3 c −0.9130 0.04347 1 −1 1 127.6
4 a −1 0 1 −1 1 𝟏𝟐𝟗.𝟓

Table 2
VPa. Concentrated loads. Plastic Hinges process. Rotations in plastic hinges.

𝜃𝑎 𝜃𝑏 𝜃𝑐 𝜃𝑑 𝜃𝑒 𝑃

step PH (rad) (kN)

0 – 0 0 0 0 0 1
1 e 0 0 0 0 0 104.6
2 d 0 0 0 0 0.001175 110.8
3 c 0 0 0 −0.008554 0.005132 127.6
4 a 0 0 0.006558 −0.0132 0.006558 𝟏𝟐𝟗.𝟓

As pointed out above, this example is very interesting because, when
ntroducing a distributed type load, an intermediate plastic hinge may
riginate in the column. A priori, it is not known how the plastification
1685
will progress, in section b for example. One more unknown (𝑥𝑏, position
f the plastic hinge) appears for each additional distributed load [3].

According to the methodology of this work, the following sections
re considered as candidates for the formation of a plastic hinge: a,
, d and e (𝑛𝑝𝑃𝐻 = 4, 𝑛𝐶𝐸 = 3, 𝑛𝐸𝐸 = 1). Once the values of the
ending moments in these sections are known, the relative maximum
r minimum value of the moment in column ac will be checked.

The methodology systematically solves the plastic problem. The
quilibrium (11) and compatibility Eqs. (12) for this case are:

𝑞𝐿2
𝑝

2
= −𝑀𝑎 +𝑀𝑐 −𝑀𝑑 +𝑀𝑒

(11)

where to obtain this equation the virtual/auxiliary problem indicated
in Fig. 7 is used.

𝐿𝑝

(

𝐿2
𝑝𝑞
2 + 3𝑀𝑎 + 3𝑀𝑐

)

6𝐸𝐼𝑦
+

𝐿𝑑 (2𝑀𝑐 +𝑀𝑑 )
6𝐸𝐼𝑦

+ 𝜃𝑎 + 𝜃𝑏 + 𝜃𝑐 = 0

𝐿𝑑 (𝑀𝑐 + 2𝑀𝑑 )
6𝐸𝐼𝑦

+
𝐿𝑝(3𝑀𝑑 + 3𝑀𝑒)

6𝐸𝐼𝑦
+ 𝜃𝑑 + 𝜃𝑒 = 0

𝐿𝑝

(

𝐿2
𝑝𝑞
4 + 2𝑀𝑎 +𝑀𝑐

)

6𝐸𝐼𝑦
+

𝐿𝑝(𝑀𝑑 + 2𝑀𝑒)
6𝐸𝐼𝑦

+ 𝜃𝑎 + 𝜃𝑏

(

1 − 𝑥
𝐿𝑝

)

+ 𝜃𝑒 = 0

(12)
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Fig. 8. Gable frame.
Table 3
VPb. Uniform distributed load. Plastic hinges process. Bending moments.

𝑀𝑎 𝑀𝑏 𝑀𝑐 𝑀𝑑 𝑀𝑒 𝑞

step PH x𝑀𝑦,𝑅𝑘 (kN ⋅m) (kN/m)

0 – −0.01264 0.003960 0.002898 −0.003900 0.006623 1.0
1 a −1 0.3134 0.2293 −0.3086 0.5241 79.14
2 e −1 0.5691 0.3591 −0.5682 1 112.3
3 b, d −1 1 0.7321 −1 1 𝟏𝟒𝟑.𝟐

Table 4
VPb. Uniform distributed load. Plastic hinges process. Rotations in plastic hinges.

𝜃𝑎 𝜃𝑏 𝜃𝑐 𝜃𝑑 𝜃𝑒 𝑞

step PH (rad) (kN/m)

0 – 0 0 0 0 0 1.0
1 a 0 0 0 0 0 79.14
2 e −0.006171 0 0 0 0 112.3
3 b, d −0.01822 0 0 0 0.01036 𝟏𝟒𝟑.𝟐

The value of the bending moment in section b is expressed as a
unction of the bending moments at the ends of the column (𝑀𝑎,𝑀𝑐)

and the applied load (𝑞), and the coordinate 𝑥 of its location is updated
at each step:

𝑀𝑏 = 𝑀𝑎 +
𝑥(𝑀𝑐 −𝑀𝑎)

𝐿𝑝
+

𝐿𝑝𝑞𝑥
2

−
𝑞𝑥2

2

=
𝑞𝐿2

𝑝 − 2𝑀𝑎 + 2𝑀𝑐

2𝐿𝑝𝑞
; 0 ≤ 𝑥 ≤ 𝐿𝑝

(13)

The problem is well posed, so the algorithm itself is in charge of
looking for the minimum collapse load that causes the plastic collapse
of the structure of interest. In this case, the mechanism involves plastic
hinges in the following sections: a, e, b and d. Again, the final mecha-
ism formed is a complete mechanism. Note that the plastic hinges in
ections b and d are formed simultaneously. (See Tables 3 and 4.)

The intermediate section (section b) in the element requested by the
istributed load is 𝑥𝑏 = 2.196m.

It is important to highlight that the methodology allows problems
o be solved both with loads concentrated in certain sections and with
niform distributed load on some beams and/or columns.
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3.3. Application problems (AP)

3.3.1. APa: Gable frame
The resolution of the practical problem of a gable type frame with

distributed loads and point loads is considered in this section, see Fig. 8.
The data of the problem are: 𝐿𝑝 = 4m; 𝐿𝑑 = 6m and 𝛽 = 10◦, where 𝐿𝑝
is the height of the columns, 𝐿𝑑 is half the distance between columns
and 𝛽 is the roof’s angle of inclination.

After applying the same methodology as in the examples in the
previous section, a collapse load factor is obtained. A complete plastic
collapse mechanism is formed that involves the formation of hinges in
sections a, d, f and g, see Tables 5 and 7.

It is necessary to clarify that in this case of geometry, loads and
supports do not originate a plastic hinge in section b, although they do
in section d due to the distributed load (see Tables 5 and 6), and the
intermediate plastic hinge is:

𝑥𝑑 = 4.433m (14)

Finally, comment that once the method has been explained and
verified for one type of section, it is easy to extend it to other types
of sections or consider different sections in columns and beams.

3.3.2. APb: Double gable frame
Finally, the methodology is applied to a double gable frame. The

data of the problem are: 𝐿𝑝 = 5m; 𝐿𝑑 = 10m and 𝐻 = 7m, where 𝐿𝑝
is the height of the columns, 𝐿𝑑 is half the distance between columns
and 𝐻 is the maximum height of the frame (see Fig. 9).

It is verified that the method allows the behavior of the structure
to be known as the load increases. It facilitates the study of real cases,
since more bars and loads can be used (in this case up to four bars with
distributed load).

From the results of Tables 8 and 9, it is very immediate to obtain
the safety factor of the elastic-linear design of the structure:

𝜂𝑒 =
𝑞5
𝑞1

= 10.51
6.411

= 1.64 (15)

It is by definition the quotient between a plastic design and an
elastic design, the latter understood according to the philosophy of
Eurocode 3, value of the load (𝑞1) for which the first plastic hinge is
formed. (See Tables 11 and 12.)
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Table 5
APa. Gable frame. Plastic hinges process. Bending moments.

𝑀𝑎 𝑀𝑏 𝑀𝑐 𝑀𝑑 𝑀𝑒 𝑀𝑓 𝑀𝑔 𝜆

step PH x𝑀𝑦,𝑅𝑘 (kN ⋅m)

0 – −0.02133 −0.010974 −0.02385 0.02879 0.01959 −0.04092 0.05558 1
1 g −0.3838 0.1858 −0.4290 0.4742 0.3525 −0.7362 1 17.99
2 f −0.5623 −0.2030 −0.3921 0.7907 0.5645 −1 1 23.09
3 d −0.8699 −0.3018 −0.4207 1 0.7803 −1 1 26.06
4 a −1 −0.3863 −0.4939 1 0.7906 −1 1 𝟐𝟔.𝟔𝟔
Fig. 9. Double gable frame.
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Table 6
APa. Gable frame. Plastic hinges process. Location 𝑥𝑖.

𝑥𝑏 𝑥𝑑 𝜆

step PH (m)

0 – 1.891 4.297 1
1 g 1.994 3.116 17.99
2 f 2.318 4.239 23.09
3 d 2.744 4.373 26.06
4 a 2.820 4.433 𝟐𝟔.𝟔𝟔

Table 7
APa. Gable frame. Plastic hinges process. Rotations in plastic hinges.

𝜃𝑎 𝜃𝑏 𝜃𝑐 𝜃𝑑 𝜃𝑒 𝜃𝑓 𝜃𝑔 𝜆

step PH (rad)

0 – 0 0 0 0 0 0 0 1
1 g 0 0 0 0 0 0 0 17.99
2 f 0 0 0 0 0 0 0.005558 23.09
3 d 0 0 0 0 0 −0.01356 0.01238 26.06
4 a 0 0 0 0.008760 0 −0.02059 0.01624 𝟐𝟔.𝟔𝟔

There are intermediate plastic hinges in sections l and m (see
ables 8–10):

𝑘 = 5.0m (section b)

𝑙 = 4.637m

𝑚 = 2.090m

𝑛 = 0.0m (section j)

(16)

. Conclusions

The classic formulation for plastic methods of planar frames is very
nsystematic. It is based on the Principle of Virtual Displacements
PVD) and the Principle of Virtual Forces (PVF) and use equilibrium
quations to find the structure’s collapse mechanism. To obtain these
quilibrium equations, the PVD is formulated using virtual problems in
isplacements (virtual mechanisms).

The classical method is based on testing possible mechanisms until
he collapse mechanism is found. This procedure can be successful if the
tructure’s collapse mechanism is tested the first time, but in general,
his is not known and may require testing many mechanisms, all of
hich result from combinations of possible plastic hinges. This involves
any calculations and is complicated when distributed loads act, even
1687

f it is applied on a single bar.
However, this work applies static equilibrium and kinematic com-
atibility equations during the plastic progress (step by step). In order
o avoid having to test possible mechanisms one by one, it leads directly
o the collapse mechanism corresponding to the structure with given
oads, geometry and boundary conditions.

This work systematizes the plastic analysis of the structure to obtain
he equilibrium and compatibility equations necessary to completely
olve the structure, in order to discover the bending moments and the
ccumulated rotations in the plastic hinges. The search for the final
tate of the structure (collapse mechanism) is not carried out by trial
nd error, but using a step by step method.

This work summarizes a two-dimensional method of great utility
or the analysis of real industrial buildings, since they are large con-
inuous section structures that can be studied by planar frames. The
ethodology of this work is useful to analyze the structure regardless

f the type of load, whether it be point loads, uniform distributed loads
r both types. Furthermore, the safety factor for a linear-elastic design
f the structure under study can be obtained quickly.
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nnex A. Compatibility equations (CEs)

The Principle of Virtual Forces (PVF) requires auxiliary problems
n balance to be posed. This then is simple, at least in principle,
s it only includes concentrated forces and/or moments. By posing
irtual problems with loads and/or specific moments, the calculation
f the work of the external loads is simple and the calculation of the
eformation energy can be systematized.

• Concentrated loads
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Table 8
APb. Double gable frame. Plastic hinges process. Bending moments.

𝑀𝑎 𝑀𝑏 𝑀𝑐 𝑀𝑑 𝑀𝑒 𝑀𝑓 𝑀𝑔 𝑞

step PH x𝑀𝑦,𝑅𝑘 (kN ⋅m) (kN/m)

0 – −0.1560 −0.01725 0.01725 −0.03027 −0.0324 0.004461 0.03244 1
1 a −1 −0.1106 0.1106 −0.19406 −0.2080 0.02860 0.2080 6.411
2 h, j −1 −0.05363 0.1158 −0.2057 −0.3056 0.1578 0.3056 9.191
3 l −1 0.2040 0.2810 −0.3141 −0.3051 0.3355 0.3051 10.06
4 m −1 0.1969 0.2298 −0.3923 −0.2670 0.8707 0.2670 10.45
5 d, e, g −1 0.3458 0.05915 −1 −1 0.8671 1 𝟏𝟎.𝟓𝟏
Table 9
APb. Double gable frame. Plastic hinges process. Bending moments (cont.)

𝑀ℎ 𝑀𝑖 𝑀𝑗 𝑀𝑘 𝑀𝑙 𝑀𝑚 𝑀𝑛 𝑞

step PH x𝑀𝑦,𝑅𝑘 (kN ⋅m) (kN/m)

0 – −0.09906 0.01984 0.07680 𝑀𝑏 0.07626 0.03687 0.07762 1
1 a −0.6350 0.1272 0.4924 𝑀𝑏 0.4889 0.2364 0.4976 6.411
2 h, j −1 0.1626 1 𝑀𝑏 0.7256 0.3793 𝑀𝑗 9.19
3 l −1 0.1937 1 𝑀𝑏 1 0.5720 𝑀𝑗 10.06
4 m −1 0.008029 1 𝑀𝑏 1 1 𝑀𝑗 10.45
5 d, e, g −1 0.01375 1 𝑀𝑏 1 1 𝑀𝑗 𝟏𝟎.𝟓𝟏
f
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Table 10
APb. Double gable frame. Plastic hinges process. Location 𝑥𝑖.

𝑥𝑘 𝑥𝑙 𝑥𝑚 𝑥𝑛 𝑞

step PH (m) (kN/m)

0 – 5.0 5.683 3.346 4.467 1
1 a 5.0 5.683 3.346 4.467 6.411
2 h, j 5.0 5.411 2.885 0.0 9.191
3 l 5.0 5.229 2.850 0.0 10.06
4 m 5.0 5.152 2.067 0.0 10.45
5 d, e, g 5.0 4.637 2.090 0.0 𝟏𝟎.𝟓𝟏

Table 11
APb. Double gable frame. Plastic hinges process. Rotations in plastic hinges.

𝜃𝑎 𝜃𝑏 𝜃𝑐 𝜃𝑑 𝜃𝑒 𝜃𝑓 𝜃𝑔 𝑞

step PH (rad) (kN/m)

0 – 0 0 0 0 0 0 0 1
1 a 0 0 0 0 0 0 0 6.411
2 h, j −0.01609 0 0 0 0 0 0 9.191
3 l −0.04436 0 0 0 0 0 0 10.06
4 m −0.1182 0 0 0 0 0 0 10.45
5 d, e, g −1.393 0 0 0 0 0 0 𝟏𝟎.𝟓𝟏

Table 12
APb. Double gable frame. Plastic hinges process. Rotations in plastic hinges (cont.)

𝜃ℎ 𝜃𝑖 𝜃𝑗 𝜃𝑘 𝜃𝑙 𝜃𝑚 𝜃𝑛 𝑞

step PH (rad) (kN/m)

0 – 0 0 0 0 0 0 0 1
1 a 0 0 0 0 0 0 0 6.411
2 h, j 0 0 0 0 0 0 0 9.191
3 l −0.04251 0 0.01501 0 0 0 0 10.06
4 m −0.1323 0 0.06940 0 0.1015 0 0 10.45
5 d, e, g −1.768 0 0.8853 0 1.753 0.4790 0 𝟏𝟎.𝟓𝟏

If the structure of the problem of interest only has concentrated
loads, the following deformation energy expression results for
each beam:

∫

𝐿

0
𝑀(𝑥)

𝛿𝑚(𝑥)
𝐸𝐼𝑧

𝑑𝑥 = 𝐿
6𝐸𝐼𝑧

(𝛿𝑚𝑎(2𝑀𝑎 +𝑀𝑏) + 𝛿𝑚𝑏(𝑀𝑎 + 2𝑀𝑏))

(17)
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• Uniform distributed load
If the structure beam is requested by uniform distributed load, the
following expression is as follows:

∫

𝐿

0
𝑀(𝑥)

𝛿𝑚(𝑥)
𝐸𝐼𝑧

𝑑𝑥 = 𝐿
6𝐸𝐼𝑧

(𝛿𝑚𝑎(2𝑀𝑎 +𝑀𝑏)+

+ 𝛿𝑚𝑏(𝑀𝑎 + 2𝑀𝑏) +
𝑞𝐿2

4
(𝛿𝑚𝑎 + 𝛿𝑚𝑏))

(18)

where 𝑀(𝑥) are the moments of the problem of interest, 𝛿𝑚(𝑥) are
the moments of the virtual problem and 𝛿𝑚𝑎; 𝛿𝑚𝑏, the bending moments
at the end sections and 𝑞 is the value of the uniform distributed load
requested at the beam.

Annex B. Null space of a matrix

The solution sets of homogeneous linear systems provide an impor-
tant source of vector spaces. Let 𝐴 be an 𝑚 by 𝑛 matrix, and consider
the homogeneous system:

𝐴 ⋅ 𝑥 = 0 (19)

Since 𝐴 is 𝑚 by 𝑛, the set of all vectors 𝑥 which satisfy this equation
orms a subset of 𝑅𝑛 (it clearly contains the zero vector). This subset
s nonempty and forms a subspace of 𝑅𝑛, called the nullspace of the
atrix 𝐴, and is denoted 𝑁(𝐴).

Thus, the solution set of a homogeneous linear system forms a vector
pace. Note carefully that if the system is not homogeneous, then the
et of solutions is not a vector space, since the set will not contain the
ero vector.

nnex C. Validation problems (VP). Direct kinematic method

The direct kinematic method is applied to the validation problems
f this work.

.1. VPa: Concentrated loads

When applying the direct kinematic method, the collapse mecha-
ism must be tested and searched through trial and error, this process
an be time consuming (see Table 13).

We assume that the collapse mechanism of the structure involves
he formation of plastic hinges in sections e, d, c and a. If we substitute
n the equilibrium Eq. (9):

𝑎 = −𝑀𝑦,𝑅𝑘; 𝑀𝑐 = +𝑀𝑦,𝑅𝑘; 𝑀𝑑 = −𝑀𝑦,𝑅𝑘; 𝑀𝑒 = +𝑀𝑦,𝑅𝑘;

𝑃𝐿 = −𝑀𝑏 + 2𝑀𝑐 −𝑀𝑑
}

→
𝑃𝑐 =

3𝑀𝑦,𝑅𝑘
𝐿 = 129.525 kN (20)
𝑃𝐿 = −𝑀𝑎 +𝑀𝑏 −𝑀𝑑 +𝑀𝑒 𝑀𝑏 = 0.0 kNm
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Fig. 10. Fixed–fixed frame. Virtual problem in displacements. Mechanism 2.
Table 13
Possible mechanisms.
PHs 𝑃 ⋅ 𝐿

𝑀𝑦,𝑅𝑘

abc 14.0
abd 20.0
abe 6.4
acd 3.33
ace 3.5
ade 3.06
bcd 4.0
bce 8.5
bde 9.33
cde –
abcd 4.0
abce –
abde 4.0
acde 𝟑.𝟎
bcde 4.0

After substituting the previous results in (10) the compatibility
quations are:

−
𝐿𝑀𝑦,𝑅𝑘

6𝐸𝐼𝑦
+ 𝜃𝑎 + 𝜃𝑒 = 0

𝐿𝑀𝑦,𝑅𝑘

3𝐸𝐼𝑦
+ 𝜃𝑑 − 2𝜃𝑎 − 𝜃𝑏 = 0

−
𝐿𝑀𝑦,𝑅𝑘

6𝐸𝐼𝑦
+ 2𝜃𝑎 + 2𝜃𝑏 + 𝜃𝑐 = 0

(21)

Finally, if a new assumption is made that the last plastic hinge is
formed in section a (𝜃𝑎 = 0). And it is already possible to know the
accumulated rotation in the plastic hinges (𝜃𝑖):

𝑐 =
𝐿𝑀𝑦,𝑅𝑘

6𝐸𝐼𝑦
= 0.006558 rad

𝑑 = −
𝐿𝑀𝑦,𝑅𝑘

3𝐸𝐼𝑦
= 0.013112 rad

𝜃𝑒 =
𝐿𝑀𝑦,𝑅𝑘

6𝐸𝐼𝑦
= 0.006558 rad

(22)

The assumptions are correct if it is found that energy is dissipated,
that is 𝑀𝑖 ⋅ 𝜃𝑖 ≥ 0 must be satisfied in all the plastic hinges.

C.2. VPb: Uniform distributed load

The direct kinematic method needs one more equilibrium equation
to solve this example, that it is obtained by applying the PVD to the
virtual problem in Fig. 10.
1 𝑞(𝐿 − 𝑥)2𝛿𝛼 + 1 𝑞𝑥2𝛿𝜃 = 𝑀 (−𝛿𝜃) +𝑀 (𝛿𝜃 + 𝛿𝛼) +𝑀 (−𝛿𝛼) (23)
1689

2 𝑝 2 𝑎 𝑏 𝑐
due to the distributed load on the left column, a plastic hinge can be
produced in section b located at a distance 𝑥 from section a and 𝑀𝑏 is
the bending moment in this section. The angles involved in Fig. 10 can
be related according to:

𝛿𝛼 =
𝐿𝑝 − 𝑥

𝑥
𝛿𝜃 (24)

The second equilibrium equation required by the method is ob-
tained:
𝐿𝑝(𝐿2

𝑝 − 3𝑥𝐿𝑝𝑥 + 3𝑥2)

2𝑥
𝑞 = 𝑀𝑐 −𝑀𝑎 +

𝐿𝑝

𝑥
(𝑀𝑏 −𝑀𝑐 ) (25)

The equilibrium Eqs. (11) and (25) allow us to apply the direct
kinematic method, plastic hinges in sections a, b, d and e is assumed.

𝑀𝑎 = −𝑀𝑦,𝑅𝑘; 𝑀𝑏 = +𝑀𝑦,𝑅𝑘; 𝑀𝑑 = −𝑀𝑦,𝑅𝑘; 𝑀𝑒 = +𝑀𝑦,𝑅𝑘;

𝑞𝐿2
𝑝

2 = −𝑀𝑎 +𝑀𝑐 −𝑀𝑑 +𝑀𝑒
𝐿𝑝(𝐿2

𝑝−3𝑥𝐿𝑝𝑥+3𝑥2)
2𝑥 𝑞 = 𝑀𝑐 −𝑀𝑎 +

𝐿𝑝
𝑥 (𝑀𝑏 −𝑀𝑐 )

⎫

⎪

⎬

⎪

⎭

→
𝑞 = 4𝑀𝑦,𝑅𝑘(2𝐿𝑝−𝑥)

𝐿𝑝(𝐿2
𝑝−𝑥)

𝑀𝑐 =
1
2 𝑞𝐿

2
𝑝 − 3𝑀𝑦,𝑅𝑘

(26)

The kinematic or minimum theorem states that the collapse load
must be minimal:

𝜕𝑞
𝜕𝑥

= 0 → 𝑥 =
(
√

3 − 1
)

𝐿𝑝 →

⎧

⎪

⎨

⎪

⎩

𝑞𝑐 = 𝑞(𝑥) =
2
(

2+
√

3
)

𝐿2
𝑝

𝑀𝑦,𝑅𝑘

𝑀𝑐 =
(
√

3 − 1
)

𝑀𝑦,𝑅𝑘

(27)

Substituting the data, the following numerical values result:

𝑥 = 2.196 m
𝑞𝑐 = 143.2 kN/m
𝑀𝑐 = 0.7321 kNm

(28)
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