
Journal Pre-proof

Sequential Plastic Method for 2D frames limit analysis

M. Cacho-Pérez

PII: S2352-0124(22)01193-6
DOI: https://doi.org/10.1016/j.istruc.2022.12.005
Reference: ISTRUC 3803

To appear in: Structures

Received date : 28 March 2022
Revised date : 24 November 2022
Accepted date : 2 December 2022

Please cite this article as: M. Cacho-Pérez, Sequential Plastic Method for 2D frames limit analysis.
Structures (2022), doi: https://doi.org/10.1016/j.istruc.2022.12.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of Institution of Structural Engineers.

https://doi.org/10.1016/j.istruc.2022.12.005
https://doi.org/10.1016/j.istruc.2022.12.005


Journal Pre-proof
Manuscript Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
ofSequential Plastic Method for 2D frames limit analysis

M. Cacho-Pérez1
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Abstract

This work focuses on the limit analysis or plastic calculation of slender beam

planar frames using a new method. Sufficient static equilibrium equations

are proposed by the Principle of Virtual Displacements (PVD) and kinematic

compatibility equations are proposed by the Principle of Virtual Forces (PVF).

The load level is increased and the structure is solved step by step until

the plastic collapse. Equilibrium equations are posed by virtual problems in

displacements and compatibility equations are posed by simple virtual problems

in equilibrium. The method provides the following results: the collapse load

factor, the final collapse mechanism, the bending moments and the accumulated

rotations in the plastic hinges in each load step of the structure. This method

has advantages over the classical methods; first, with respect to the step-by-step

method based on matrix formulation, especially in the case of beams and/or

columns with uniform distributed load, and secondly, with respect to the

kinematic direct method, since the sequential method provides more information

on the quantities involved in the plasticization process of the structure and also

goes directly to the calculation of the collapse mechanism without the need to

test or combine possible mechanisms.

Key words: collapse, plastic hinges, sequential method, 2D frames, uniform

distributed load
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of1. Introduction

Researchers and engineers devote their time to determining appropriate

structural solutions concerning safety, serviceability and cost saving. A huge

volume of steel is used in construction every year. Over the last 40 years, the

theories of plasticity and computing technology have enabled great achievements

and the framed structures are, as always, the test bench.

The plastic-zone or the plastic-hinge approach is adopted to capture the

material inelasticity of a framed structure. In the plastic-zone method, a

structure member is discretized into a mesh of finite elements. However,

the plastic-zone method is still considered an expensive method requiring a

considerable computing burden. On the other hand, in the plastic-hinge

approach, only one beam-column element per physical member is considered,

which leads to a significant reduction in the computation time.

According to many authors, the notion of the plastic hinge and the collapse

mechanism were first pointed out by Kazinczy[1]. The terminology plastic hinge

is used to indicate a section (zero-length) on which all points are within the

plastic range. The collapse mechanism refers to the final state of a frame, where

a deformable geometric system is considered. The aim of the analysis is to

determine the maximum safe load for a frame that is fully specified.

The two fundamental theorems of limit analysis, the static, kinematic and

uniqueness theorems, were first established by Gvozdev[2]. At the same time,

the static shakedown theorem was first proved by Melan. Twenty years later,

the kinematic theorem for the shakedown analysis of frames was derived by Neal

[3].

Fundamental theorems lead to the static and kinematic approaches called

2
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terminology “direct” means that the load multiplier is directly found without

any intermediate structural state [7–10].

The kinematic or direct method has important drawbacks from the point of

view of its practical application: first, it is not systematic or general; and second,

it requires possible collapse mechanisms to be tested. Even with only a few

plastic hinges being involved, this implies many possible collapse mechanisms

that will have to be tested and verified. On the other hand, the step-by-step

methods, based on the matrix formulation, are systematic and efficient for

concentrated load cases at the nodes of the structure. They are, however, very

inefficient and imprecise for analyzing structures with uniform distributed loads

because position of the active interelement hinges change continously during the

structural load process [11–13].

These drawbacks have been solved in this work by using a step-by-step

method and as many equilibrium and compatibility equations as critical

sections. A set of cases has been solved, both with point loads and with a

uniformly distributed load, in reduced calculation times.

The entire formulation has been simplified by means of a vector method that

systematizes the equations required in the direct kinematic method (equilibrium

equations and compatibility equations) to know the progress of the formation of

plastic hinges. These equations are applied for each step of the load application.

Although the computational capacity of a desktop computer has increased

considerably in recent years, one could think of performing a suitable plastic

zone analysis using FE software, the practice is that such an approach tends to

give numerical instability problems sometimes even after the formation of the

first plastic hinge and is difficult to solve. However, even for medium and large

structures, the application of the proposed method is a practical and useful

3
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ofsolution.

This paper has been organized as follows: after this brief introduction, the

methodology is presented, which is then verified by solving two cases, one with

concentrated loads and the other with a uniformly distributed load. It is then

applied to two practical cases: the first is a gabled frame with point loads

and distributed loads, while the second consists of a double gabled frame with

distributed loads. Finally, the main conclusions and contributions of the work

are summarized.

2. Methodology

The most important work on the matrix method based on the plastic hinge

analysis is due to V. Hoang [10, 13]. The advantages and disadvantages are

known: the main advantage is that the calculation is direct from the initial

structure to the final collapse mechanism, and the disadvantage is the calculation

effort required.

The formulation developed in this work combines the two classical methods

indicated in the Introduction: it is a step-by-step method, but all the equations

necessary to solve the plastic problem are proposed by means of the the

Principle of Virtual Displacements (PVD) and the Principle of Virtual Forces

(PVF)[14, 15]. It should be clarified that the work of this paper proposes a

vector method, which works with force vectors and not displacements, with

which the calculation effort required is less than in matrix methods.

2.1. Hypothesis

• The beams and columns are assumed to be slender rectilinear lines of

constant section.

• They are assumed to be free of residual or initial stresses.

4
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of• Plastic collapse implies unlimited displacement at constant load, and the

level of load that causes it is called the collapse load.

• The plastic moment depends on the material and the section, and its

possible reduction is neglected due to the effect of the rest of the forces

transmitted by, for instance, the section, axial and shear forces.

• The formation of each plastic hinge is supposed to take place in a sudden

and concentrated way in the section where the bending moment reaches

the value of the plastic moment.

• The hypothesis of small displacements and rotations of the sections of the

structure at the moment of collapse is assumed; therefore, the accumulated

rotations between bars in the plastic hinges must also be small.

2.2. Principle of Virtual Displacements (PVD)

The Principle of Virtual Displacements (PVD) makes use of a virtual or

auxiliary problem in displacements, the integral expression provides equilibrium

equations for the analyzed structure[7]:

nP∑

j=1

Pjδvj +

nq∑

l=1

∫ Ll

0

ql(x)δvldx =

npPH∑

i=1

Miδθi (1)

where nP is the number of sections with point loads, Pj is the point load, δvj

is the transverse displacement that depends on the accumulated rotations in

the plastic hinges, nq is the number of beams and/or columns with uniform

distributed load, ql is the value of the distributed load, npPH is the number of

possible plastic hinges in the structure, Mi is the bending moment and δθi is

the accumulated rotation in those sections in the virtual problem[8].

As virtual problems, it is common to use problems with rigid body

movements that imply zero deformations[16, 17].
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The Principle of Virtual Forces (PVF) is posed using a virtual or auxiliary

problem in equilibrium, then the integral expression provides compatibility

equations[7].

nP∑

j=1

δPjvj =
nb∑

k=1

∫ Lk

0

M(x)
δm(x)

EIy
dx+

npPH∑

i=1

δmiθi (2)

where nP is the number of sections with point loads, δPj are the virtual point

loads, vj is the transverse displacement, nb is the number of beams and columns

in the structure, Lk is the length of the element, beam or column, M(x) is

the bending moment in the beams and columns of the structure, δm(x) is the

bending moment of the auxiliary or virtual problem, EIy is the bending stiffness

of the beam/column and θi is the accumulated rotation in the plastic hinges[8].

As virtual problems, it is common to use problems with only point loads and

even with zero external loads[16, 17].

2.4. Case a: Concentrated loads

In the case of point loads (see figure 1), it is known that the sections of the

structure that are candidates for forming a possible plastic hinge are: the nodes

(joints between bars), the fixed supports, the section of application of the loads

and section changes, and the total number of possible plastic hinges is called

(npPH).

The steps to follow in the Sequential Plastic Method (SPM) are listed below:

1. Equilibrium Equations (EEs)

The Principle of Virtual Displacements (PVD) requires auxiliary problems

to be posed in compatible displacements, which can be mechanisms that

involve null deformations and stresses (hypothesis of small displacements

and rotations has been assumed).

6
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𝑃𝑃1 

𝑃𝑃2 

𝐿𝐿 𝐿𝐿 

𝐿𝐿 𝐿𝐿 

d 

𝑒𝑒 

c b 

𝑎𝑎 

Figure 1: Methodology. Concentrated loads case

A total of (nEE) equilibrium equations is required, this number is

obtained from (npPH−nCE), where (nCE) is the degree of hyperstaticity

of the structure.

According to the methodology of this work, the simplest thing is to

formulate the (PVD) with mechanisms as auxiliary problems. For the

case of figure 1, it is necessary to propose (nEE) different mechanisms

(Mi), while the mechanism (M1) is independent of the mechanism (M2),

see figures 2 and 3.

The equations of equilibrium are:

P1L = −Mb + 2Mc −Md

P2L = −Ma +Mb −Md +Me

(3)

2. Compatibility Equations (CEs)

The Principle of Virtual Forces (PVF) requires auxiliary problems in

balance to be posed. This then is simple, at least in principle, as it

only includes concentrated forces and/or moments, a total of (nCE)

7
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𝑃𝑃1 

𝑃𝑃2 

+2𝛿𝛿𝛿𝛿 

−𝛿𝛿𝛿𝛿 

−𝛿𝛿𝛿𝛿 

𝑃𝑃1𝐿𝐿 = −𝑀𝑀𝑏𝑏 + 2𝑀𝑀𝑐𝑐 − 𝑀𝑀𝑑𝑑 (𝐸𝐸𝐸𝐸1) 

Figure 2: Virtual problem in displacements. Mechanism 1 (M1)

compatibility-behavior equations is also required.

Taking advantage of the formulation, a system of homogeneous equations

results if the terms of loads are made null in the equilibrium equations

(3). The virtual problems in forces must satisfy the previous equilibrium

equations with zero loads:

0 = δmb − 2δmc + δmd

0 = δma − δmb + δmd − δme

(4)

It can be expressed in a matrix form and the matrix of coefficients (A)

can then be defined:

A · δmT
i =



0 1 −2 1 0

1 −1 0 1 −1


 ·




δmi,a

δmi,b

δmi,c

δmi,d

δmi,e




; i = 1 . . . nCE; (5)
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−𝛿𝛿𝛿𝛿 

−𝛿𝛿𝛿𝛿 

𝑃𝑃2𝐿𝐿 = −𝑀𝑀𝑎𝑎 + 𝑀𝑀𝑏𝑏 −𝑀𝑀𝑑𝑑 + 𝑀𝑀𝑒𝑒 (𝐸𝐸𝐸𝐸2) 

+𝛿𝛿𝛿𝛿 

Figure 3: Virtual problem in displacements. Mechanism 2 (M2)




δm1,j

δm2,j

δm3,j




= N(A) =




1 0 0 0 1

−2 −1 0 1 0

2 2 1 0 0




; nCE = 3; j = a, b, c, d, e;

(6)

From a mathematical point of view, it is known as the null space of a

matrix A (see Annex B). This allows (nCE) sets of values of linearly

independent virtual moments to be obtained. When taken to the integral

expression of the PVF, this then provides the compatibility equations

necessary to calculate the accumulated rotations in the plastic hinges:

9
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ofL(2Ma +Mb +Md + 2Me)

EIy
+ 6(θa + θe) = 0

L(4Md +Me − 5Ma − 6Mb)

6EIy
+ θd − 2θa − θb = 0

L(6Ma + 11Mb + 6Mc +Md)

EIy
+ 6(2θa + 2θb + θc) = 0

(7)

3. Step 0: elastic-linear analysis (θi = 0)

This step consists of solving the (npPH) equations with zero accumulated

rotations (it is assumed that no plastic hinge has yet been formed).

Therefore, the unknowns are the values of the bending moments in the

sections (Mi,0) considered for the nominal loads.

4. Step 1: first Plastic Hinge (PH1)

In the previous step, the maximum moment occurs in section a, for

example, so that is where the first plastic hinge is formed. In that section

a, the value of the bending moment is Ma,1 = sign(Ma,0) · My,Rk, and

the system of equations can be solved again. Notice that now we have one

more equation and one more unknown; after solving it we obtain values

for Mi,1 and θa (for i=1 . . . npPH).

5. Step 2: second Plastic Hinge (PH2)

Again, the maximum value of the bending moment is sought. This results

in Mmax = |Mb,1|, and the following plastic hinge is formed in b. We can

then add the equation Mb,2 = sign(Mb,0) ·My,Rk, and solve to get Mi,2,

θa and θb.

6. Step 3: third Plastic Hinge (PH3)

Ditto for section d, Md,3 = sign(Md,0) ·My,Rk, and it is solved to obtain

Mi,3, θa, θb and θd.

7. Step n: nth Plastic Hinge (PHn)

The last plastic hinge is formed in section e, the value of the bending

moment in this section reaches the maximum value Me,4 = sign(Me,0) ·

10
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Solving the system of equations gives a solution to the following unknowns:

Mi,4, θa, θb, θd and θe, which is null.

In this case n = 4, the collapse mechanism is complete because it involves

the formation of nCE + 1 plastic hinges.

2.5. Case b: Uniform distributed loads

In the case of beams with distributed load (see figure 4), additionally,

plastic hinges can be formed in the intermediate sections of the beams with

applied uniform distributed load. Logically, it is then necessary to carry out the

corresponding checks from the bending moments calculated at the nodes of the

structure.

 

 

 

𝑞𝑞1 

𝑞𝑞2 

𝑥𝑥𝑒𝑒  

2𝐿𝐿 

𝐿𝐿 

d 

𝑓𝑓 
c b 

𝑎𝑎 

𝑒𝑒 

𝑥𝑥𝑓𝑓  

Figure 4: Methodology. Uniform distributed loads case

The Sequential Plastic Method raises a minimum number of equations, in

this case npPH = 4, which corresponds to the values of the bending moments

at the nodes of the structure, sections a, b, c and d.

11
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case of concentrated loads. However, it is necessary to keep in mind:

1. The correct calculation of the external work of the applied loads when

raising the PVD.

2. To check the values of the bending moments in intermediate sections of

the beams with uniform distributed load, because a plastic hinge can also

form in them during the advance of plasticization:

Me = f(q1,Ma,Mb); xe = g(q1,Ma,Mb)

Mf = f(q2,Mb,Mc); xf = g(q2,Mb,Mc)

(8)

It is important to bear in mind that if a plastic hinge is produced in an

intermediate section (for example in section e) in step 2, then its location at the

beam (given by parameter xe) can be modified during the plasticizing process,

up until the formation of the collapse mechanism.

For the last state of the structure, it can be verified (in case of doubt) that

it is a mechanism called Collapse Mechanism (CM) using the matrix method of

calculation of structures, by means of the Working Model software or others.

In addition, the solution must be compatible, that is, it requires that the

bending moments and accumulated rotations in the plastic hinges to have the

same sign (M · θ ≥ 0), a condition that ensures that the energy is dissipated in

the plastic hinges (a monotonous loading process is assumed).

3. Numerical results and discussion

In this section, the methodology is verified through two simple examples and

then the sequential plastic method is applied to the study of the gabled frames

of industrial buildings, one simple and the other double.
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All the columns and beams have the same mechanical and geometric

properties, the numerical data in common for all the problems are: P = 1.0 kN ;

q = 1.0 kN/m; E = 2.1 · 108 kN/m2; Iy = 8360.0 · 10−8 m4; Wpl,y =

628.0 · 10−6 m3; fy = 275.0 · 103 kN/m2; My,Rk = Wpl,y · fy = 172.7 kNm,

where P is the value of the concentrated loads, q the intensity of the distributed

load, E is Young’s module, Iy the moment of inertia, Wpl,y the section plastic

module, fy the yield strength of the steel, and My,Rk the characteristic value of

resistance to bending moments about the y-y axis.

3.2. Validation Problems (VP)

In this section, a basic frame fixed ended in the base of both columns and

two load cases are solved: a first case includes only concentrated loads (see

figure 5), while in the second case, uniform load is applied in the left column

of the frame (see figure 6). Solution by the direct kinematic method for both

cases can be consulted in Annex C.

3.2.1. VPa: concentrated loads

This case consists of a basic frame fixed ended in the base of both columns

(both columns of length L), with the beam length (2L), whose loads are as

indicated in figure 5. Both concentrated loads are of the P value type. The

additional data are: L = 4m.

The methodology outlined in section 2 is applied using a Mathematica

notebook that systematically solves the plastic problem. To do so, it first

calculates the equilibrium equations (nEE = 2, see equations (9)):

PL = −Mb + 2Mc −Md

PL = −Ma +Mb −Md +Me

(9)
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Figure 5: Fixed-fixed frame. Concentrated loads case

And the compatibility equations (nCE = 3, see equations (10)) for this

problem are:

L(2Ma +Mb +Md + 2Me)

EIy
+ 6(θa + θe) = 0

L(4Md +Me − 5Ma − 6Mb)

6EIy
+ θd − 2θa − θb = 0

L(6Ma + 11Mb + 6Mc +Md)

EIy
+ 6(2θa + 2θb + θc) = 0

(10)

The derivation of the equilibrium and compatibility equations can be

consulted in the book by Doblaré-Gracia [4].

The first step of the method provides the elastic solution, and the

development of the first plastic hinge is simple, it consists in equalling the

maximum absolute value of the bending moments in the candidate sections to

the plastic moment and obtaining the corresponding load factor.

For the rest of the plastic hinges, it is necessary to take into account the final

value of the bending moments of the previous step and the size of the increase

14
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hinge and to evaluate the value of the next load factor.

The plastic hinge process can be followed step by step until the Collapse

Mechanism (CM) is reached. In this case, the collapse mechanism of the

structure involves the formation of plastic hinges in sections e, d, c and a. Table

1 shows the value of the bending moment and Table 2 shows the accumulated

rotation in the plastic hinges for each loading step.

Ma Mb Mc Md Me P
step PH xMy,Rk (kN·m) (kN)

0 - −0.2125 −0.01250 0.3000 −0.3875 0.4125 1

1 e −0.5152 −0.03030 0.7273 −0.9394 1 104.6

2 d −0.5821 −0.01493 0.7761 −1 1 110.8

3 c −0.9130 0.04347 1 −1 1 127.6

4 a −1 0 1 −1 1 129.5

Table 1: VPa. Concentrated loads. Plastic Hinges process. Bending moments

θa θb θc θd θe P
step PH (rad) (kN)

0 - 0 0 0 0 0 1

1 e 0 0 0 0 0 104.6

2 d 0 0 0 0 0.001175 110.8

3 c 0 0 0 −0.008554 0.005132 127.6

4 a 0 0 0.006558 −0.0132 0.006558 129.5

Table 2: VPa. Concentrated loads. Plastic Hinges process. Rotations in plastic hinges

3.2.2. VPb: uniform distributed load

This section shows the methodology in the case of applying a distributed

load on the structure (see figure 6). This case is interesting because the loads

include a uniform distributed load along the total length of the lefthand column,

which can, for example, simulate the action of the wind. The data in this case

15
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ofare: Lp = 3m; Ld = 5m, where Lp is the height of the column and Ld is the

beam length.
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Figure 6: Fixed-fixed frame. Uniform distributed load

As pointed out above, this example is very interesting because, when

introducing a distributed type load, an intermediate plastic hinge may originate

in the column. A priori, it is not known how the plastification will progress, in

section b for example. One more unknown (xb, position of the plastic hinge)

appears for each additional distributed load[3].

According to the methodology of this work, the following sections are

considered as candidates for the formation of a plastic hinge: a, c, d and e

(npPH = 4, nCE = 3, nEE = 1). Once the values of the bending moments

in these sections are known, the relative maximum or minimum value of the

moment in column ac will be checked.

The methodology systematically solves the plastic problem. The equilibrium

(11) and compatibility equations (12) for this case are:

qL2
p

2
= −Ma +Mc −Md +Me

(11)

where to obtain this equation the virtual/auxiliary problem indicated in figure
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Figure 7: Fixed-fixed frame. Virtual problem in displacements. Mechanism 1

7 is used.

Lp

(
L2

pq

2 + 3Ma + 3Mc

)

6EIy
+

Ld(2Mc +Md)

6EIy
+ θa + θb + θc = 0

Ld(Mc + 2Md)

6EIy
+

Lp(3Md + 3Me)

6EIy
+ θd + θe = 0

Lp

(
L2

pq

4 + 2Ma +Mc

)

6EIy
+

Lp(Md + 2Me)

6EIy
+ θa + θb

(
1− x

Lp

)
+ θe = 0

(12)

The value of the bending moment in section b is expressed as a function of

the bending moments at the ends of the column (Ma,Mc) and the applied load

(q), and the coordinate x of its location is updated at each step:

Mb = Ma +
x(Mc −Ma)

Lp
+

Lpqx

2
− qx2

2

x =
qL2

p − 2Ma + 2Mc

2Lpq
; 0 ≤ x ≤ Lp

(13)

The problem is well posed, so the algorithm itself is in charge of looking for
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interest. In this case, the mechanism involves plastic hinges in the following

sections: a, e, b and d. Again, the final mechanism formed is a complete

mechanism. Note that the plastic hinges in sections b and d are formed

simultaneously.

Ma Mb Mc Md Me q
step PH xMy,Rk (kN·m) (kN/m)

0 - −0.01264 0.003960 0.002898 −0.003900 0.006623 1.0

1 a −1 0.3134 0.2293 −0.3086 0.5241 79.14

2 e −1 0.5691 0.3591 −0.5682 1 112.3

3 b,d −1 1 0.7321 −1 1 143.2

Table 3: VPb. Uniform distributed load. Plastic hinges process. Bending moments

θa θb θc θd θe q
step PH (rad) (kN/m)

0 - 0 0 0 0 0 1.0

1 a 0 0 0 0 0 79.14

2 e −0.006171 0 0 0 0 112.3

3 b,d −0.01822 0 0 0 0.01036 143.2

Table 4: VPb. Uniform distributed load. Plastic hinges process. Rotations in plastic hinges

The intermediate section (section b) in the element requested by the

distributed load is xb = 2.196m.

It is important to highlight that the methodology allows problems to be

solved both with loads concentrated in certain sections and with uniform

distributed load on some beams and/or columns.
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3.3.1. APa: gable frame

The resolution of the practical problem of a gable type frame with distributed

loads and point loads is considered in this section, see figure 8. The data of the

problem are: Lp = 4m; Ld = 6m and β = 10 ◦, where Lp is the height of the

columns, Ld is half the distance between columns and β is the roof’s angle of

inclination.

After applying the same methodology as in the examples in the previous

section, a collapse load factor is obtained. A complete plastic collapse

mechanism is formed that involves the formation of hinges in sections a, d,

f and g, see Tables 5 and 7.

b

 

 

 

a

c P

q

dL

pL

f

e

d

dL

P

q

β

g

𝑥𝑥𝑑𝑑  

𝑥𝑥𝑏𝑏  

Figure 8: Gable frame

It is necessary to clarify that in this case of geometry, loads and supports do

not originate a plastic hinge in section b, although they do in section d due to

the distributed load (see tables 5 and 6), and the intermediate plastic hinge is:
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step PH xMy,Rk (kN·m)

0 - −0.02133 −0.010974 −0.02385 0.02879 0.01959 −0.04092 0.05558

1 g −0.3838 0.1858 −0.4290 0.4742 0.3525 −0.7362 1 17

2 f −0.5623 −0.2030 −0.3921 0.7907 0.5645 −1 1 23

3 d −0.8699 −0.3018 −0.4207 1 0.7803 −1 1 26

4 a −1 −0.3863 −0.4939 1 0.7906 −1 1 26

Table 5: APa. Gable frame. Plastic hinges process. Bending moments

xb xd λ
step PH (m)

0 - 1.891 4.297 1

1 g 1.994 3.116 17.99

2 f 2.318 4.239 23.09

3 d 2.744 4.373 26.06

4 a 2.820 4.433 26.66

Table 6: APa. Gable frame. Plastic hinges process. Location xi

θa θb θc θd θe θf θg λ
step PH (rad)

0 - 0 0 0 0 0 0 0 1

1 g 0 0 0 0 0 0 0 17.99

2 f 0 0 0 0 0 0 0.005558 23.09

3 d 0 0 0 0 0 −0.01356 0.01238 26.06

4 a 0 0 0 0.008760 0 −0.02059 0.01624 26.66

Table 7: APa. Gable frame. Plastic hinges process. Rotations in plastic hinges

xd = 4.433m (14)

Finally, comment that once the method has been explained and verified for

one type of section, it is easy to extend it to other types of sections or consider
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3.3.2. APb: double gable frame

Finally, the methodology is applied to a double gable frame. The data of

the problem are: Lp = 5m; Ld = 10m and H = 7m, where Lp is the height of

the columns, Ld is half the distance between columns and H is the maximum

height of the frame (see Figure 9).

It is verified that the method allows the behavior of the structure to be

known as the load increases. It facilitates the study of real cases, since more

bars and loads can be used (in this case up to four bars with distributed load).

From the results of Tables 8 and 9, it is very immediate to obtain the safety

factor of the elastic-linear design of the structure:

ηe =
q5
q1

=
10.51

6.411
= 1.64 (15)

It is by definition the quotient between a plastic design and an elastic design,

the latter understood according to the philosophy of Eurocode 3, value of the

load (q1) for which the first plastic hinge is formed.
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step PH xMy,Rk (kN·m) (kN

0 - −0.1560 −0.01725 0.01725 −0.03027 −0.0324 0.004461 0.03244

1 a −1 −0.1106 0.1106 −0.19406 −0.2080 0.02860 0.2080 6

2 h,j −1 −0.05363 0.1158 −0.2057 −0.3056 0.1578 0.3056 9

3 l −1 0.2040 0.2810 −0.3141 −0.3051 0.3355 0.3051 1

4 m −1 0.1969 0.2298 −0.3923 −0.2670 0.8707 0.2670 1

5 d,e,g −1 0.3458 0.05915 −1 −1 0.8671 1 10

Table 8: APb. Double gable frame. Plastic hinges process. Bending moments

Mh Mi Mj Mk Ml Mm Mn q
step PH xMy,Rk (kN·m) (kN/m)

0 - −0.09906 0.01984 0.07680 Mb 0.07626 0.03687 0.07762 1

1 a −0.6350 0.1272 0.4924 Mb 0.4889 0.2364 0.4976 6.411

2 h,j −1 0.1626 1 Mb 0.7256 0.3793 Mj 9.19

3 l −1 0.1937 1 Mb 1 0.5720 Mj 10.06

4 m −1 0.008029 1 Mb 1 1 Mj 10.45

5 d,e,g −1 0.01375 1 Mb 1 1 Mj 10.51

Table 9: APb. Double gable frame. Plastic hinges process. Bending moments (cont.)

xk xl xm xn q
step PH (m) (kN/m)

0 - 5.0 5.683 3.346 4.467 1

1 a 5.0 5.683 3.346 4.467 6.411

2 h,j 5.0 5.411 2.885 0.0 9.191

3 l 5.0 5.229 2.850 0.0 10.06

4 m 5.0 5.152 2.067 0.0 10.45

5 d,e,g 5.0 4.637 2.090 0.0 10.51

Table 10: APb. Double gable frame. Plastic hinges process. Location xi
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step PH (rad) (kN/m)

0 - 0 0 0 0 0 0 0 1

1 a 0 0 0 0 0 0 0 6.411

2 h,j −0.01609 0 0 0 0 0 0 9.191

3 l −0.04436 0 0 0 0 0 0 10.06

4 m −0.1182 0 0 0 0 0 0 10.45

5 d,e,g −1.393 0 0 0 0 0 0 10.51

Table 11: APb. Double gable frame. Plastic hinges process. Rotations in plastic hinges

θh θi θj θk θl θm θn q
step PH (rad) (kN/m)

0 - 0 0 0 0 0 0 0 1

1 a 0 0 0 0 0 0 0 6.411

2 h,j 0 0 0 0 0 0 0 9.191

3 l −0.04251 0 0.01501 0 0 0 0 10.06

4 m −0.1323 0 0.06940 0 0.1015 0 0 10.45

5 d,e,g −1.768 0 0.8853 0 1.753 0.4790 0 10.51

Table 12: APb. Double gable frame. Plastic hinges process. Rotations in plastic hinges
(cont.)

There are intermediate plastic hinges in sections l and m (see tables 8, 9

and 10):

xk = 5.0m (section b)

xl = 4.637m

xm = 2.090m

xn = 0.0m (section j)

(16)

4. Conclusions

The classic formulation for plastic methods of planar frames is very

unsystematic. It is based on the Principle of Virtual Displacements (PVD) and
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structure’s collapse mechanism. To obtain these equilibrium equations, the PVD

is formulated using virtual problems in displacements (virtual mechanisms).

The classical method is based on testing possible mechanisms until the

collapse mechanism is found. This procedure can be successful if the structure’s

collapse mechanism is tested the first time, but in general, this is not known and

may require testing many mechanisms, all of which result from combinations

of possible plastic hinges. This involves many calculations and is complicated

when distributed loads act, even if it is applied on a single bar.

However, this work applies static equilibrium and kinematic compatibility

equations during the plastic progress (step by step). In order to avoid having

to test possible mechanisms one by one, it leads directly to the collapse

mechanism corresponding to the structure with given loads, geometry and

boundary conditions.

This work systematizes the plastic analysis of the structure to obtain the

equilibrium and compatibility equations necessary to completely solve the

structure, in order to discover the bending moments and the accumulated

rotations in the plastic hinges. The search for the final state of the structure

(collapse mechanism) is not carried out by trial and error, but using a step by

step method.

This work summarizes a two-dimensional method of great utility for the

analysis of real industrial buildings, since they are large continuous section

structures that can be studied by planar frames. The methodology of this work

is useful to analyze the structure regardless of the type of load, whether it be

point loads, uniform distributed loads or both types. Furthermore, the safety

factor for a linear-elastic design of the structure under studycan be obtained

quickly.
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A nonlinear model for the elastoplastic analysis of 2d frames accounting

for damage, Journal of Theoretical and Applied Mechanics 49 (2) (2011)

515–529.

[13] V. L. Hoang, H. Nguyen, J. P. Jaspart, J. F. Demonceau, An overview of

the plastic-hinge analysis of 3D steel frames, Asia Pac. J. Comput. Engin.

(2015).

[14] J. Lubliner, Plasticity theory, Maxwell Macmillan International Editions,

1990.

[15] J. Chakrabarty, Theory of Plasticity, Elsevier, 2006.

[16] M. Cacho-Pérez, Plastic analysis, stability, and natural frequency of

two-dimensional frames of variable section beams, J. Eng. Mech. 142(3)

(2016).
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Annex A. Compatibility Equations (CEs)

The Principle of Virtual Forces (PVF) requires auxiliary problems in balance

to be posed. This then is simple, at least in principle, as it only includes

concentrated forces and/or moments. By posing virtual problems with loads

and/or specific moments, the calculation of the work of the external loads is

simple and the calculation of the deformation energy can be systematized.

• Concentrated loads

If the structure of the problem of interest only has concentrated loads, the

following deformation energy expression results for each beam:

∫ L

0

M(x)
δm(x)

EIz
dx =

L

6EIz
(δma(2Ma +Mb) + δmb(Ma + 2Mb))

(17)

• Uniform distributed load

If the structure beam is requested by uniform distributed load, the

following expression is as follows::

∫ L

0

M(x)
δm(x)

EIz
dx =

L

6EIz
(δma(2Ma +Mb)+

+ δmb(Ma + 2Mb) +
qL2

4
(δma + δmb))

(18)

where M(x) are the moments of the problem of interest, δm(x) are the moments

of the virtual problem and δma; δmb, the bending moments at the end sections

and q is the value of the uniform distributed load requested at the beam.
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The solution sets of homogeneous linear systems provide an important source

of vector spaces. Let A be an m by n matrix, and consider the homogeneous

system:

A · x = 0 (19)

Since A is m by n, the set of all vectors x which satisfy this equation forms a

subset of Rn (it clearly contains the zero vector). This subset is nonempty and

forms a subspace of Rn, called the nullspace of the matrix A, and is denoted

N(A).

Thus, the solution set of a homogeneous linear system forms a vector space.

Note carefully that if the system is not homogeneous, then the set of solutions

is not a vector space, since the set will not contain the zero vector.

Annex C. Validation Problems (VP). Direct kinematic method

The direct kinematic method is applied to the validation problems of this

work.

VPa: concentrated loads

When applying the direct kinematic method, the collapse mechanism must

be tested and searched through trial and error, this process can be time

consuming (see Table 13).

We assume that the collapse mechanism of the structure involves the

formation of plastic hinges in sections e, d, c and a. If we substitute in the

equilibrium equations (9):
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ofPHs P · L

My,Rk

abc 14.0

abd 20.0

abe 6.4

acd 3.33

ace 3.5

ade 3.06

bcd 4.0

bce 8.5

bde 9.33

cde -

abcd 4.0

abce -

abde 4.0

acde 3.0

bcde 4.0

Table 13: Possible mechanisms

Ma = −My,Rk; Mc = +My,Rk; Md = −My,Rk; Me = +My,Rk;

PL = −Mb + 2Mc −Md

PL = −Ma +Mb −Md +Me





→
Pc =

3My,Rk

L = 129.525 kN

Mb = 0.0 kNm

(20)

After substituting the previous results in (10) the compatibility equations

are:

− LMy,Rk

6EIy
+ θa + θe = 0

LMy,Rk

3EIy
+ θd − 2θa − θb = 0

− LMy,Rk

6EIy
+ 2θa + 2θb + θc) = 0

(21)

Finally, if a new assumption is made that the last plastic hinge is formed in
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in the plastic hinges (θi):

θc =
LMy,Rk

6EIy
= 0.006558 rad

θd = −LMy,Rk

3EIy
= 0.013112 rad

θe =
LMy,Rk

6EIy
= 0.006558 rad

(22)

The assumptions are correct if it is found that energy is dissipated, that is

Mi · θi ≥ 0 must be satisfied in all the plastic hinges.

VPb: uniform distributed load

The direct kinematic method needs one more equilibrium equation to solve

this example, that it is obtained by applying the PVD to the virtual problem

in figure 10.
 

 

 

 

𝑞𝑞 

+(𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛼𝛼) 

−𝛿𝛿𝛿𝛿 

−𝛿𝛿𝛼𝛼 

𝑥𝑥 

Figure 10: Fixed-fixed frame. Virtual problem in displacements. Mechanism 2

1

2
q(Lp − x)2δα+

1

2
qx2δθ = Ma(−δθ) +Mb(δθ + δα) +Mc(−δα) (23)

due to the distributed load on the left column, a plastic hinge can be produced in
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ofsection b located at a distance x from section a and Mb is the bending moment

in this section. The angles involved in figure 10 can be related according to:

δα =
Lp − x

x
δθ (24)

The second equilibrium equation required by the method is obtained:

Lp(L
2
p − 3xLpx+ 3x2)

2x
q = Mc −Ma +

Lp

x
(Mb −Mc) (25)

The equilibrium equations (11) and (25) allow us to apply the direct

kinematic method, plastic hinges in sections a, b, d and e is assumed.

Ma = −My,Rk; Mb = +My,Rk; Md = −My,Rk; Me = +My,Rk;

qL2
p

2 = −Ma +Mc −Md +Me

Lp(L
2
p−3xLpx+3x2)

2x q = Mc −Ma +
Lp

x (Mb −Mc)





→
q =

4My,Rk(2Lp−x)
Lp(L2

p−x)

Mc =
1
2qL

2
p − 3My,Rk

(26)

The kinematic or minimum theorem states that the collapse load must be

minimal:

∂q

∂x
= 0 → x =

(√
3− 1

)
Lp →




qc = q(x) =

2(2+
√
3)

L2
p

My,Rk

Mc =
(√

3− 1
)
My,Rk

(27)

Substituting the data, the following numerical values result:

x = 2.196 m

qc = 143.2 kN/m

Mc = 0.7321 kNm

(28)
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