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Abstract 

The aim of this paper is to describe a new an integrated methodology for project control 

under uncertainty. This proposal is based on Earned Value Methodology and risk 

analysis and presents several refinements to previous methodologies. More specifically, 

the approach uses extensive Monte Carlo simulation to obtain information about the 

expected behavior of the project. This dataset is exploited in several ways using 

different statistical learning methodologies in a structured fashion. Initially, simulations 

are used to detect if project deviations are a consequence of the expected variability 

using Anomaly Detection algorithms. If the project follows this expected variability, 

probabilities of success in cost and time and expected cost and total duration of the 

project can be estimated using classification and regression approaches. 

Keywords: Project Management, Earned Value Management, Project Control, Monte 

Carlo Simulation, Project Risk Management, Statistical Learning, Anomaly detection. 

1. Introduction

Project control and monitoring involves comparing a plan or baseline with the actual 

performance of the project. The analyses of these deviations are aimed at taking actions, 

in case of needed, to early correct possible problems that can put in danger the 

objectives of the plan. The most popular managerial methodology used in Project 

Management is Earned Value Management (EVM). This framework integrates in a 

unified approach, three dimensions of the project –scope, time and cost– using 

monetary units as common pivotal measure (Abba and Niel, 2010, Anbari, 2003, 

Blanco, 2013, Burke, 2003, Cioffi, 2006, Fleming and Koppelman, 2005, Henderson, 

http://ees.elsevier.com/jpma/viewRCResults.aspx?pdf=1&docID=6090&rev=1&fileID=108250&msid={4F5CB720-7AB1-4A24-B6B4-26A43B62F9FC}


2003, Henderson, 2004, Jacob, 2003, Jacob and Kane, 2004, Kim et al., 2003, Lipke, 

2003, Lipke, 2004, Lipke, 1999, McKim et al., 2000). 

Recent research enhances the standard approach to EVM incorporating statistical 

analysis, learning curves or fuzzy set theory, especially for project predictions at 

completion (Colin and Vanhoucke, 2014, Hazir, 2014, Lipke et al., 2009, Moslemi 

Naeni and Salehipour, 2011, Naeni et al., 2011, Narbaev and De Marco, 2014, Plaza 

and Turetken, 2009, Tseng, 2011, Wauters and Vanhoucke, 2014). An active area of 

development is currently focused on integration of EVM with risk management 

analysis. Progress in this line has produced decision tools based on two metrics to 

estimate if the deviations may be caused by structural problems or if they are 

compatible with the expected range of variability, derived from the stochastic nature of 

the project –estimated variability of costs and durations of project activities- (Pajares 

and López-Paredes, 2011). These results have been refined using Monte Carlo 

simulation and statistical control charts (Acebes et al., 2014). 

In this work, we initially investigate the alternative use of Anomaly Detection 

algorithms to detect structural deviations in projects. Assuming the stochastic definition 

of the project, we then advance the research proposing the use of statistical learning 

techniques and Monte Carlo simulation to estimate the probability of over-runs (delays 

or over-costs) and the success decision boundaries. The analysis is completed with 

additional methodologies to predict not only over-runs but also the expected budget and 

time. 

The rest of the paper is organized as follows. First, in the Background section, we 

review previous methodologies related to the same problem we face in this research. 

Then in section Methodology, we explain the statistical learning methodologies we use 

in our framework, and how we can apply them for project control. In particular, we 



explain the role of Anomaly Detection Algorithms, and Classification and Regression 

techniques. Finally, we address a case study to show how these methodologies work 

together with EVM for project control. 

 

2. Background 

EVM does not provide a way to determine whether deviations are due to the expected 

range of variability associated with the stochastic nature of the project or they may be 

caused by unexpected events affecting project runtime. Knowing the reasons for project 

over-runs would provide the project manager with valuable information for decision-

making. Concretely, the fact of the deviations exceeding the expected variability would 

be a warning sign that the project realization is probably not running as planned. Being 

aware of this situation would allow applying actions to redirect the evolution of the 

project. 

With this idea in mind, previous research has provided two different frameworks based 

on EVM that inform whether deviations are within the probabilistic expected level or 

not: the Schedule Control Index (SCoI) / Cost Control Index (CCoI) Framework 

(Pajares and López-Paredes, 2011) and, more recently, the Triad Methodology  (Acebes 

et al., 2014). 

 

2.1. The Schedule Control Index (SCoI) and Cost Control Index (CCoI) 

Framework 

Pajares and Lopez-Paredes (2011) use Monte Carlo simulation to obtain the statistical 

distribution of the cost and the duration at the end of the project. This information is 

used to select the confidence level (both in terms of time and in terms of cost) that will 

be used to monitor the performance of the project). If the cost (time) at the end of a 



particular project is below the cost (time) at the selected confidence level, the cost 

overrun (delay) is considered to be caused by the randomness of the real costs 

(durations) of the activities. Therefore, the difference between the project cost 

(duration) at the confidence level and the mean project cost (duration) gives an idea of 

the maximum deviation that can be explained by the stochastic nature of the cost 

(duration) of the activities. In other words, this difference is considered as the size of the 

cost / time buffers for the project.  

Nevertheless, knowing the size of these buffers at the very end of the project is useless 

since it does not permit to make decisions that rectify the project performance during 

runtime. It would be desirable, however, to know what portion of these buffers are 

available at any particular time during the project execution. To this aim, the authors 

develop a system to redistribute the size of project cost and time buffers throughout the 

project life cycle. In order to determine the portion of buffer that corresponds to each 

period, they authors define the Project Risk Baseline as the residual uncertainty to 

complete the remaining activities of the project. Then, every time interval is provided 

with a portion of the cost / time buffers namely ACBft and ASBft respectively. The size 

of these buffers are proportional to the risk eliminated between two consecutives 

periods (i.e. the difference between two adjacent points in the risk baseline).  

The authors define two control indices based on these buffers: Cost Control Index 

(CCoI) and Schedule Control Index (SCoI), which are equal to the traditional indices 

used by EVM: Schedule Variance (SV) and Cost Variance (CV) plus the corresponding 

portion of the cost / time buffer ACBft=ES / ASBft: 

SCoIt= ASBft + SV 



CCoIt= ACBft=ES + CV 

Therefore, the new criteria to diagnose the time performance of the project is the 

following: the project is behind schedule if SV < 0 (as in the traditional EVM). 

However, depending on the value of ASBft, this delay may be due to by the randomness 

of the real duration of the activities or caused by structural problems. If ASBft is greater 

than SV (and thus SCoIt > 0), we infer that the delay falls within the expected 

variability. However, if SV is greater than ASBft (and thus SCoIt < 0), the delay may be 

caused by structural problems and thus require measures to redirect the performance of 

the project.  

Similarly, the index CCoIt warns about cost overruns (CV > 0) and, when they occur, it 

reports whether the overruns are within the expected variability (CCoIt > 0) or not 

(CCoIt < 0). 

 

2.2. The Triad Methodology: (x, t, c) 

Acebes et al. (2014) developed a different method to determine whether the project 

deviations are within the expected variability or whether, on the contrary, they are due 

to undiscovered factors affecting the project performance. This method also uses Monte 

Carlo simulation to obtain the statistic distribution of all the possible realizations of a 

project. However, unlike the method shown above, the authors directly determine the 

statistical distribution of cost and time at intermediate percentages of completion of the 

project.  

For every realization of a Monte Carlo simulation, the system provides a final cost and 

time. That is, when the percentage of completion of a simulation is 100% (x = 100%), 

we obtain the final cost for that simulation (c100%) and the final duration for that 

simulation (t100%). This triad (100%, t100%, c100%,) gives name to this methodology. 



Afterwards, the algorithm calculates the cost and time at the desired intermediate time 

intervals for that particular simulation. It is important to mention that the percentage of 

completion of the project in calculated in terms of cost. This means that, for example, 

the project is 50% completed at the time when the cost of that that realization of the 

simulation reached a half of its final value. Therefore, at this point of the simulation, the 

triad that defines the state of the project is (50%, t50%, c50%). 

Each realization of the Monte Carlo simulation will reach the intermediate points of 

completion at different levels of cost and time. This leads to a point cloud (in terms of 

time and cost) at the selected intermediate points. This information allows calculating 

statistical information at these intermediate time intervals.  Therefore, we can determine 

a confidence level that may be used during the realization of the real project to check if 

the actual values of cost and time at that percentage of completion fall within the 

confidence level (project under control) or not (need for corrective measures).  

In order to determine if the cost / time of a running project is under control (or not) at 

any time for a given confidence interval, the authors represent the values of the triads in 

two dimensional graphs: one for cost monitoring (x, cx) and another for time monitoring 

(tx,x). 

 

3. Methodology. 

3.1. Triads and Monte Carlo simulation. 

The basis of this research stems from the triad method by Acebes et al. (2014) described 

in the previous section. In the same way, we also generate a data universe (realizations 

of the project) by means of Monte Carlo simulation, and this data is used to find the 

statistical properties of the project at any point during its execution.  



However, we make a change in the variables making up the triad. Specifically, we 

consider a triad comprised of the terms (EV, t, c) instead of (%, t, c).  That is to say, for 

every realization of the Monte Carlo simulation, we register the values of EV (earned 

value) along with the corresponding cost (c) at several intermediate points (t) along the 

project life cycle. This refinement overcomes some of the limitations of the technique 

proposed by Acebes et al. (2014), as it required assuming that EV was linear with work 

execution (i.e. EV = % · BAC; BAC: Budget At Completion) whereas the methodology 

proposed in this article does not require such a hypothesis. Furthermore, the new 

approximation is more usable and intuitive for from a practitioner‟s viewpoint. In fact, 

when monitoring a project it is not straightforward to calculate the accurate percentage 

of completion; whereas EV (i.e. the budgeted cost of work performed) is a concept 

project managers are familiar to work with.  

Therefore, by means of Monte Carlo simulation, we obtain - at certain levels of EV 

along the project execution - a point cloud that represents the time and the actual cost of 

every realization of the simulation. Then, advanced statistical methodologies are applied 

to this data. On the one hand, treating the data as a classification problem allows 

knowing whether the project will finish in time and cost. On the other hand, processing 

the data as a regression problem allows forecasting the expected cost and time at 

termination of the project.  

 

3.2. As a 2D density distribution. Anomaly Detection algorithm. 

Acebes et al. (2014) try to discern the ranging of expected variability generating 

different instances of the project according to the planned variability in different 

development stages. These simulation results are used to build percentile curves to 

estimate the expected ranges of costs and time. This approach represents an 



improvement compared to previous techniques but ignores the time-cost correlation that 

is sometimes implicit in the definition of duration and cost of individual activities. 

Decoupling these magnitudes can prevent from detecting anomalous situations in the 

project (producing false negatives). One of the contributions of this work is to propose 

the techniques developed for anomaly detection (also known as novelty detection, 

outlier detection, deviation detection or exception mining (Ding et al., 2014)) together 

with Monte Carlo simulation and triad methodology as support tool to control and 

monitor stochastic projects (estimating if project deviations are consequence of the 

project variability) and - if needed - to prompt the appropriate correcting actions.  

Novelty detection entails finding the observations in test data that differ in some respect 

from the training data (Pimentel et al., 2014). Typically the problem emerges in 

situations in which there are enough data from normal events but data about abnormal 

situations is rare or inexistent. Precisely the goal of a solution to this problem is 

identifying observations that deviate or are inconsistent with the sample data in which 

they occur (Hodge and Austin, 2004).  

In order to identify situations during development of the project abnormal to the 

stochastic definition of the project, again multiple instances of the project are simulated 

using the methodology described in previous section. Given a development stage of the 

project determined by an earned value, the idea is to build a model that describes the 

normal range of behavior of the project. This normality model is used as a test, 

comparing it with the development of the real project.  A wide range of the techniques 

to solve this problem give then a score (sometimes probabilistic) to the given 

observation that compared with a decision threshold results in a report about the 

abnormality of the situation. Basically, if the deviations of the project can be explained 



by its planned variability or if they are indicating abnormal performance and the need to 

take correction measures. 

There are several families of strategies to deal novelty detection techniques (Hodge and 

Austin, 2004, Markou and Singh, 2003a, Markou and Singh, 2003b, Pimentel et al., 

2014). Given their interpretability, in this work we use a probabilistic approach. These 

methodologies are focused on estimating the generative probability density function 

from the training data. This function is then used to calculate the probability that a new 

observation may have been generated by the distribution (Pimentel et al., 2014).  Taking 

into account that the amount of data is obtained by simulation (and consequently can be 

large enough to have low variance) we have used a non-parametric approach –

multivariate density estimation– to reduce bias. 

Multivariate density estimation involves fitting a surface, a kernel, on every point of the 

data set and smoothing its contribution into the space around. Then all surfaces are 

aggregated together giving the overall density function. This process is summarized in 

Fig. 1.  

 

Insert Figure 1 around here. 

 

The selection of the smoothing parameter, bandwidth, is crucial because it determines 

the quantity of smoothing of the kernels and so the accuracy of the fitting. In 

multivariate density estimation, the bandwidth is a matrix that allows the orientation of 

the kernels and so the orientation of the estimated density surface. Different techniques 

for bandwidth selection have been widely studied for the univariate case, but the best 

methodology is yet considered case-dependent (Zambom and Dias, 2012). For the 

multivariate problem, the most advanced selector to date is the smooth cross-validation 



(SCV) methodology, which fits a full bandwidth matrix (previous techniques adjusted 

diagonal bandwidth matrices) (Duong and Hazelton, 2005). 

We have used the function Hscv for the smoothed cross-validation (SCV) bandwidth 

selector and the function kde for kernel density estimation with radial kernels, both 

from the the R package ks (Duong, 2007). 

 

3.3. As a classification problem. 

Analyzing the data as a classification problem allows us to estimate the probability of 

the project of finishing in time and/or in cost. The following sections are devoted to 

explaining what we understand by classification and the type of validation used to select 

a classification technique and estimate its error. The different classifier algorithms used 

are then succinctly presented. 

 

3.3.1. Classification. 

A classification problem aims to predict a quantitative variable, often called response, 

output or dependent variable, with a set of qualitative and/or quantitative variables 

called predictors, independent variables, or just variables.  Adopting this perspective –a 

classification problem– with the simulated triads can be very useful for project control 

analysis. Let‟s assume a stochastic monitored project in any intermediate situation, a 

relevant question for a project manager could be: “will the project finish in time and 

cost?” Or more precisely, “how likely is the project to finish in time and cost?”. If 

completing the project in time is modeled as a quantitative variable Yes/No or 

completing the project under budget is also modeled as quantitative variable Yes/No, all 

the ingredients for a classification problem are present. 



Using the EVM framework, any project in progress can be characterized by its t=AT 

(actual time), its AC (actual cost) and its percentage of completion xAT=EVAT / BAC. 

We propose using classification algorithms (classifiers) that fed with this information 

can provide an answer to the previous questions. In order to do so, our methodology 

involves selecting an appropriate classifier and, for each x of analysis (when x is equal 

to xAT), training the classifier with the Monte Carlo simulations. For each simulation j 

and an x of analysis, Txj and Cxj are the independent variables of the classification 

problem to train the classifier, and the output of each instance is the state of the project 

from the budget perspective, i. e., if the j simulation finished under budget or not; or the 

state of the project from the time perspective, i. e., if it finished in time or not. Once the 

classifier is trained, the output of the monitored project can be predicted given its 

current AT, AC and EV. Beyond that, taking into account that many classification 

algorithms do not only compute the most likely output but also the probability of each 

response, the classifier can also provide the probability of finishing in time and under 

budget if no additional correction measures are taken. Moreover, project managers can 

also be reported with the decision boundaries of the algorithm, that is, the lines AT, AC 

for a given intermediate x that partitions the space of development of the project in 

more chances to finish in time or cost than to incur in delay or over-cost. Or in other 

words, what are the stochastic limits of time, cost in the development of the project that 

maintain a favorable forecast for the project. 

 

3.3.2. Nested Cross Validation. 

Classification algorithms often capture patterns that are characteristic of the particular 

training data set but that cannot be generalized to independent data, especially in high 



flexible and low biased models. Classifiers overfit training data, and hence we can only 

trust in those assessments based on data not used during training.   

Cross-validation techniques group together a family of strategies to properly select the 

specific model among several options or assess the model‟s performance of a given 

choice. K-fold cross-validation is one of the most popular approaches. This process 

consists in randomly partitioning a data set into k subsets –folds– with the same number 

of elements. Correlatively the classifier is trained using k-1 folds and assessed with the 

remaining fold as independent data. Averaged results of k rounds decrease the influence 

of any particular training/test data division. Moreover, multiple measures of the 

performance allow estimating the dispersion and the test error of the statistic. Previous 

research shows that k=5 or k=10 provide an adequate bias-variance trade-off of models 

assuming a moderate computational cost (Hastie et al., 2009). 

Although cross-validation can be used for model selection and model assessment, recent 

studies (Anderssen et al., 2006, Varma and Simon, 2006) warn about an optimistic bias 

in error estimation when the error obtained during model selection is reported as an 

estimation of the model performance. In order to obtain an unbiased estimation of the 

true performance error a nested cross-validation scheme has been suggested (Anderssen 

et al., 2006, Varma and Simon, 2006).  

Stone (1974) summarizes the gist of nested cross-validation as “cross-validatory 

assessment of the cross-validatory choice”. Nested cross-validation involves two nested 

loops: an inner loop aimed at model selection in which the parameters of the algorithm 

are estimated, and an outer loop to assess the unbiased performance of the model 

selected in the inner loop. Original data is partitioned using a k-fold cross-validation 

scheme. The inner loop receives iteratively data from k-1 folds which in turn are 

employed as input data in a k-fold analysis for every combination of parameters tested 



for model selection. The model with lower error in the inner fold is tested in the outer 

loop. 

    

3.3.3. Quadratic Discrimination Analysis. 

One of the most popular Bayesian classifiers is the discriminant analysis. Given an 

observation x, these algorithms are based on computing the probabilities Pr(Y = k|X = 

x) for each possible class k, and assigning the observation to the class with higher 

probability. In order to estimate these conditional probabilities (posterior probabilities) 

Bayes‟ theorem is used: 

                
        

         
 
   

 
(1) 

Where    is known as prior probability and denotes the probability that a randomly 

chosen observation belongs to the class k and       is the density function of X for an 

observation that belongs to the class k (               ). When the training data 

contains enough observations and comes from a random sample,    can be estimated as 

the proportion of each class. However, obtaining an estimation of       requires some 

assumptions about the form of the distribution. Quadratic discriminant analysis (QDA) 

assumes that each       follows a multivariate Gaussian distribution with a class-

specific mean and a class-specific covariance matrix (Hastie et al., 2009). This 

assumption entails estimating more parameters than if we suppose that the covariance 

matrix is equal for all the classes (Linear discriminant analysis), however this a better 

choice since QDA is more flexible –boundaries separating classes can be any conic 

section and consequently nonlinear– and the size of the training set is not a major 

concern for this application. Besides, this classifier directly gives a probability of 

belonging to each k class, something relevant from a risk management point of view. A 

project manager controlling a project in an intermediate stage is not only interested if 



finishing a project on time is more probable than completing it with delay but also is 

relevant to estimate the probabilities of each event. We have used R package “MASS” 

(Venables and Ripley, 2002) for the QDA classification analysis in this work.   

 

3.3.4. Random Forest. 

A tree is a nonparametric model composed of nodes and links in a hierarchical structure 

that can be used for classification or regression. In a classification problem, every node 

represents a test and terminal nodes associate an input that passes all tests until that 

terminal node, with a class label. Tree models present many advantages. They are 

invariant to monotonic transformations, robust and straightforward to interpret. But they 

can suffer from high variance problems, that is, the tendency to overfit.  

Random Forests are a technique for reducing variance in high-variance low bias 

machine learning methods (Breiman, 2001)). Based on the concept of bagging and 

bootstrap aggregation (Breiman, 1996)), random forests consist on building an 

ensemble of models, trees, to form a super model, the forest (Fig. 2). Each tree is built 

from an uncorrelated bootstrap sample from the training data set, using in each node 

only a subset of the predictors available to decide. Once all the trees are trained, they are 

all grouped in a combined metric, such as a majority rule vote in the case of a 

classification problem.  

Random forest are becoming widely used by reason of its advantageous features 

(Criminisi et al., 2011): they have fast and parallelizable algorithms, do not suffer from 

overfitting, and can exploit “Out-Of the Bag” (OOB) data to analyze the relative 

importance of the predictors in the classification decision and to estimate the 

classification error pretty accurately. 

 



Insert Figure 2 around here. 

 

3.3.5. Support Vector Machines. 

Support Vector Machines (SVM) are supervised learning algorithms initially developed 

for binary classification but posteriorly generalized for multiclass classification or 

regression analysis. In fact, the regression version of this algorithm have been recently 

used in Project Management for prediction and project control purposes (Wauters and 

Vanhoucke, 2014). However, the use of SVM in this paper is focused on classification. 

The gist of SVM is founded on a simple binary linear classification algorithm, the 

maximal margin classifier, which given a set of training examples, each belonging to 

one of two classes, finds the optimal separating hyperplane that divides the space of 

features into the two categories maximizing the separation margin between the classes 

(James et al., 2013). This algorithm classifies new observations to the class according to 

the side of the hyperplane. Although very intuitive, this classifier requires that the 

categories be linearly separable which it is not often the case. 

SVM refines this idea extending it to non-linear decision boundaries enlarging the 

feature space using kernels but also including the concept of soft margin –some training 

examples are allowed to be in the wrong side of the margin or even the hyperplane– in 

order to deal with non-separable cases. 

One of the problems of SVM comes from the fact that they do not directly give a 

probability about the prediction, a key feature to control and monitoring support for a 

project manager. This is usually circumvented fitting a logistic distribution using 

maximum likelihood to the predicted data of the classifiers (Platt, 2000).  

In this paper SVM classifiers with radial kernels have been implemented using R 

package „e1071‟(Dimitriadou et al., 2008).  



3.4. As a regression problem. 

Data obtained from the triad method not only can be used to estimate the probability to 

incur in overruns. Considering that information as a regression problem, the expected 

cost and time at termination of the project can also be estimated. In the next sections we 

give some background about the definition of the regression problem and explain the 

techniques used in this paper. The validation approach is again nested cross-validation.  

3.4.1. Regression. 

A regression problem entails the prediction of a qualitative or continuous variable, also 

called response, output or independent variable as in the classification problem, with a 

set of qualitative and/or quantitative variables, the predictors.  

In this section we look to the EVM from another perspective: a regression problem 

which aims to predict the expected budget and time left at a given time defined by a 

triad (xAT, Txi, Cxi). With this technique, if the project is over-run, we can predict the 

over-cost and the delay it is experiencing; or the opposite way, how much budget and 

time the project has left until the finalization. Hence, the expected budget and the 

expected delay are our response variables, and Txi, Cxi our predictors. 

Typically the relationships between the predictors and the response are non-linear in 

real problems. Although linear models have some benefits such as that allow for relative 

simple inference, non-linear models are more flexible and may lead to more accurate 

predictions, at the expense of a less interpretable model. One option to approach this is 

to include non-linear transformations of the predictors in a linear regression model. In 

this work we address for an even more flexible alternative, the Generalized Additive 

Models. 



3.4.2. Generalized Additive Models. 

The Generalized Additive Models (Hastie and Tibshirani, 1990) allow to define non-

linear relationships between the predictors and the response, without losing the additive 

characteristic of the multivariable linear regression models which allow to discern the 

individual contributions of each predictor to the response. The regression problem is 

reformulated such that: 

             

 

   

 (2) 

Where fi are unspecified smooth functions. Not all functions need to be not-linear. We 

can also define nonparametric functions in two predictors, or different functions for 

each level of a factor (qualitative variable). 

In this work we have used two types of flexible representations for fi(X): natural splines, 

an expansion of basis functions, and local regression, which belong to the group of 

scatterplot smoothers. 

To fit both regression models, we have used the Backfitting algorithm (Hastie et al., 

2009) for fitting additive models estimating all functions simultaneously by iteratively 

smoothing partial residuals.  We have used the R package “gam: Generalized Additive 

Models” (Wood, 2006). 

3.4.3. Natural Splines. 

A smooth function can be represented by using an expansion of basis functions, such us 

polynomials. A spline is a function piecewise-defined that allows for local polynomial 

representation, defining several function intervals separated by knots. To smooth the 

places where the polynomial pieces connect, one can impose the function to have 



continuous first and second derivatives in the knots; this approach is called cubic spline 

and it is the most used type, although higher degree fits can be used if more smoothness 

is needed in the joints. 

A natural spline imposes the additional constraint that the function is linear beyond the 

boundary knots, to avoid the erratic behavior of polynomials near the boundaries 

(Hastie et al., 2009). 

We have used the package “splines” for R. The function ns() generates a natural cubic 

spline basis matrix and the positions of the knots are adjusted using the observations, 

given the number of knots. 

The model proposed is a GAM using natural splines (ns) as functions, as equation (3) 

summarizes: 

                      (3) 

The number of knots for both predictors have been selected simultaneously so that the 

model minimizes the Mean Square Error of the predictions, using the nested cross-

validation methodology. 

3.4.4. Local Regression. 

Local regression is a different approach for fitting a smooth function. It is a 

nonparametric model which involves fitting a low-degree polynomial model at each 

point of the training data set, using a subset of the data.  The points are weighted so that 

the closest have the highest weight, using a function to assign these weights, known as 

kernel, and a parameter to define the size of the neighborhood (related to the kernel 

used), and the model is fitted applying weighted least squares regression. The degree of 

the polynomials to be used also need to be defined, typically 1 or 2. 



We have used the R package “gam” and the function “lo()” to fit a GAM model with 

local regression (loess from package “stats”) as building blocks, as equation (4) 

summarizes: 

                      (4) 

The degree of polynomials to be fit is set to 1 (default). The size of the neighborhood is 

controlled by the parameter span or α (“for α < 1, the neighbourhood includes 

proportion α of the points, and these have tricubic weighting (proportional to (1 - 

(dist/maxdist)^3)^3). For α > 1, all points are used, with the „maximum distance‟ 

assumed to be α^(1/p) times the actual maximum distance for p explanatory variables.”) 

(Cleveland et al., 1992). The value of span for both for both predictor models has been 

chosen from 0.1 to 1 using nested cross-validation and selecting the combination of 

both span parameters that minimizes the Mean Square Error of the predictions. 

4. Case study.

4.1. Description. 

We illustrate our approach with an example. This selected case has been previously 

used in project network research (Acebes et al., 2014) and is based on Lambrechts et al. 

(2008). 

The activity-on-node (AON) network is shown in Fig. 3. The network activity durations 

of this example are modeled as normal distributions, one of the most common in project 

literature. The chosen network topology highlights the role of parallel paths to better 

illustrate the usefulness of the approach. 

Insert Figure 3 around here. 



The details of the parameters used to model this case are described in Table 1. Please 

note that for the sake of simplicity, costs are modeled depending deterministically on 

duration (variable costs determine the cost of the task for time unit). All the methods 

explained can be used relaxing this assumption and including any stochastic distribution 

in costs and durations. 

Insert Table 1 around here. 

In order to calculate the Earned Value of a simulated project, a baseline plan is needed. 

Table 2 shows the PV assumed for the exercise. 

Insert Table 2 around here. 

Our analysis is focused when the percentage of work performed measured in terms of 

earned value of the project is 50% of the budget at completion (planned value at the end 

of the project), but the same reasoning could be applied to any other percentage. 

4.2. Results. 

We begin the analysis with the anomaly detection system obtained through Monte Carlo 

simulation and posterior 2D density distribution. This analysis allows determining if 

given an advancement of the project –measured in terms of earned value (corresponding 

in this case to the 50% of the budget at completion)– , the values of actual time and 

actual cost of the project are within the expected variability. In Fig. 4 are represented 

100.000 simulation points of the project for that earned value and an adjusted density 

distribution that summarizes them. Contour lines represent the probability that the 



project is without the expected range under the assumption that the project is following 

the stochastic process considered in the project definition. To illustrate the use, imagine 

that the project manager decides to control the status of the project at an instant in which 

the EV is 50% of the BAC, and the actual time and actual cost is given by point 1 in 

Fig. 4. In this case there is no evidence that suggests any process that is interfering 

beyond the expected variability of the project. On the contrary, if the point of the project 

is number 2, the probability that this situation has been obtained as consequence of just 

randomness is low (5%) and perhaps the project requires to figure out whether there are 

additional structural causes that are taking place in the project which are deviating it 

from the planned schedule. Note that this method can detect anomalies consequence of 

the expected correlation of time and cost (point 3) that may be considered as normal if 

those variables are decoupled as in previous methods (Acebes et al., 2014).  

 

Insert Figure 4 around here. 

 

Fig. 5 shows two rectangles computed using the triad methodology, one for the 95% 

confidence interval (percentiles Pd 2.5 and Pd 97.5 for time, and Pc 2.5 – Pc 97.5 for 

cost) and another for the 75% confidence interval (Pd 12.5 – Pd 87.5, Pc 12.5 – Pc 87.5). 

Comparing these predictions with the actual anomaly detection estimation proposed in 

this work, one can see that, for example, a point in the 95%-square top left area (like 

point 3) could be erroneously interpreted as a project within the assumed limits of 

variability using the triad methodology.  

 

Insert Figure 5 around here. 

 



If the conclusion of the previous result is that the model follows the expected 

variability, we can go beyond in the analysis and determine the probability of finishing 

the project with delay or overcost depending on the current situation (assuming that the 

project follows the stochastic pattern defined in the plan). As explained in the 

methodology section, from complete simulations of the project and pivoting for the 

same earned value (in our example 50% of BAC), for each pair time and cost, each 

simulation is classified as a red point (Fig. 6, above on the left) if the simulated project 

finished with overbudget or green if the project finished with a cost lower than planned. 

With this dataset several classification models are assessed using nested cross-

validation. In the case of our example, SVM with radial kernel obtains better results 

than the rest of the tested classifiers (although this may depend on the project and the 

level of development). This model allows to represent the probability of overcost and 

the decision boundary which splits the points in which is more likely to finish on budget 

and the points in which is not. Fig. 6 represents with transparency the space where the 

model gives classification points outside the range the simulation data set, and 

consequently those predictions should be treated very carefully and in general untrusted. 

Analogously, and following the example we have calculated the probability to finish the 

project in time depending on the current situation. For this process, several classifying 

algorithms have obtained the same classification rate. We have represented the QDA 

model for its capacity to capture data correlation. It is interesting to notice that since PV 

has been calculated using PERT (and consequently is too optimistic) and that there are 

activities not yet performed with high variance, the perspectives to complete the project 

without delay are low even in the most favorable situations for this control stage. So 

much so that in this case there is not any classification boundary. 

 



Insert Figure 6 around here. 

 

Again, our analysis can provide more information to the project manager. It is 

undoubtedly interesting to estimate the over-run probabilities but it is also relevant to 

predict their size. From the simulation data and pivoting again for the level of project 

advancement given by the earned value, for each pair time-cost we can figure out the 

simulated final duration and total cost of the project (Fig. 7, left figures). This dataset 

can feed regression models to forecast the expected time and cost of the project if it 

follows the expected variability. In order to illustrate this process, we have fit two 

models for each case (time and cost): a generalized additive model with natural splines 

and a generalized additive model with local regression. An ANOVA test reports that for 

this case the generalized additive model with natural splines gives better results with a 

significance of 0.001. The prediction performance of both models can be observed in 

Fig. 7 where the models have been used to make predictions over a grid and the 

prediction values have been represented with a heat map (using green colour for 

favourable values and red for problematic ones). The area of data of the grid that is 

outside the case of study is represented with transparency; again, in this area the 

predictions of the models may be erroneous.  

 

Insert Figure 7 around here. 

 

All this information can be visually integrated in two intuitive graphical control figures 

(Fig. 8) very similar to the classical Earned Value Management charts. In just two 

pictures a project manager can obtain not only the popular EVM ratios and indexes but 



also predictions about the probabilities and expected cost and durations, boundary 

classifications and the data ranges in which the project is under the expected variability. 

At a desired time AT, where Earned Value in the example in Fig. 8 is 50% of BAC 

(50% EV) and actual cost AC, the project manager can have: the probability that the 

project is not within the expected variability of the project (represented in Fig. 8 as 

p(Anomaly)), the probability of over-cost (p(OC), the expected over-cost (negative 

values represent no over-cost), and the boundary that classifies the point in the “not-

expected-over-cost” area (under the line), (these four measures in the top part of Fig. 8); 

and again the probability of the project in an anomaly situation (p(Anomaly)), the 

probability of delay (p(D)) and the expected delay (these three measures in the bottom 

part of Fig. 8).  

 

Insert Figure 8 around here. 

 

5.    Conclusions. 

In this work we have proposed a refinement for the traditional Earned Value 

Management method to control projects stochastically modeled. At any stage in the 

development of the project, the project manager can monitor and control the status of 

the project. The only data that are needed to feed the algorithm are the stochastic 

definition of the project, the planned value curve, and the traditional raw calculations of 

the EVM: EV, AT and AC in that moment. The technique generates multitude of 

projects compatible with the definition of the project by Monte Carlo simulation. Using 

EV as the pivotal measure of the advancement, the project can be analyzed as an 

anomaly detection, classification and regression problems.  



The approach allows detecting anomaly situations in regards to the project definition 

taking into account possible correlation between time and cost that previous 

methodologies ignored. Besides, probabilities of over-runs and the expected time and 

duration can be also calculated. All this information can be also visually integrated in an 

intuitive framework compatible with traditional EVM.  

No classifier or regression technique is universally better than any other for every 

possible context, and predicting in advance the relative performance is a challenging 

task (Bradley, 1997, Hastie et al., 2009). The proposed framework is independent from 

the algorithms and can be adapted to be used with any other or future detection, 

classification and regression method. To illustrate the example some of the state of the 

art techniques have been used, however the approach does not rely on the precise 

classification or regression algorithm used. On the contrary, we propose the assessment 

of several techniques and depending on the case to choose the appropriate one for the 

specific project using cross-validation. Future research may figure out the a priori 

relationship between the properties of the project (number of tasks, probability 

distributions used, degree of parallelization of the project, etc) and the prediction results 

of the different classifiers and forecasting methods, this could reduce the computing 

time necessary to elaborate the control charts and reports. 
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Tables 

Table 1. 

Duration and cost of activities of the case study. Duration activities are modeled as 

normal distributions and costs depend linearly on duration. 

Id. 
Activity 

Duration Variance Variable Cost 

A1 2 0,15 755 

A2 4 0,83 1750 

A3 7 1,35 93 

A4 3 0,56 916 

A5 6 1,72 34 

A6 4 0,28 1250 

A7 8 2,82 875 

A8 2 0,14 250 

Table



Table 2. 

Baseline plan for the project 

Planned Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

A0 

A1 755 755 

A2 1750 1750 1750 1750 

A3 93 93 93 93 93 93 93 

A4 916 916 916 

A5 34 34 34 34 34 34 

A6 1250 1250 1250 1250 

A7 875 875 875 875 875 875 875 875 

A8 250 250 

A9 

SUM 2598 2598 2759 2759 1043 1002 1002 2159 2159 2159 2125 1125 1125 

PV 2598 5196 7955 10714 11757 12759 13761 15920 18079 20238 22363 23488 24613 



Figures. 

Figure 1. 

2D kernel density estimation approach. Every point in the dataset includes an individual 

kernel (left), all the individual kernels are aggregated to obtain a general density 

function (right). Based on 

http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation 

Figure

http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation


Figure 2. 

The random forest algorithm generates ntree CART trees (T), each one trained from a 

bootstrapped sample X and using stochastically selected features at each split. For 

classification problems each tree of the forest (ensemble) votes to give a consensual 

class 



Figure 3. 

AON Network 



Figure 4. 

2D probability density estimation obtained for the case study when the EV=50% of 

BAC. Point 1 represents a point within the expected variability ranges. Point 2 can be 

considered a warning situation, the probability that this point is reached just by random 

is only 5%. Point 3 is a point out of range but previous approaches do not detect as 

anomalous 

 



Figure 5. 

Comparison of triad methodology versus anomaly detection. Rectangles represent the 

95% and 75% confidence intervals for time and cost using the triad methodology. 

 



Figure 6. 

Project analysis as a classification problem. Simulation results are labeled as over-run or 

not depending on the final simulation result (left). These datasets are used to fit 

classification models (right). These models give an estimation of the probability of 

over-cost (up) or delay (bottom). Boundary decisions represent points in which the 

probability of over-run is 0.5. 

 

 



Figure 7. 

Project analysis as a regression problem. Simulation results are labeled with the final 

simulated cost (up-left) and simulated total duration (bottom-left). These datasets are 

used to fit regression models (right). These models give an estimation of the probability 

of the expected over-cost (up-right) or expected delay (bottom-right). 

 



Figure 8. 

Information obtained by the methodology integrated with the classical Earned Value 

Management graph. The picture on the top represents the expected over-cost, the 

probability of over-cost, p(OC) and the range of expected variability of the project for 

the given advancement of the project measured in terms of EV. Analogous measures are 

represented for the time in the second picture (bottom). 

 



 We improve previous methodologies for integrating EVM and risk analysis 

 We apply advanced statistical learning techniques to project monitoring and control 

 We use Monte Carlo simulation to generate the “universe” of possible projects 

 We detect if deviations from planned values stay within project expected variability 

 We predict probabilities of success and expected cost and duration of the project 
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