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A B S T R A C T

This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using
random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely
detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in
which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM
power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired
through multiple experiments at particular loading torques and IM feedings from an experimental test bench in
which incipient rotor severities were considered. Understanding the importance of each fault signature in re-
lation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on
Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection
purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier
is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through
penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through
careful evaluation of performance measures not encountered in this field.

1. Introduction

Induction motors (IMs) predominate in industry due to their low
manufacturing costs, power-weight ratio and robustness [1,2]. Copper
rotor failures can develop into catastrophic breaking due to bar bending
or material projection. Early diagnosis of these faults is a primary
concern and will guarantee the operation of motors, safeguarding their
integrity [3,4].

Rotor fault detection can be achieved monitoring different signals
[2]: vibration [5,7], sound [7], acoustic emission [2], temperature [8],
air gap magnetic flux [9], instantaneous power [10,11], supply voltage
[3] and stator current [1,12]. However, motor current signature ana-
lysis (MCSA) has been preferred [13,14] because it is non-invasive, low-
cost, and easy to measure. Besides, the motor shutdown is not required.

Many works have proposed fault identification techniques based on

the analysis of the stator current. Authors in Ref. [15] improved the
Park's Vector (PV) approach for detecting a broken rotor bar (BRB).
They tracked the higher harmonic index after the application of elliptic
and notch filters on the PV components. In Ref. [16], the authors
analysed the zero sequence current (ZSC) with MUSIC to increase the
BRB detection reliability. Authors in Ref. [17] tested the ZSC spectrum
for detecting rotor asymmetries. The results are promising, but the
motor must have a delta connection or the neutral-connected. Although
it requires three current sensors, it shows advantages that complement
other methods. Samanta et al. [18] used an extended-Kalman based
signal conditioner to remove the fundamental component of the stator
current signal. The authors claim that their system is fast, accurate and
can be implemented online. Bessam et al. [19] presented a NN approach
where the Hilbert Transform is used for the diagnosis of BRBs at low
load. Authors in Ref. [20] proposed an analytical equation that relates
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the number of BRB to the IM stator vibrations. Abd-el-Malek et al. [21]
presented a technique based on the statistical analysis of the stator
current envelope for detecting the exact fault location. A simulation
under two operating modes validates the method, which otherwise
lacks experimental verification. Interesting improvements of actual
techniques were recently published, but the diagnosis of incipient faults
based on statistical learning is not yet studied. New features, feature
selection methods, classifier types, tuning and classi- cation methods
continue emerging to enhance systems performance and diagnostic
accuracy [12,22]. Thus, as suggested in Ref. [22] improvement of ex-
isting diagnostic methods and discovery of new fault indicators is a
necessity. Sideband harmonics around the fundamental component of
the stator current are the most used fault features [23]. Gyftakis et al.
[17,24] propose thresholds for the fault detectability in line-fed IM.
However, diagnosis of inverter-fed IM remains to be a topic of interest
in the fault diagnosis community. Bruzzese [25] proposes new patterns
for IM fed by non-sinusoidal power supplies that demonstrated to detect
one or more BRBs.

Recent developments in machine learning algorithms permit to
address the automatic diagnosis of IM faults [26]. The standard meth-
odology consists of the following steps: (1) a collection of suited mea-
surements related to the fault of interest; (2) extraction of fault sig-
natures or features; (3) application of a feature reduction or feature
selection technique; (4) construction of a classification model. In Ref.
[27], the diagnosis is based on the information provided by the discrete
wavelet transform. In Ref. [6], the authors used genetic algorithms to
select the most significant features and optimize the artificial neural
network (ANN) parameters. In Ref. [28], the diagnosis is performed by
a multilayer perceptron ANN with statistical parameters as the inputs,
whose dimensionality was reduced by Principal Component Analysis
(PCA). Authors in Ref. [1] presented an intelligent system based on a
combination of stationary wavelet packet transform and multiclass
wavelet support vector machines. Researchers in Ref. [29] used an
adaptive neuro-fuzzy inference system in combination with decision
trees (DT), which permit to build explanatory rules to justify the pre-
dictions [30]. Although DT have a low bias, they usually suffer from
high variance, which can be solved by combining the predictions of
several randomized trees into a single model known as Random Forest
(RF). The studies mentioned above suppose an important contribution,
and our purpose is to improve some steps of the diagnosis methodology.
Our work considers incipient rotor severities in IM fed from the line and
inverter. The latter is an important point because this type of feeding
introduces noise in the fault signatures, complicating the detection and
the diagnosis.

In this paper, we collect and use all fault indicators presented in the
recent literature, and for the fault classification, we propose a hybrid
approach using the Simulated Annealing (SA) algorithm and the RF
classifier. We use a promising version of the RF, known as Oblique RF
(ORF). This version uses an oblique node splitting criteria (multivariate
decision trees) via Ridge regression that allows improving the classifi-
cation performance in those cases where the features are correlated. In
machine learning, the problem of over fitting is always present when
the data available is small. For this reason, we evaluate the effective-
ness of the proposed approach with up to 7 experiments, where addi-
tional metrics to those used in the literature (Sensitivity, Specificity,
ROC) have been considered.

The major contributions of this article are threefold:

• We use all the fault indicators proposed in the recent literature. No
previous works have used the indicators proposed in Ref. [25] for
the diagnosis of incipient BRB. These indicators were successful at
detecting 1, 2, 3 and four broken bars for non-sinusoidal IM sup-
plies.

• We propose the use of the SA algorithm to identify the features with
greater discriminant capacity in different experiments. No study has
evaluated the discrimination ability of fault features and if that

capacity is kept when the IM supply is changed. Unlike genetic al-
gorithms, the optimum design procedures based on the SA are less
time consuming, and the optimum solutions obtained may avoid
local ones, being feasible both mathematically and practically.

• We use the RF and ORF to classify incipient rotor faults. Their
random structure increases their generalization ability. ORF,
through its oblique splitting, improves the classification perfor-
mance in some experiments.

The parts that constitute the present work are organized as follows.
Section 2 introduces the theory that justifies the fault signatures suit-
ability. Then, Section 3 describes the algorithms that compose the
proposed hybrid approach for diagnosing rotor faults. Experimental
results are presented in Section 4 for a line-fed and inverter-fed IM
under two different load levels. In this section, a comprehensive com-
parison between RF, ORF, classification and regression trees (CART)
and KNN is shown. The purposed approach is compared with several
state-of-the-art techniques found in the literature. Finally, Section 5
concludes this study.

2. Related work

This section presents the theory behind the fault signatures extrac-
tion to justify their suitability. In this work, the first set of features has
two types of data calculated from the measured stator currents: sig-
natures computed from the raw stator current in the time domain, and
signatures obtained by spectral analysis of the same signals.

2.1. Time-domain fault signatures

A statistical analysis of the raw data (stationary period of the stator
current) permitted to calculate fifteen fault-signatures in the time-do-
main. These signatures are described in Table 1.

2.2. Spectral fault signatures

As it is well known, a BRB fault occurs after the development of
small cracks at the junction between the bar and the end ring [31].
Consequently, the resultant signatures for cracked and BRBs on the
current spectrum are the effects due to rotor circuit asymmetries [32]

Table 1
Statistical features extracted from the stator current in time domain.

Time-domain features

Feature Symbol Expression

First Moment m1 ∑ x n[ ]
N
1

Second Moment m2 ∑ −x n x n( [ ] [ ])
N
1 2

Third Moment m3 ∑ −x n x n( [ ] [ ])
N
1 3

4th Moment m4 ∑ −x n x n( [ ] [ ])
N
1 4

Second Cumulant c2 −m m2 1
2

Third Cumulant c3 − +m m m m3 23 1 2 1
3

4th Cumulant c4 + − + −m m m m m m m3 3 12 64 3 1 2
2

2 1
2

1
4

Skewness Skew m
m

3
( 2 )3

Kurtosis Kurt m
m

4
( 2 )4

Absolute mean AM x
Peak value PV −max x n min x n( ( [ ]) ( [ ]))1

2
Squared root value SRV ∑( )x

N
1 2

Crest factor CF PV
RMS

Shape factor SF RMS
x

RMS value RMS ∑ −=
− x n x[ [ ] ]

N n
N1

0
1 2
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producing multiple frequency components around the fundamental
frequency given by (1).

= ±f ks f(1 2 ) ,BRB 1 (1)

where s is the slip, k is any integer, and f1 is the fundamental frequency.
Hence, Fast Fourier Transform (FFT) is applied to each stator current
signal under stationary conditions, and six fault signatures are calcu-
lated.

The remaining four signatures considered in this paper for cage
monitoring in the frequency domain were proposed in Ref. [25], and
they are defined next, (2)–(5):

= −Γ
I

I
s ω

ω
5

(7 2 )

5 (2)

= +Γ
I

I
s ω

ω
7

(5 2 )

7 (3)

= −Γ
I

I
s ω

ω
11

(13 2 )

11 (4)

= +Γ
I

I
s ω

ω
13

(11 2 )

13 (5)

These indicators are suitable because they are independent of load-
torque oscillations, and they were useful in diagnosing IM fed from non-
sinusoidal voltage sources [25]. We will use the fault features men-
tioned above to identify incipient fault severities, previous to a full BRB.
No previous studies have used this data in the diagnosis of BRB.

3. Methodology

This work proposes a hybrid approach for diagnosing rotor faults in
IM that consists of a feature selection process and a classification stage.
The goal of the first step is to find the subset of features with the most
fault discriminatory capability using a Simulated Annealing algorithm.
This group of fault patterns is the input to the RF-based fault classifier
in the second step of the process. An Oblique RF (ORF) ensemble is built
from multivariate trees to learn optimal directions at internal nodes
through regularization.

3.1. Feature selection via SA

The main objective of the feature selection stage is to seek the
combination of features that provide an optimal prediction of the target
variable with a reasonable computational effort. The problem of feature
selection is inherently a complex optimization problem belonging to the
class of NP-hard problems. Therefore, this selection can be posed as an
optimization problem where a “goodness of fit measure” or a perfor-
mance measure (PM) is maximized or minimized. In the fault diagnosis
context, metrics such as Cohen's Kappa, Accuracy, and Area Under a
ROC curve (AUC) have been suggested [33], which means that features
that maximize one of them are labelled as candidates to be used in the
classification stage. Feature selection procedures also help to reduce
computational time and take care of the curse of dimensionality, a
problem that arises in the design of supervised classifications.

Depending on the desired complexity, feature selection can be car-
ried out using wrapper or filter methods [34]. The latter perform feature
selection based on the properties of the dataset itself. The wrapper
methods generate feature subsets by searching and evaluating using a
classification algorithm. Due to the computational time and the feature
space complexity, the exhaustive enumeration is not an option to search
for the best feature subset. Many methods are available to reduce the
search space [34,35], as the branch and bound technique, the sequen-
tial forward and backward search and the min-max approach. Soft
computing techniques, such as ANNs or evolutionary algorithms in-
cluding genetic algorithms [36], can also be used.

Another alternative is the use of a class of optimizers called direct
methods, which do not use derivatives to find the settings with optimal
compressive strength and evaluate the prediction equation many more
times than derivative based optimizers. One of these procedures is the
SA algorithm [37]. In this paper, this technique has been used to per-
form the feature selection stage. The SA algorithm, named as an ana-
logy to the process of metal cooling [37], is a local search meta-heur-
istic that can be applied to discrete optimization problems. This method
avoids local optima easily by allowing hill-climbing moves towards
worse objective function values in search for a global optimum. By
accepting these worse objective function values, the algorithm ex-
amines other areas of the search space and therefore is less greedy.

Algorithm 1 describes the feature selection process using the SA
technique. An initial subset of features is selected and used to estimate
the performance of the model (denoted here as PM1). PM is the per-
formance metric to maximize, and T is a value called temperature that
changes over iterations. The current feature subset is slightly changed,
and another model is created with an estimated performance measure
value of PM2. If the new model improves the previous one (i.e.,
PM2 > PM1), the new feature set is accepted. However, if this model is
worse than the previous one, it may still be accepted based on a
probability Pai, where i is the iteration number. This probability is
configured to decrease over time, so the acceptance of a suboptimal
configuration becomes unlikely as i increases. This probability of ac-
cepting a worse features subset permits the exploration of the search
space and the avoidance of local optima. The process continues for
some pre-specified number of iterations, and the best feature subset of
all the iterations is used.

Algorithm 1
Simulated Annealing (SA) pseudocode for feature selection.

Input: Training data: D={(x1,y1),(xj,yj), …,(xn,yn)}
Output: Best configuration PM∗ found by the algorithm
1: Start with an initial random generation of features
2: for iterations i= l to T do
3: Alter randomly the best current feature set
4: Data Standardization
5: Tune the model using this current feature set
6 Estimate the performance of the tuned model (PMi)
7 if PMi > PMbest then
8 Update the best current feature set
9 Set PMbest= PMi

10 else
11 Compute the probability of accepting the current

feature set:
12 = −( )P expi

a PM PM
T

best i

13 Generation of a random number R in the range [0,1]
14 if ≤P Ri

a then
15 Update the best current feature set
16 Set PMbest= PMi

17 else
18 Retain the best current feature set
19 end if
20 end if
21 end for
22 Choose those features related to the greatest PMi

throughout all iterations.
23 Output the best con guration PM∗.

3.2. Random forests

Random Forest was introduced by Breiman in Ref. [38] and has
been used effectively as an algorithm for classifier induction. Most of
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the applications in literature were built by univariate decision trees
such as CART or C4.5. RF structure increases the expected diversity
among the individual classifiers since tree-based classifiers are unstable
and small changes in the training set results in considerable changes in
the classifier predictions. The general structure of RF is shown in Fig. 1.
This is a user-friendly algorithm since it only has two tuning para-
meters: the number of trees in the forest (ntree) and the number of
randomly sampled variables as candidates at each split (mtry). RF uses a
bagging procedure along with a random feature selection. The main
steps to construct a random forest classifier are the following:

1. Given a training set = …T x y x y{( , ), , ( , )}N N1 1 with N samples
= ⋯x x x x( , , , )i i i i

p(1) (2) ( ) and being their corresponding class labels
∈ …y C C{ , , }i C1 for = …i N1,2, , ; draw ntree samples from such

training set via bootstraping.
2. From each bootstrap sample build a univariate classification tree t

algorithm as it is explained next. Choose mtry≤ p features randomly
at each node from the original set of features. Then, use the Gini
Index to compute the optimal univariate orthogonal split for the
current step, only with this subset of features. Fix the value of mtry

during the forest construction and grow the trees to the leaf nodes
without performing pruning.

3. Predict unseen data from the test set by majority voting from the
ntree trees as shown in Fig. 1.

Note that, the random feature selection of the second step con-
tributes to the reduction of the feature space dimensionality and im-
proves RF accuracy over bagging alone significantly [38]. The essential
feature of this algorithm is that the optimal thresholds for the random
selection of single features in every split correspond to mutually or-
thogonal one-dimensional hyperplanes [39].

3.3. Oblique Random Forests

Random Forest algorithms consist of a group of univariate decision
trees. Other flavours are based on multivariate decision trees, like ob-
lique decision trees, which are also useful for classification problems.
Whereas CART and other standard univariate classification trees split

the data using just a single feature at the same time, oblique decision
trees use the information of multiple variables instead. For instance, in
rotation forest [40], the oblique split directions are computed from the
principal components of feature subsets of the training data. This al-
gorithm was reported as a good alternative for improving classification
tasks. The use of supervised approaches to defining optima split di-
rections is a distinguishing feature of ORF [39]. This technique exploits
the benefits of splitting the feature space at a node through a wide
range of linear discriminative node models, all of them employing
different optimization objectives.

In this work, the Ridge regression method was chosen, due to the
properties of regularized node models, to improve the classification
results regarding those built with the original version of RF.

The ensemble generation process in ORF is similar to the previously
explained for RF. The only difference lies in the construction of the
oblique decision trees.

3.3.1. Oblique decision trees
Consider an (n× p)-dimensional data matrix X, defined by the

number of samples n and by the number of features p. The variable Y is
generally referred to as the response variable and belongs to class
y=1, indicating the fault state, or to class y=−1, indicating healthy
state. ORF uses all the selected mtry variables to learn the optimal split
direction using a supervised model. Ridge regression aims to improve
determination of the regression coefficients and, as expressed in (6),
puts further constraints on the βj's parameters in the linear model to
control the variance among highly correlated features by imposing a
penalty on the coefficients.

= +
β

PRSS λ
argmin

λ( )
(6)

where λ controls the shrinkage of the regression coefficients and
= …β β β( , , )p1 is the regression parameter. The parameter βj, j=1, …,p,

represents the effect size of covariate j on the response. By convention,
X is assumed to be standardized and y is assumed to be centered.

In this case, the expression has a penalty term on the β′s instead of
just minimizing the residual sum of squares. This penalty term λ, which
is a pre-chosen constant, multiplies the squared norm of the β. This

Fig. 1. Flowchart of the hybrid approach.
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means that if the β′s take on large values, the optimization function is
penalized. Smaller β′s, or β′s that are close to zero, would be preferred
to drive the penalty term small. Regarding this node choice, the model
is optimized for

= + −ˆ yβ λ λX X I X( ) ( )T T
ridge P

1 (7)

The regularization parameter λ permits to adapt the classifier to an
optimal split direction βridge in between two extremes [39]. When λ=0,
βridge may indicate maximal correlation with class or response values,
similar to Linear Discriminant Analysis. λ> > 1 indicates highest data
variation, similar to PCA. At each node, the model parameter λ can be
adapted to the out-of-bag (OOB) samples available at the node in
question [39].

Consider a sample = …x xx [ ]mtry
T

1 in an mtry-dimensional feature
space, the oblique decision tree r at a particular node m results in a non-
orthogonal hyperplane at each decision node as follows:

> cr βx x( ): mm m
T (8)

with the βm coefficients representing the projection for the split for a
threshold cm. All samples X are projected into βm and the optimal split-
point cm is identified using the Gini Index [39]. The threshold cm max-
imizing the decrease in the Gini Index is chosen and samples are sepa-
rated accordingly. The best split between both subsets is found iterating
recursively until both classes are separated [39].

3.3.2. ORF tuning
As mentioned above, an RF algorithm is formed by a large combined

ensemble of trees. Remember that the tuning of the two hyper-para-
meters is required to control the generation of DT in the ensemble. One
parameter is the subspace dimensionality mtry, which determines the
number of features sampled randomly at each node and the randomi-
zation of the classifier construction. The variability of the trees in the
forest is characterized by mtry, which needs to be chosen to ensure a low

correlation between individual trees. The other parameter is the en-
semble size from which the final label is assigned to the leaf node. The
ensemble decision can be pooled regarding different strategies [38]. In
this work, a normalized number of votes described by a probability
p∈ [0,1] is chosen due to its robustness against over-fitting [39]. Trees
are built as illustrated in Algorithm 2.

Algorithm 2
Pseudocode for Oblique Random Forest (ORF).

Input: Training data: D={(x1,y1),(xj,yj), …,(xn,yn)}
Output: Classification result.
1: for b=1 to B do
2: Draw a bootstrap sample Zb of size N (with

replacement) from the training data and grow a tree from
this bootstrap sample

3: Build a RF tree T to the bootstrap data through
recursive repetition of the following steps for each leaf
node of the tree, until node size nmin is reached.
1. Select m features at random from the s selected features.
2. Find the best split direction β in the subspace spanned by

these features according to the predefine node model.
Choose the best s feature.

3. Tune the hyperparameters λ on the out-of-bag samples
available at that node.

4. Split the node into two daughter nodes through the
fitted values used to identify the threshold c.

5. Grow the tree to full depth without pruning.
4: end for
5: Output the ensemble of trees: T{ }b

B
1

6 Predict a new point x:

= ⎧
⎨⎩

⎫
⎬⎭

ˆ ˆC x majority vote C( )RF
B B

1 being Cˆ
b(x) the class

prediction of the b-th RF tree.

4. Experimental results

After introducing the theoretical concepts of the proposed approach,
a condition monitoring task of an IM using real data from experimental
tests was conducted. The proposed automatic diagnosis of rotor faults is
tested with a dataset of experimental currents belonging to different
rotor states. Fig. 2 shows the experimental test bench. The star-con-
nected IM is fed from the line and an ABB inverter, model ACS355,
which is programmed with a V/f linear control. The motor load is a
magnetic powder brake that permits to set two load levels: medium
(LL1; slip≈ 0.03) and high (LL2; slip≈ 0.05). The stator current is
measured by a Hall effect current transducer by LEM. The operating
frequency is 50 Hz for both power supplies with motor functioning at
steady state. The data is acquired with an NI 9215 module from Na-
tional Instruments and an NI cDAQ-9174 base platform with a sampling
frequency of 50 kHz and a sampling time of 10 s.

The different bar damage degrees are simulated by drilling a hole in
one of the rotor bars as shown in Fig. 3. Five rotor condition states are

Fig. 2. Experimental setup.

Fig. 3. Different rotor conditions.
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considered. The rotor is healthy (condition R1) in the first tests. Next, a
4.2 mm depth hole is drilled in one of the rotor bars, and this is the
incipient faulty rotor state (R2). The third rotor condition (R3) is
achieved with a 9.4mm depth hole. The fourth rotor condition (R4) is
more severe and is created by drilling completely the same rotor bar.
Finally, the fifth rotor condition (R5) is produced by widening the hole
diameter to 3.5mm. 300 signals were collected at those indicated op-
erating settings.

All these signals in the time domain were processed with the
MATLAB® software to extract the fault signatures introduced in Section
2. The result of this feature extraction process was a matrix with 300
rows (observations), and 21 columns (features) that is the input to the
hybrid approach. The pre- and post-data processing were performed
under the free software environment for statistical computing known as
R [41].

4.1. Application of the hybrid approach for rotor fault diagnosis

The hybridization of the two heterogeneous algorithmic techniques
involves three steps. In the first stage, the SA is applied for selecting the
features. The initial data is divided into two sets: the training set con-
tains two-thirds of that data, and the testing set the remaining one-
third. Algorithm 1 is run using 5-repeated ten-fold cross-validation and
within a wrapper setting where a proper performance metric (PM) is
optimized, i.e., the overall accuracy and the unweighted Kappa statistic
in this case. The second stage aims to tune RF and ORF classifiers. The
data is formed by the features selected in the first stage and according
to the experiments described in Table 2. In the final third stage, the
classifiers are evaluated with the testing set, and several performance
metrics are computed to check which class is better classified. In ad-
dition, these results are compared with the CART and KNN classifiers
since they are widely used techniques in the literature. The im-
plementation used in this work is based on the following R packages:
“caret” [33], “randomForest” [42] and “obliqueRF” [43], which are
available at the CRAN repository.

To find the best model a grid-search through the algorithm para-
meters has been carried out. For the RF-based classifiers, the parameter
grid has been established as follows: ∈m p p[[ /2], ]try , p being the
number of condition features and p /2 the nearest integer function,
and the number of trees in the ensemble ntrees∈ [1500]. ntrees=500 and
mtry=3 were the best parameter settings for each model and experi-
ment within the exhaustive search, for both RF and ORF. For the KNN
algorithm, the number of neighbours for tuning purposes was 1, 3, 5, 7,
and 9. The Minkowski distance was used. In the next section, the fea-
ture selection results by SA algorithm are shown. Then, the classifier
performance evaluation considering a one versus all (OVA) approach is
developed. Seven experiments have been designed to analyse the hy-
brid approach behaviour under different conditions (see Table 2).

4.2. Results of the feature selection through SA

Fig. 4 and 5 illustrate the optimization process. Fig. 4 shows the
values of the performance metrics considered during the iterative pro-
cedure. They increase monotonically as the prediction ability improves.

Fig. 5 presents the error evolution, including the OOB-error in the
training process, as the number of trees increases. In Fig. 4, the best
mean value of the performance metrics is achieved at the 121 iteration:
Accuracy has a mean value of 0.9780 and Kappa a value of 0.9725.
Table 2 shows the fault features selected and ranked (from left to right)
by the SA algorithm. Experiments 1, 2, and 3 correspond to the motor
fed from the line. Experiment 1, when the motor load is lower, shows
the highest number of features. The number of selected features is lower
as the motor load level increases (experiment 2). However, the number
of features is reduced when the two load levels are considered together
(experiment 3). Experiments 4, 5, and 6 correspond to the inverter-fed
motor. The SA algorithm selects the same number of features for the
two load levels (experiments 4 and 5), but only the 50% of them match.
Unlike experiment 3, the features selected in experiment 6 (that also
considers both load levels together) have increased. These results in-
dicate that a more homogeneous data, regarding the motor load level, is
necessary when the motor is fed by the inverter. This contrasts with the
line-fed motor case. Having data corresponding to several load levels is
not as critical as in the case of the inverter-fed IM, where a higher
number of features is required. To summarize, the most selected fea-
tures in the experiments considered are: Γ5, Third Cumulant (c3),
Kurtosis (appearing in 6 experiments), LSH, RMS (appearing in 5 ex-
periments), Second Cumulant (c2), Shape Factor (SF), and Skewness
(appearing in 4 experiments). Most of them are time-domain features.

4.3. Ridge Regression tuning in Oblique Random Forest

In Fig. 6, we can visualize the coefficients of the Ridge regression for
ORF classifier corresponding to the experiment 7 without SA feature
selection. Each curve corresponds to a variable or feature. It shows the
path of its coefficient against the logarithmic values of λ. The candidate
grid values of λ are those in the range [10e-5, 10e5] in steps of 0.1.

On the other hand, in Fig. 7 we can see the confidence intervals that
represent error estimates for the misclassification error (red dots). The
lowest point in the curve indicates the optimal lambda (λ=5.0119e-5)
i.e. the logarithmic value of λ that best minimized the error in the OOB
samples and controls the overall strength of the penalty. The axis above
both Figs. 6 and 7 indicates the number of non-zero coefficients at the
current λ.

4.4. Classification results for an one-versus-all (OVA) scenario

Table 3 presents a comparison of performance results between the
Random Forest (RF) and the Oblique-Random Forest (ORF) methods,
with and without a feature selection with the SA algorithm. Accuracy,
Specificity, and Sensitivity [44] are the performance metrics chosen to
analyse the classifier effectiveness. It is noticeable that the classification
performance is sensitive to the motor load level in the case of line-fed
IM. However, RF achieves better results compared to ORF when the IM
is fed with the ABB inverter. The classification results are better without
the feature selection with the SA algorithm in experiments 1 and 2. The
ORF achieves the best results in experiment 7 that consider the data of
all other six experiments together (two power supplies and two motor
load levels). On the other hand, KNN achieves similar results regarding

Table 2
Description of the features selected by the SA-ORF algorithm according to the feeding and load conditions analysed.

# Experiment Type of feeding Load level Number of features Condition features

1 Line LL1 14 LSH, RHS, Γ5, Γ7, Γ11, m4, c1, c3, c4, Skew, Kurt, AM, PV, SF
2 Line LL2 10 Γ11, c1, c3, c4, Skew, Kurt, SRV. CF. SF, RMS
3 Line Both levels 7 Γ5, c2, c4, Kurt, PV,SF, RMS
4 ABB inverter LL1 8 LSH, Γ5, m1, c2, c3, c4, Skew, RMS
5 ABB inverter LL2 8 LSH, Γ5, Γ13, c2, c3, Kurt, AM, SRV
6 ABB inverter Both levels 11 LSH, Γ5, Γ7, Γ13, m1, c2, c3, Skew, Kurt, AM, RMS
7 Both feedings Both levels 10 LSH, RHS, Γ5, m4, c1, c3, Kurt, AM, SF,RMS
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Fig. 4. Estimated Accuracy and Kappa versus SA iterations.

Fig. 5. Error evolution during the optimization process for feature selection using SA in a case of the IM fed by the inverter.

Fig. 6. Coefficients of the Ridge regression for ORF classifier corresponding to the experiment 7 without SA feature selection.

I. Martin-Diaz et al. ISA Transactions xxx (xxxx) xxx–xxx

7



Fig. 7. Confidence intervals estimation for the misclassification error. The vertical dotted line shows the log value of lambda that best minimized the error in the OOB
samples. The numbers across the top are the number of non-zero coefficient estimates.

Table 3
Performance results for RF and ORF with and without feature selection (FS) with SA. The comparative study handles several conditions of load and type of IM
feeding.

# Experiment Without Feature Selection With SA Feature Selection

RF ORF RF ORF

Acc. Specif. Sensit. Acc. Specif. Sensit. Acc. Specif. Sensit. Acc. Specif. Sensit.

1 1.00 1.00 1.00 0.88 0.40 1.00 0.92 0.60 1.00 0.80 0.00 1.00
2 0.96 1.00 0.95 1.00 1.00 1.00 0.96 0.80 1.00 0.96 1.00 0.95
3 0.92 0.60 1.00 0.92 1.00 0.60 0.88 0.70 0.92 0.84 0.30 0.97
4 0.80 0.40 0.90 0.88 0.40 1.00 0.80 0.20 0.95 0.84 0.40 0.95
5 0.84 0.20 1.00 0.84 0.20 1.00 0.88 0.60 0.95 0.84 0.60 0.90
6 0.92 0.80 0.95 0.86 0.40 0.97 0.98 0.90 1.00 0.94 0.70 1.00
7 0.88 0.70 0.92 0.86 0.45 0.96 0.90 0.65 0.96 0.92 0.60 1.00

Table 4
Performance results for CART and k-NN with and without feature selection with SA. The comparative study handles several conditions of load and type of IM feeding.

# Experiment Without Feature Selection With SA Feature Selection

CART KNN CART KNN

Acc. Specif. Sensit. Acc. Specif. Sensit. Acc. Specif. Sensit. Acc. Specif. Sensit.

1 0.82 0.92 0.40 0.88 1.00 0.85 0.92 0.71 1.00 1.00 1.00 1.00
2 0.92 0.90 1.00 1.00 1.00 1.00 0.84 0.71 0.89 0.88 0.90 0.80
3 0.90 0.60 0.97 0.96 0.95 1.00 0.96 1.00 0.95 0.84 0.90 0.60
4 0.68 0.20 0.80 0.88 1.00 0.40 0.88 0.40 1.00 0.88 0.40 1.00
5 0.80 1.00 0.75 0.80 0.40 0.90 0.80 1.00 0.75 0.68 0.00 0.85
6 0.84 0.90 0.82 0.82 0.20 0.97 0.76 0.60 0.80 0.82 0.92 0.40
7 0.92 0.65 0.99 0.84 0.90 0.60 0.90 0.75 0.94 0.85 0.89 0.75

Table 5
One-sided Binomial test with a significance level of 0.05 applied for RF ORF, CART and KNN with SA feature selection.

# Experiment RF ORF CART KNN

p-Value Hypothesis p-Value Hypothesis p-Value Hypothesis p-Value Hypothesis

1 0.0982 Accepted 0.6167 Accepted 0.0038 Rejected 0.0038 Rejected
2 0.0274 Rejected 0.0274 Rejected 0.0982 Accepted 0.0000 Rejected
3 0.1034 Accepted 0.3073 Accepted 0.0013 Rejected 0.0038 Rejected
4 0.6167 Accepted 0.4207 Accepted 0.2340 Accepted 0.2340 Accepted
5 0.2340 Accepted 0.4207 Accepted 0.6167 Accepted 0.9532 Accepted
6 0.0002 Rejected 0.0056 Rejected 0.4437 Accepted 0.81396 Accepted
7 0.0057 Rejected 0.0008 Rejected 0.0008 Rejected 0.1285 Accepted
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RF-based classifiers when the IM is fed directly from the line (see
Table 4). Nevertheless, KNN decreases its performance when the IM is
fed with the ABB inverter. For the case of CART with SA feature se-
lection and IM line-fed (experiments from 1 to 3) the results are close to
the previous ones. Nonetheless, CART without SA feature selection for
this same case and for the rest of the cases worsen its results as it can be
seen in Table 4.

Nonetheless, the data test set has the same number of samples for
each class. This implies that when applying an OVA-type classification,
i.e., R1 against the rest, the resultant binary problem become un-
balanced. In this case, accuracy is not a representative metric, and it is
advisable to perform a hypothesis test to know if the model's accuracy is
better than the majority-class proportion in the data. The results of a
binomial test, with a significance level of 0.05, are shown in Table 5.
This test checks if accuracy is better than the no-information rate, i.e.,
the percentage of the data largest class. The interest of this one-sided
test is to prove if the classification rate is or not better than the prob-
ability of selection by chance. In the experiments 1, 3, 4, and 5 (for RF
and ORF), experiments 2, 4, 5, and 6 (for CART) and experiments 2, 4,
5, 6 and 7 (for KNN) the p-value is more significant than the 0.05
significance level (see Table 5), so the null hypothesis cannot be re-
jected. This means that there is no evidence to prove that the accuracy
values are statistically significant for the performance of the

classification.
Fortunately, there are other performance indicators, as the ROC

curves, which can be used for the analysis of imbalanced scenarios [44].
ROC curves were designed as a general method that, given a collection
of continuous data points, determine an effective threshold such that
values above the threshold correspond to a specific class. The ROC
curve is created by evaluating the class probabilities for the model
across a continuum of thresholds. For each candidate threshold, the
resulting true positive rate (TPR), or Sensitivity, is represented versus
the false positive rate (FPR). An optimal classifier that separates com-
pletely the two classes would lay on the upper left-hand border of the
TPR vs FPR plane. On the other hand, an ineffective classifier would
result in a ROC curve close to the 45-degree line in the TPR vs FPR
plane, giving an AUC of 0.5.

The first row of Figs. 8 and 9 shows a comparison of different ROC
curves for the line-fed induction motor cases (experiments 1, 2, and 3).
These curves agree with the results presented in Tables 3 and 4 Evident
differences arise depending on the motor load level. As it can be seen in
Fig. 8, the ORF classifier applied to the experiment 1 shows the poorest
performance. It is not much better than random guessing. However, the
RF classifier displays an optimal behaviour for the same experiment 1.
In contrast, the ORF classifier outperforms the RF classifier in the ex-
periments 2 and 3. The second row of Figs. 8 and 9 shows the

Fig. 8. ROC Curves grouped by classifier and by the feeding for RF and ORF. They are organized by rows according to the feeding: First row, line-fed IM; Second row,
inverter-fed IM.

I. Martin-Diaz et al. ISA Transactions xxx (xxxx) xxx–xxx

9



comparison of different ROC curves for the inverter-fed motor cases
(experiments 4, 5, and 6). In Fig. 8, the RF classifier outperforms the
ORF classifier in the experiments 4 and 5. In experiment 6, the ORF
presents slightly better performance than the RF, being almost optimal
for both cases. As can be seen in Fig. 9, CART achieved good results for
the experiments related to the IM line feeding (experiments 1, 2, and 3).
However, when the IM is fed through the inverter the results of CART
worsened. The worst CART results are obtained for experiment 6, where
data corresponding to both IM load levels under inverter feeding are
mixed. In Fig. 9, the results of KNN are worse with regard ORF and RF
except for experiment 4 where the results are comparable to the rest of
the classifiers.

Finally, Fig. 10 shows the comparison of different ROC curves for
the experiment 7 (data from both loads and both feedings). The ORF
classifier outperforms the RF classifier. The KNN classifier decreases its
performance in this experiment regarding the previous ones. CART
presents intermediate results between ORF and KNN. In view of the
results, we can say that the KNN classifier worsens its predictive be-
haviour when data obtained under different operating conditions of the
IM are used, i.e. where load levels and power source types are mixed.
CART reduces its performance when the IM is inverter-fed. This fact
may be due to the intrinsic noise introduced by the inverter for which

CART classifier is very sensitive. RF and ORF are superior for diag-
nosing rotor bar failures with data obtained under these conditions. RF
improves the variance reduction of bagging by reducing the correlation
between the trees with the tree-growing process through random se-
lection of the input variables. Nonetheless, the orthogonal decision tree
may fail to capture the geometrical structure of the data samples. ORF,
through Ridge Regression, instead of using a single-feature based or-
thogonal classification, employs a penalized multivariate regression to
perform partition. On the other hand, KNN is a lazy learning classifier
since it simply uses the training data itself to assign directly the test
observations according to a distance-based strategy.

5. Conclusions

This paper has presented a classification problem based on a novel
hybrid approach composed by an SA algorithm used for feature selec-
tion and an ensemble composed of multivariate decision trees, known
as ORF. The proposed methodology permits the design of a fault di-
agnosis system applied to rotor faults using raw data from the stator
current signal. A set of fault signatures are computed from these signals,
processing them in the time and frequency domains. For the first time,
all fault patterns published in the literature have been used. Their

Fig. 9. ROC Curves grouped by classifier and by the feeding for CART and KNN. They are organized by rows according to the feeding: First row, line-fed IM; Second
row, inverter-fed IM.
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discriminant ability for distinguishing different rotor conditions has
been studied. These fault patterns are used to determine the rotor
health of the induction motor using different classifiers. Seven experi-
ments were designed and permitted to evaluate the influence of the
motor power supply and the motor load level on the feature selection
and the classification performance. Two different voltage supplies were
used, and the motor load had two levels. The number of fault severities
considered was five (from a healthy state (R1) to a full broken rotor bar
(R5)). The study results are very interesting. Regarding the feature se-
lection, the left-hand side harmonic (LSH) is essential for diagnosis, as it
has been corroborated by many works. A novel outcome is that the Γ5
(another fault pattern in the frequency domain), RMS and the Kurtosis
(time-domain features) prove to be relevant for the diagnosis as the
results of Table 2 demonstrate.

These last two seem to be robust features since the technique has
given the best results in experiments 3 and 6, where data come from
mixed IM loads per power source as well as in experiment 7 where load
levels and power source types are mixed. The feature selection using the
SA discards around a 50% of the original features for the subsequent
classification phase. The outcome of the feature selection stage differs
depending on the power supply and motor load level. Therefore, this
study is necessary for the design of any fault diagnosis system. The
classification results are also different for the three methods studied.
The ORF was superior when the two load levels experiments con-
tributed to the training data, regardless of the power supply. However,
ORF and RF showed a similar performance in other cases. The results of
KNN are worse except for experiment 4 (data from LL1 with inverter
feeding) where the results are comparable to the rest of the classifiers.
CART achieved good results for the experiments related to the line
feeding, particularly when hybridized with Simulated Annealing algo-
rithm. However, when the IM is fed through the inverter the results of
CART worsened. Another result is the computational requirements
lower when the training data is reduced after the feature selection stage
supervised by the SA algorithm.
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