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ABSTRACT Fault diagnosis of inductions motors has received much attention recently. Most of the works
use data obtained either from the time domain or by applying advanced techniques in the frequency domain.
Some researchers have employed a considerable effort in designing sophisticated algorithms to achieve the
best performance of the diagnosis system. However, some contributions in the field have not taken advantage
of the benefits that a good evaluation stage can bring to the developing of classifiers for fault diagnosis.
In this paper, novel insights for the classifier evaluation are presented to promote better assessment practices
in the field of electric machine diagnosis based on supervised classification. A case of study consisting of
a motor with a broken rotor bar is described to analyze the performance of two classifiers by using scores
focused on the fault detection. Also, different error estimation methods are considered to obtain unbiased
predictive performances. Two statistical tests are also discussed to confirm the significance of the results
under a single data set.

INDEX TERMS Broken rotor bar, classification algorithm, condition monitoring, electric machines, fault
diagnosis, performance evaluation.

I. INTRODUCTION
Induction motors (IMs) are a fundamental part of any current
industrial facility, due mainly to their robustness, reliability,
low price and lower maintenance requirements. Nonethe-
less, maintenance policies are required to avoid faults of
critical motors in an industrial process. The success of any
diagnosis system is crucial for future predictive maintenance
programs [1]. The prime objective of diagnosis is to detect
faults as early as possible [2] and to discriminate between
different types of faults [3] to prevent harmful consequences.
Fig.1 shows a typical data-based fault diagnosis scenario.

The range of approaches to data-driven fault diagnosis is
broad, from intelligent algorithmic tools [3]–[7] to statistical
techniques for time-dependent signals [8], [9]. A signifi-
cant number of research papers describe the use of Machine
Learning (ML) procedures to diagnose IM. These methods
include supervised learning techniques [10]–[13], where a
known data set (containing input data and target values)

is employed to make predictions on unknown observations.
Exploratory unsupervised learning, where the data labels are
not available [14], [15] as semi-supervised learning [16],
with only some data labels available, also belong to the ML
family. Regression of continuous-response values [17] and
reinforcement learning based on an agent policy optimization
in a rewarding setting have also been considered [18].

Nevertheless, in this broad context, there are still some
unsolved concerns. One of them is the problem of choos-
ing the best algorithm or combination of algorithms for the
diagnosis phase, according to its prediction performance.
A feasible implementation of the classifier avoiding unnec-
essary spending of resources is another open matter. These
questions certainly point out that there is a need to
find the best procedure to evaluate the classifier perfor-
mance but always according to a specific practical context.
Therefore, it is advisable to understand the evaluation process
to make a critical analysis of the performance classifier,
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FIGURE 1. Typical data-based fault diagnosis scenario.

applied to a particular situation [19]. Depending on the diag-
nosis system requirements, the advantages and disadvantages
of each step of the evaluation scheme should be considered.
The application context (or the role that the diagnosed motor
plays in the industrial process) may result important for
estimating the performance of the classifier and do a proper
evaluation.

Furthermore, it has been observed, from the analysis of the
state-of-the-art of IM fault diagnosis systems, that the per-
formance measurement of classifiers is very heterogeneous.
It can be concluded that the evaluation criteria used do not
permit performance comparisons of the results [20]–[23]. The
assessment of the classifier in some papers is very limited
because it is merely based on accuracy and error rate. Others
use the confusion matrix (CM) without exploring the scores
that can be calculated from it. Besides, regardless of the
score, it is advisable to consider the error estimation in order
to optimize the tuning parameters of the classifier properly.
Moreover, other aspects may be taken into account in the
diagnosis design stage, such as the size of the training data,
the qualitative or quantitative nature of the data observations
or the imbalance between classes [24], [25].

Therefore, there is a need and an opportunity to present
the most recent ML literature contributions, concerning per-
formance evaluation, to help the researchers to design more
homogeneous and comparable evaluation processes. This
performance evaluation has three steps: 1) to measure the
classification quality (performance measures) for a particular
goal; 2) to estimate the classifier quality with error estimation
methods; and 3) to observe if the classifier behavior presents
significant differences using statistical tests..

The contribution of this paper is to present a novel insight,
with the aim to homogenize the performance evaluation of
IM fault classifiers keeping in mind the diagnosis tool to be
developed. This paper is an extended contribution presented
in [26]. It includes a wider set of experimental results and
describes in detail the performance evaluation of the classi-
fiers. The case of study for experimentation consists in an
IM having a broken rotor bar.

II. CLASSIFIER PERFORMANCE EVALUATION
As aforementioned, some questions related to the classi-
fier evaluation need to be addressed. These questions can
be answered using performance metrics focused on the
diagnosis goals. Various methods can provide good results
depending on the dataset characteristics [19]. This step
needs to be carefully studied to obtain estimations close
to the true measured value [24]. Finally, the use of the
available statistical significance tests, with their intrinsic
limitations [27]–[29], can be carried out to observe whether
the results are attributed to a real classifier behavior or if
they are obtained by chance. These tests may also provide
information about the representative character of the dataset
to solve the real problem. All these aspects are explained in
the following subsections.

A. PERFORMANCE METRICS
When designing a classifier, it is required to choose proper
metrics to assess the classifier quality. The use of a particular
set of scores depends, among other things, on the application
domain, case characteristics, data set features and the variable
or condition to be diagnosed. Performance measures can
be classified according to the return values. The following
performance scores belong to the single value assessment
category: Accuracy, True Positive Rate (TPR), True Negative
Rate (TNR), False Positive Rate (FPR), F-measure and
G-mean. Among dual value scores can be mentioned:
Precision-Recall Curves and Sensitivity-Specificity Curves.

Alternatively, results can be presented in a table form as
a CM, or graphically with Receiver Operating Characteris-
tic (ROC) Curves, Cost Curves, Lift Chart, etc. [19], [24].
Additionally, some supervised classification problems using
probabilistic models can be evaluated with calibration
scores [19].

Frequently, the choice of inappropriate performance mea-
sures causes misleading classifier evaluations. The conve-
nience of one measure over other performance metrics will
depend on the research objectives. Sometimes the optimiza-
tion criteria may vary with the application: robustness of
the diagnosis systems for detecting simultaneous faults on a
multi-fault scenario; priority on some particular false positive
rate versus a given false negative rate; state of degradation
of a particular type of fault, etc. Therefore, the classifier
can be considered as a multi-objective problem. Thus, for
these purposes not every metric contributes with the same
information to solve the problem and it is required the use
of additional measures. Furthermore, for those models with
the same value of their metrics, it is preferable to choose the
simplest one according to the Occam’s razor definition [30].
Next, the most useful and common performance metrics in a
discrete scenario are described.

1) CM AND SCORES
Unlike regression problems, in classification, the empir-
ical risk [19] is typically obtained with the following
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loss function:

L(y, ye) =

{
1 if y 6= ye
0 otherwise

(1)

where ye is the predicted class of the observations (or in the
case of probabilistic classifiers, the estimated probabilities of
class memberships) and y is the true response of the observa-
tions. A CM provides general information about the super-
vised classifier performance according to the assignments
to every class of interest [19]. For the sake of simplicity, a
binary (two-class) problem is considered and its CM is shown
in Table 1. Multiclass problems can be treated using One
Against One (OAO) or One Against All (OAA) approaches
[19], [24] in order to convert them into a set of binary
problems.

TABLE 1. Confusion matrix for a two-class problem.

In Table 1, M is the number of total instances; subscripts
Pred and actual indicate whether they are predicted or actual
instances, respectively. Finally, Class1 (positive) and Class2
(negative) are the considered classes.

a: ACCURACY AND CLASSIFICATION ERROR (1-ACCURACY)
One of the most used scores to evaluate discrete classi-
fication in electrical machines diagnosis is accuracy, also
known as predictive accuracy. This score is indicative of
the classification error committed evaluating two or more
classes.

Accuracy =
TP+ TN

M
(2)

When classifying several classes, this score is optimistic
since all classification errors are considered equally, and each
class is not evaluated individually. Two classifiers could have
the same accuracy but provide a different classification for
each class. In such a case, the characteristics of the data are
crucial when various types of faults have different implica-
tions [31]. Besides, in practical cases, classes are usually
imbalanced [25]. For example, in most industrial environ-
ments, there will be more data of the healthy class since this
is the normal condition of the machines. The following scores
deal with this problem and discriminate how each class is
classified.

b: TNR (OR SPECIFICITY)
TNR (also known as Specificity in two-class problems) is a
performance metric focused in the negative class.

TNR =
TN

TN + FP
(3)

c: PRECISION
Conversely, this performance metric evaluates the correct
classification of the positive class.

Prec =
TP

TP+ FP
(4)

d: TPR (RECALL OR SENSITIVITY)
This measure, along with specificity, provides a proportion of
one-class samples correctly classified. However, similarly to
Precision, it only evaluates the positive class.

Recall =
TP

TP+ FN
(5)

Recall is interesting for those cases where the positive
class observations were not classified as positive during the
training stage [24].

e: F-MEASURE
This score can help to solve any contradiction that may appear
between Precision and Recall scores. F-measure leaves out
the TN performance. Several versions exist, depending on
the value assigned to α, allowing to choose how Precision
and Recall are weighted. For α ∈ R, α > 0, the general
expression is shown below:

Fα =
(1+ α)(Prec× Recall)
(α × Prec)+ Recall

(6)

When α = 1, the resulting expression is the harmonic
mean of Precision and Recall. One of the limitations of this
measure is that the correct value of the weight to make a good
comparison is unknown a priori.

f: GEOMETRIC MEAN
This metric is proposed in [32] and gives information about
the classifier performance on an imbalanced problem. There
are two versions of this score. Gmean,1 is used to evaluate the
relative balance of the classifier performance on all classes:

Gmean,1 =
√
TPR× TNR (7)

The other version, Gmean,2, puts the focus on the positive
class, taking Precision into account.

Gmean,2 =
√
TPR× Prec (8)

From this section, it can be stated that metrics with a single
class focus, as sensitivity and specificity, provide relevant
information that accuracy does not. In the case of a problem
with imbalanced classes, CM derived metrics have some
disadvantages. The performance of continuous learning algo-
rithms (soft classifiers as fuzzy-based ones) is not evaluated
adequately using CM based measures because the decision
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threshold cannot be modified. Another disadvantage may
derive from the fact that different error costs are not con-
sidered [33]. A solution to evaluate an imbalanced problem
is the use of some ratios, described in the literature, which
consider the number of instances of each class [19], [24].
On the other hand, the impact of each type of classification
errors in the maintenance field can be very different. For
this reason, a cost matrix should be created to weight the
classification errors committed for each class [31], regarding
any previous experience.

In real situations, it may result difficult to estimate the
magnitude of these costs that would make undoubtedly a
difference in the training stage of the classifier. Therefore,
in this context, the problem is to minimize the misclas-
sification associated costs and not the number of errors
made by the classifier. It is evident that there are many
more performance metrics, especially for continuous and
probabilistic classifiers. The goal of the paper is not to
make an exhaustive review of all metrics but introduce those
most significant for developing a more appropriate diagnosis
evaluation.

2) GRAPHICAL PERFORMANCE METRICS
In certain situations, the use of classifiers that obtain the
class memberships by using a threshold (scoring classifiers)
is required. For these cases, it would be necessary to incor-
porate some extra information in addition to that deduced
from the CM. Accordingly, graphical analysis methods serve
as effective tools to describe the performance of such algo-
rithms. There are many graphical methods addressed in
the literature; in this section, some of the most standard
ones are succinctly introduced: ROC Curves, Lift charts,
Precision-Recall Curves and Cost Curves.

a: ROC CURVE
The ROC analysis was introduced in signal detection theory
and allows visualizing the performance of a classifier using
a graphical plot. This graph illustrates the performance of
a binary classifier whereas its discrimination threshold is
varied. The curve is created plotting the TP rate against the
FP rate at various threshold settings. The range of all possible
variations of each rate represents the operating range of a
classifier. Unlike the F-measure and accuracy, this approach
is insensitive to class imbalance [34]. Additionally, it is
indicative of the whole operating range of the classifier and
allows identifying optimal performance regions as well. The
optimal point of operation can be chosen according to var-
ious formulations [19], [34], and a conversion to a score is
possible [34]. There are more specialized metrics to measure
the performance of continuous classifiers dealing with dif-
ferent learning strategies [38], [24]. In the case of classifiers
formed by a combination of learning algorithms, as in hybrid
classifiers, the Convex Hull may be considered [19], [34].
In such case, the ROC Convex Hull [34] enables visualiz-
ing optimal performance points for a particular classifier in
the ROC space. This is particularly useful in classification

scenarios where the cost of an FP is different from an
FN one. An example is the diagnosis implications of critical
and non-critical motors.
Auc (Area Under ROC Curve): This measure allows

obtaining a scalar to compare the performance of classifiers,
but information from the whole classifier operating range is
lost [34]. Given two instances, randomly chosen from the
positive and negative classes, the AUC represents the prob-
ability that the classifier classifies better the positive instance
over the negative one [24]. Considering the Convex Hull from
the ROC curve, it identifies the best classifier only if one
dominates the other [34]. In the case of two classifiers whose
ROC curves intersect each other, AUC would not provide
adequate information about the comparison [24].

b: LIFT CHARTS
As with the ROC curves, Lift charts permit to visualize the
true positives but in this case against the dataset size used
to achieve such number of true positives [19]. For this chart,
the true positives are plotted in the vertical axis whereas the
horizontal one indicates the number of observations in the
dataset taken into account for the true positives on the vertical
axis. Particularly, in the electrical motor diagnosis domain,
this is very useful because it shows which classifiers can
identify faulty cases by using the smallest sample size.

c: Precision-Recall Curves
This kind of chart is also known as PRCurves and is discussed
in [35]. It serves to analyze the balance between the positive
examples correctly classified and the negative examples mis-
classified. Basically, it is a plot where the classifier Precision
is represented as a function of the Recall values. In other
words, in a fault diagnosis scenario, these curves represent
the ratio of cases from true fault detected referred to those
which are identified as healthy (vertical axis) and in the
x-axis referred regarding the occurrence rate of false positive
indications. These curves have proved to be successful when
highly imbalanced data are present [35].

d: COST CURVES
This type of curves makes use of the relative known misclas-
sification costs by plotting them directly instead of employing
those based on ROC metrics [19]. The main advantage is
their simple usage when deciding the most suitable classifier
in those cases where the error cost, class distribution or the
imbalanced proportion of the classes are known. The differ-
ence with the ROC curves is that these give more practi-
cal information for those circumstances where the required
information is available (i.e. when the operator has enough
reported knowledge from its functioning equipment and its
consequences).

B. ERROR ESTIMATION METHODS
Once a particular set of performance metrics is chosen for the
algorithm evaluation within the diagnosis problem, the next
step is to determine the best error estimation method to prove
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that the designed algorithm obtains an adequate bias-variance
tradeoff with the best possible use of all available data.
Many error estimation methods are discussed in [19] and [36]
and they can be classified in the following categories:
Resubstitution, Holdout, and Resampling [19].

Particularly, in the case of fault diagnosis in IMs, the
input data frequently comes from a motor current signature
analysis (MCSA) or a vibration signal analysis. The available
data is limited, and it is generally used in its entirety to
train the classifier. It is required to build a large data set
of samples, enough for the testing stage, to make the best
use of the acquired data. This is easily achieved by resam-
pling methods. Basically, there are two kinds of methods:
simple resampling and multiple resampling. In the latter,
the following methods are included: Random Subsam-
pling, Bootstrapping, Randomization and Repeated k-fold
cross-validation.

The advantage ofmultiple resamplingmethods over simple
resampling is the stability on the estimations. This fact results
in a large sampling number, but this may lead to violating the
independence assumption between the test and the training
sets [37].

In large data sets, Resubstitution is a satisfactory method.
The same data is used in the training and testing stages.
Thus, the estimations become optimistically biased. Due to
this bias, the use of this method with small data samples
provides weak results. The Holdout method is an alternative
to Resubstitution, where the data set is split into two exclusive
groups, one for training and the other for testing. The former
is usually larger. This method provides a pessimistic and
biased estimation of the classification error. As the number of
samples in the dataset increases, this bias is decreased. But, on
the other hand, the variance of the error estimation increases.
In the Repeated k-fold cross validation (CV) method, the data
set is divided into k equal-size and mutually exclusive folds.
All except one fold are used for training and the remaining
for testing. As the name of this method suggests, this pro-
cedure is repeated as many times as the evaluator consid-
ers. The classification error is obtained by averaging each
k-error in every repetition. In the k-fold CVmethod, when the
number of folds is the same as the size of observations, the
method is named Leave-one-out. This method has a higher
computational cost, which makes it impractical for some
applications.

Bootstrap [37] may be a better choice than the k-fold cross-
validation in those cases where the data set is relatively small.
There are multiple variants of bootstrap used in statistics.
Zero bootstrap is an improved variant of the simple boot-
strap, which suffers from overfitting [19]. Basically, it con-
sists of sampling with replacement m instances uniformly
from the data set, denoted by S. The likelihood of each
instance being chosen is 1/m and the likelihood of not being
chosen is: (

1−
1
m

)
(9)

For any given observation, the likelihood of not being
chosen after m samples, when m is large, is:(

1−
1
m

)m
∼=

1
e
∼= 0.368 (10)

Thus, the expected number of different instances in the
resulting sample of m observations is:

(1− 0.368) · m = 0.632 · m (11)

Therefore, the test set, Tboot is formed by all observations
of S not present in Sboot . A classifier fboot is obtained with
Sboot and is tested with Tboot . The empirical risk estimated
of fboot is obtained over Tboot . This procedure is repeated
k times, and the respective empirical risk is averaged to obtain
the estimator boot.0e that may result pessimistic since the
classifier is typically trained using only 63.2% of the whole
data set in each step.

As a consequence, 0.632 Bootstrap [37] tries to correct the
pessimistic bias taking into account the optimistic bias from
the resubstitution error over the remaining fraction 0.368.

boot.0.632e =
1
k

k∑
i=1

0.632 · boot.0ei + 0.368 · erre(C)

(12)

where erre(C) represents the resubstitution error of the clas-
sifier C obtained with the training set, S. The latter variant
may lead to estimations with lower variance as a result of
increasing the dataset size.

An improvement to this cross validation method is the
0.632 plus bootstrap (or 0.632+ bootstrap) [38], which cor-
rects bias when there is a great amount of overfitting. Indeed,
the weights are assigned individually for each model to reveal
the goodness in creating the training sample. This version
considers the error for cases in which dependent and indepen-
dent variables were not associated. The following expressions
are used to calculate the estimation error with this method:

boot.0.632+e = (1− ωe) · erre (C)+ ωe · boot.0ei (13)

ωe =
0.632

(1− 0.632Re)
(14)

Re =
boot.0ei − erre (C)
γe − erre (C)

(15)

γe =

n∑
i=1

∑n

j=1

δ(Ci, (ϕ
j
x))

n2
(16)

where γe is the non-information rate estimated by evaluating
the prediction model on all possible combinations of tar-
gets and predictors. Generally, the number of repetitions k
(Bootstraps) to achieve an appropriate estimation is much
larger than for the cross-validation case, being usual values
where k ≥ 200 [19].

C. STATISTICAL TESTS
Using the aforementioned performance metrics, a better
understanding about the desired classifier behavior accord-
ing to the most critical aspects is achieved. Secondly, the
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error estimation methods focused on the stability of the
outcomes regarding slight changes in the training and test
sets composition have been considered. Finally, the statistical
tests (STs) help the researcher to be more precise to verify
the significance of the results. Indeed, the importance of an
appropriate choice of the significance test must be considered
due to their implications to confirm the differences in the
classifier performance [19]. This step can help to control the
error probability of declaring a model better than others. For
these purposes, several statistical tests have been discussed
according to a wide variety of ML scenarios [24]. It is not
the aim of the paper to analyze each test within the field
of ML. However, some of those related to the use of a single
dataset are introduced, which is a usual situation for the
algorithm comparison employed in electrical machines data-
based diagnosis.

In fact, an appropriate estimation of the chosen scores is
not enough to evaluate differences among classifiers since the
estimation does not take into account uncertainties related to
the estimation process. It is true that an ST is not definitive to
conclude the comparison due to its limitations and misuses,
but it is still valid to evaluate the classifier outcomes when
possible [19], [24]. However, leaving the criticisms aside,
two of the most useful STs are described next:

1) TWO-MATCHED SAMPLES t-TEST
This is a parametric type test, i.e. it requires fulfilling each of
the assumptions under consideration to be applied correctly.
Its validity depends on the three following assumptions:
Normality: one requirement for this test is that the popu-

lations have to come from a normal distribution. The behav-
ior under this assumption is quite robust, and it is required
that the test set has at least 30 samples. Some of the most
practical normality tests are the Kolmogorov-Smirnov test,
the Shapiro-Wilk test or the Anderson-Darling test.
Randomness of the samples: This point supposes that the

scores are representative of the underlying distribution, i.e.
the scores have been calculated in such a way (method of
estimating the error) that allows characterizing the distribu-
tion without biasing the sampling process.
Equal Variances: the paired t-test assumes that the two

sample populations have the same variance. The similarity
of variances can be checked with the F test or the Bartlett’s
test.

Given two samples, the goal of the test is to verify if
there is a significant difference between the means. This
appreciation is realized by looking at the first and second
moments of the samples (mean and standard deviation).
A statistical hypothesis test serves to make inference about
the two datasets under study through the confirmation of the
null hypothesis rejection, which was assumed first. Before
starting with the test, normality is adopted, and the null
hypothesis considers a zero difference between these means.
To see whether the hypothesis can be rejected, it is needed
to find out what differences can be expected just by chance
(those related to the normal distributions). This difference is

checked with the t-statistic:

t =
sc(C1)− sc(C1)

σd√
n

(17)

where:

d̄ = sc(C1)− sc(C2) (18)

is the difference of the means of the scores under considera-
tion by applying classifiers C1 and C2; σd denotes the sample
standard deviation defined by:

σd =

√∑n
i=1 (di − d)
n− 1

2

(19)

where di expresses the difference between the scores for each
classifier at the trial i:

di = sc(C1)− sc(C2) (20)

n is the number of trials. The average value of the score is
calculated as follows:

sc(C) =
1
n

n∑
i=1

sci(C) (21)

Finally, the obtained t value must be compared with the
probability values found for the assumed distribution. If this
p-value (output probability) is small (for the significance
level established) then the null hypothesis should be rejected.
Otherwise, there is no evidence to conclude that there is a
difference between the results.

2) McNemar’s TEST
McNemars’s test is a non-parametric test and it is only advis-
able for those cases where the assumptions on the distribution
of the performance measures are not met [19]. In general, this
test is applied to compare the classification errors of the two
classifiers. Once the training and test sets are obtained sepa-
rately, the classifiers are tested on the test set, and afterward
the McNemar’s contingency table (Table 2) is obtained. The
elements of this table are computed as follows:

CMc,00 =
|Stest |∑
i=1

[I (C1(xi) 6= yi) ∧ I (C2(xi) 6= yi)] (22)

CMc,01 =
|Stest |∑
i=1

[I (C1(xi) 6= yi) ∧ I (C2(xi) = yi)] (23)

CMc,10 =
|Stest |∑
i=1

[I (C1(xi) = yi) ∧ I (C2(xi) 6= yi)] (24)

CMc,11 =
|Stest |∑
i=1

[I (C1(xi) = yi) ∧ I (C2(xi) = yi)] (25)

where the number of examples misclassified by the two clas-
sifiers is expressed as: CMc,00. CMc,01 represents the number
of misclassified observations by C1 but correctly assigned
by C2; CMc,10 denotes the reverse case and CMc,11 is the
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TABLE 2. McNemar’s test contingency table.

number of instances correctly classified by C1 and C2 at
the same time. For this test, the null hypothesis considers
that both classifiers have the same performance. Then, the
statistic, which is an approximation of the χ2, is computed
as:

χ2
Mc =

(∣∣CMc,01 − CMc,10∣∣− 1
)

CMc,01 + CMc,10

2

(26)

Finally, the statistic obtained in (26) is compared against
the χ2 distribution values found in the typical tables. The
null hypothesis is rejected if the obtained value surpasses
those related to the considered level of significance. There
are some cases in which the McNemar’s test statistic cannot
be approximated by χ2 distribution and should be replaced
by others (e.g. binomial distribution). This is particularly true
for those cases in where only a limited amount of examples
is available [19].

III. CASE OF STUDY
A case of study is presented in this section to illustrate the
application of the performance evaluation procedures. The
laboratory experiment consists of a destructive test of a low
voltage commercial IM.

FIGURE 2. General view of the laboratory setup.

A. LABORATORY SETUP
A layout of the laboratory setup can be seen in Fig.2.
An IM, star connected and fed directly from the line and
from an inverter, was tested to collect data for this study.

This squirrel cagemotor with two pole pairs has a rated power
of 0.75 kW, at 400 VAC. The rated current is 1.9 A at a rated
speed of 1395 RPM. The inverter is an Allen Bradley, Power
Flex 40.

The motor is loaded with a magnetic powder brake and
tested under two load conditions (medium and high load
level). The operating frequency is 50 Hz. The stator current
is acquired by a Hall-effect current transducer by LEM.
ANational Instruments NI cDAQ-9174 base platformwith an
NI9215 acquisition module is used for data acquisition, with
a sampling frequency of 80 kHz and a steady-state sampling
time of 10 s.

The motor is tested first under healthy conditions. Faulty
conditions are produced by drilling a hole in one of the rotor
bars. A partially broken bar is produced with a depth hole of
12 mm, and finally, a full-broken bar is obtained drilling an
18 mm hole. The characteristic fault harmonics, represented
by the Lower Sideband Harmonic (LSH) and Upper Side-
band Harmonic (USH) are extracted from the steady-state
stator current as fault patterns. For this purpose, the power
spectral density (PSD) of the stator current is computed with
the Fast Fourier Transform. The RMS stator current values
and the motor slip are considered as variables as well. Half
of the trials are obtained with the motor fed from the line
and the remaining ones with the inverter supply.

The number of classes chosen by using the OAA approach,
the number of tests performed and the division of data for
balanced classes are as follows: Class 1, or positive class, is
the faultymotor having 120 instances (60 of a partially broken
rotor bar and 60 of a fully broken rotor bar); and Class 2, or
negative class, is the healthy motor with 120 instances.

B. EVALUATION
Two different classifiers (implemented under R [39]) are
considered: Decision Tree (DT), which is implemented by the
CART (Classification and Regression Trees) algorithm [40]
and Support Vector Machine (SVM) [41] with a linear
kernel. As the main goal is just to illustrate the differences
between some performance measures, the classifiers are not
optimized.

Firstly, a Holdout method is used to calculate the CM of
each classifier using the balanced dataset divided into two
groups: 50% for training and 50% for testing.

The CM and some other related scores are shown in
Table 3. Some conclusions can be drawn from it. If only
the accuracy score is considered, as it is usual in other
works, the outcome will be that both algorithms show the
same performance. Yet, other scores, derived from the CM,
provide more information for the particular faulty class of
interest. Table 3 shows that Recall and Gmean2 have different
values for each classifier, and they give worthy information
about the classifier performance on the faulty (positive) class.
DT classifies slightly better than SVM the negative class
(Healthy motor), which can be more interesting in a dif-
ferent scenario where this class may be more important.
Nonetheless, SVM presents a better behavior for the faulty
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TABLE 3. Confusion matrix and associated scores for the comparison
between CART and SVM.

observations, which is confirmed by the values of the
Precision, Recall, and the F-measure. Thus, in a practical case
where a false positive has not serious consequences, SVM
could be more advisable (e.g., for critical motors where a
non-detected failure could have a significant impact on the
industrial process). However, for those cases where a false
positive has costly implications (for example, when motor
inspection costs are high) DT could be chosen under this
balanced scenario. Once more, if accuracy had been the only
score computed, the comparison between these two classi-
fiers would have been inconclusive, as both have the same
value in this case of study.

Secondly, to analyze the provided information by each
score under imbalanced situations, different cases are studied
and shown in Table 4. For that, the faulty class instances are
reduced according to the imbalanced ratios (IRs) considered
(the definition of the IR can be found in [25]), which are
IR=10, IR=5 and IR=2. Now, the CM is obtained from a
stratified 10-fold CV method. Under imbalanced situations,
the class-oriented scores are highly required to observe the
performance of the class of interest. For the IR=5 and IR=10

imbalanced situations, SVM presents clearly better behavior
than DT classifier as shown by these scores. Nevertheless, for
the IR=2 case the results are quite close, showing differences
in the Recall and Precision scores as expected. The Recall and
Precision values for the DT are similar, but on the other hand,
SVM presents more distant values among them. Indeed, it is
observed that as the imbalanced ratio is reduced being close
to the balanced case, similar results to Table 3 are achieved.
As mentioned earlier, this fact may somewhat determine the
future behavior of the diagnosis tool under certain scenarios.

Additionally, returning to the balanced dataset, some
graphical curves are computed (with the ROCR R pack-
age [42]) for the case of study, which are shown in Figs. 3-4.
These curves provide information about the performance of
these two classifiers in the whole operating range, obtained
by varying the decision threshold. In Fig. 3, it is clearly
observed that SVM presents a better performance in the ROC
space, which is confirmed by its AUC value (AUCSVM =

0.97 > AUCDT = 0.95). On the Precision-Recall curves
(Fig. 4) it is seen that SVM has a higher percentage of faulty
classified instances identified as faulty against the percentage

FIGURE 3. ROC curves of the two classifiers by a stratified 10-fold CV
procedure.

TABLE 4. Scores for the comparison of CART and SVM under imbalanced data (by stratified 10-fold CV).
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FIGURE 4. Precision-Recall curves of the two classifiers by a stratified
10-fold CV procedure.

of faults considered as such with respect all test observations.
Therefore, focusing on the faulty cases, the SVM classifier
presents a better performance behavior.

TABLE 5. Error estimation results using 10-fold cv and 0.632+ bootstrap
for the balanced case.

Regarding the error estimation, Table 5 shows results
for the averaged accuracy metric by using 10-fold CV and
0.632+ bootstrap, for each classification algorithm in ques-
tion. In this case, both classifiers show that the 0.632+ boot-
strap presents a little bit more pessimistic behavior regarding
the 10-fold cross validation method. Nevertheless, its use is
suggested due to the improvement in the predictive behavior
(bias-variance trade-off) under a small data set size [38].

Finally, to verify the significance of the previous results,
the possible application of a significance test is checked. The
procedure used is a stratified 10-fold cross-validation. Taking
into account the Recall, Precision, and F1 (F-measure with
α = 1) metrics, and according to the Shapiro-Wilk test, the
normality conditions are not fulfilled. Every p-value from
each set of metrics is less than 0.05 for a significance level
of 95%. Thus, the null hypothesis cannot be rejected, i.e.
the observations do not come from the Gaussian distribution.
For this reason, the parametric two-matched samples t-Test
cannot be applied. On the other hand, because the following
assumption is far from being fulfilled,

CMc,01 + CMc,10 < 20 (27)

the McNemar’s test is not used in this case [19]. This is
due to the small number of observations. All this means that
statistically speaking, significance testing does not present

the correct assumptions for being applied. Therefore, the
significance of the difference in the classifiers performance
cannot be confirmed with a statistical test.

IV. CONCLUSIONS
The choice of a correct classifier depends enormously on the
accurate evaluation of its performance. In this paper, some
useful performance measures are reviewed. This proposal
facilitates to obtain additional information about the classifier
behavior when the interest of one class (e.g. a particular
type of failure) predominates over the other (healthy state).
On the other hand, the error estimation methods serve to
achieve better predictions according to the data availability
and also to accomplish more stable measures regarding the
bias-variance trade-off. Besides, the correct use of statistical
testing allows confirming the significance of the classifiers
performance results. As it can be inferred from the previous
points, this insight is useful to compare fairly new proposed
classifiers to build diagnosis approaches. Also, this can be
used to improve their design criteria (i.e. its optimization
according to its true fault indications rather than the accuracy
value only, taking into account the higher priority of some
rotor states, etc.). A well understanding on the evaluation pro-
cedure may motivate the incipient faults diagnosis by focus-
ing on their implications in the multi-objective classification
scheme. For example, different degrees of damage in an IM
suppose different risks in the maintenance scheduling. This
makes necessary to assess the diagnosis of the most critical
cases differently, with more severe implications for those
situations where the operating motor does not endanger its
continuity in the application. A large set of published works
in the evaluation of supervised classification approaches in
the last years has been analyzed to help readers identify
the most suitable contributions to be used for diagnosis pur-
poses of electric machines. Generally speaking, the presented
analysis applied to rotor fault diagnosis can also be used
for many data-driven fault diagnosis systems by employing
classification. These considerations may lead to choosing
those classifiers with reduced occurrence of false diagnosis
for a more goal-oriented strategy in predictive maintenance.
In the last instance, by improving the diagnosis method, it is
increased the personnel safety, the continuity in operation of
the electrical equipment, and the reduction of costs originated
by unneeded maintenance interventions.
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