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ABSTRACT

The depletion of freshwater resources, as well as climate change and population growth, are
threatening the livelihoods of thousands of people around the world. The introduction of
underutilized crops such as quinoa may be important in countries with limited productivity and/
or limited access to water due to its resistance to different abiotic stresses and its high nutritional
value. The aim of this review is to assess whether techniques such as germination, malting and
fermentation would improve the nutritional and bioactive profile of quinoa. The use of nitrogen
oxide-donating, oxygen-reactive and calcium-source substances increases germination. The ecotype
used, temperature, humidity and germination time are determining factors in germination. The
presence of lactic acid bacteria of the rust-type phenotype can improve the volume and texture
during baking of the doughs, increase the fiber content and act as a prebiotic. These techniques
produce a significant increase in the content of proteins, amino acids and bioactive compounds,
as well as a decrease in anti-nutritional compounds. Further studies are needed to determine
which conditions are the most suitable to achieve the best nutritional, functional, technological,
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and organoleptic quinoa properties.

Introduction

Sustainable development and the livelihoods of thousands
of people around the world are at risk due to factors such
as desertification, depletion of freshwater resources, increased
food loss and waste, loss of biodiversity, greenhouse gas
emissions, climate change, as well as increased population
and urbanization (FAO 2018). This situation has been exac-
erbated by the COVID-19 pandemic and the ongoing war
in Ukraine. The introduction of underutilized crops, such
as ancient cereals and pseudocereals with high nutritional
value and resistance to different abiotic stresses, can be
relevant in countries with limited productivity and/or
restricted access to protein sources (United Nations 2022).

Quinoa (Chenopodium quinoa Willd.), a species native
to the Andes of Bolivia and Peru, was the main food of
ancient Andean cultures. Great civilizations such as the
Tiahuanacota and Inca civilizations were involved in its
domestication and conservation some 7000 years ago. The
year 2013 was declared by the United Nations General
Assembly as the “International Year of Quinoa (IYQ)” for
its important role in the fight against food insecurity and
poverty, as well as to promote environmentally friendly agri-
culture (FAO and CIRAD 2015). Its seeds are high in pro-
tein, with a good balance of essential amino acids, vitamins,

minerals, antioxidants and dietary fiber. Its protein, with a
higher content of lysine, cystine and methionine than cere-
als, is similar to milk casein (Martinez-Villaluenga, Peiias,
and Hernd et al. 2020; Bilal Pirzadah and Malik 2020; Rana
et al. 2020). It is an outstanding source of vitamins, mainly
pyridoxine (B,) and folic acid (B,), as well as vitamin E,
riboflavin (B,), niacin (B,), thiamin (B;) and vitamin C
(Martinez-Villaluenga, Pefias, and Herndndez-Ledesma
2020). In terms of minerals, it is notable for its calcium,
iron, magnesium, potassium, phosphorus, zinc and manga-
nese content (Martinez-Villaluenga, Pefas, and
Hernandez-Ledesma 2020). It contains a high amount of
unsaturated fatty acids, linoleic acid (w-6) the main unsat-
urated fatty acid and palmitic acid the most abundant sat-
urated fatty acid (Rana et al. 2020). It has a low glycaemic
index (GI) of 35-53 and is gluten-free (Boukid et al. 2018;
Martinez-Villaluenga et al. 2020). This low GI helps main-
tain blood glucose levels and body weight, as well as low-
ering the risk of diabetes, cardiovascular disease and certain
types of cancer (Gordillo-Bastidas et al. 2016). Multiple
secondary metabolites with important physiological functions
have been identified. Among these secondary metabolites
are: phenolic acids, flavonoids (kaempferol and quercetin),
terpenoids, steroids and nitrogen-containing metabolites
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(betalains) (Martinez-Villaluenga, Penas, and
Hernandez-Ledesma 2020; Lin et al. 2019).

There is currently a greater interest in the consumption
of vegetable proteins in substitution of animal proteins, due
to a greater demand for healthier and/or more environmen-
tally sustainable foods. In view of healthy properties, quinoa
has great potential as a functional ingredient that can be
incorporated into different foods or as a raw material in
gluten-free foods.

Quinoa is a facultative halophilic plant with a large
genetic variability, which allows its cultivation in extreme
environment such as frost, drought, saline soils, marginal
lands, etc. Since it is known that excessive soil salinity
alters the germination of plants, decreasing their growth,
development and resistance by modifying their metabolic
processes, decreasing their cell division and expansion and/
or altering their membrane, among others (Panuccio et al.
2014). There is therefore a need to review how soil salinity
affects the nutritional properties of quinoa.

There are processes such as germination and malting
that could modify the nutritional composition of pseudoce-
reals, cereals and legumes. Germination comprises the
stages from imbibition or water absorption to the promi-
nence of the radicle by breaking the seed coat as the endo-
sperm and testa weaken (Carrera-Castano et al. 2020;
Nonogaki 2019). In the case of malting, it consists of a
first germination stage followed by a baking or drying
stage, the purpose of which is to inactivate the enzymatic
processes and increase the stability and storability of the
dried product. Sometimes there may be a third roasting
stage to give the product optimal sensory characteristics
(color, flavor, aroma, etc.). The advantage of these processes
lies in the fact that they could produce certain changes at
a nutritional, functional, technological or sensory level,
which would result in an increase in the concentration of
certain nutrients (vitamins, minerals, bioactive substances,
etc.), a decrease in anti-nutritional factors, improved digest-
ibility, reduced bitterness, etc. However, these effects vary
according to the conditions of germination and crop vari-
ety. It is therefore necessary to review existing studies on
quinoa in order to be able to draw conclusions on the
nutritional benefits that could be derived from this
pseudocereal.

Healthy dietary styles such as veganism, as well as the
emergence of new food pathologies, are encouraging a grow-
ing interest in the production of fermented products from
vegetable sources. Fermentation has already been used for
the preparation and preservation of foodstuffs, especially
those of animal origin, for some 6.000years ago. There is
increasing scientific evidence of the beneficial functions of
human microflora on health. The acidification of the
medium that is achieved through fermentation increases the
activity of endogenous phytases, resulting in a decrease in
phytic acid, an important anti-nutritional factor that pro-
duces a decrease in the bioavailability of minerals, as well
as of the basic amino acids (Carrizo et al. 2016). The con-
ditions of fermentation and the lactic acid bacteria used
can cause variations in the results obtained in quinoa and
its derivatives.

No reviews on the effects of soil salinity, germination,
malting and fermentation on the nutritional composition of
quinoa have been reported in the literature. These processes
constitute a potential means of improving and developing
quinoa as a functional food. Therefore, the main objective
of this paper is to summarize the published articles the
evaluation of the nutritional changes that occur in seeds of
different quinoa varieties during the processes of germina-
tion, fermentation and malting.

Effect of salinity on the nutritional composition of
quinoa

Quinoa can adapt and grow in harsh conditions. The use
of saline hydro sources together with the cultivation of
quinoa is a promising solution to the shortage of water
resources. Quinoa can grow sustainably and productively in
saline soils, making this crop suitable for cultivation. In
addition to affecting crop yields, saline irrigation can change
soil composition and increase aridity and infertility
(Hajihashemi et al. 2020). High soil salinity alters the ger-
mination of plants, decreasing their growth, development
and resistance by modifying their metabolic processes,
decreasing their cell division and expansion and/or altering
their membrane, among others (Panuccio et al. 2014).

Soil salinity causes osmotic and ionic stress in plants.
Osmotic stress results in a decrease or inhibition of the
root’s ability to absorb water, resulting in reduced growth.
Ionic stress, resulting from the accumulation of toxic ions
such as sodium (Na') and chlorine (Cl") in the cell and
essential ions such as potassium (K*) and calcium (Ca®*)
(Causin, Borddn, and Burrieza 2020) and interference with
enzymes, causes alterations in processes such as photosyn-
thesis, protein synthesis, as well as advancement of senes-
cence, chlorosis or necrosis of older leaves (Panuccio et al.
2014). In addition, reactive oxygen and nitrogen species
(ROS and RNS) accumulate in response to this stress and
can damage cell structures (Hajihashemi et al. 2020).

Quinoa varieties that grow in saline areas are more
adapted to these conditions than varieties from non-saline
areas. Similar to other halophilic plants, quinoa has salt
glands or salt bladders, which retain and secrete excess salt
from the tissues. The mechanisms used by quinoa to mit-
igate high salt levels in the soil may be: ionic homeostasis
by membrane transporters (SOS1, NHXI1, H*-ATPase, HAK
and HKT) (Adolf, Jacobsen, and Shabala 2013; Cai and Gao
2020), non-enzymatic antioxidants (glutathione reductase,
glutathione, mannitol, proline, etc.), accumulation of pro-
teins, soluble sugar and proline in leaves, K*/Na* ratio of
leaves and roots (more K* in leaves and more Na* in roots),
better tolerance to ROS accumulation and optimal control
of stomatal development and opening (Adolf, Jacobsen, and
Shabala 2013; Cai and Gao 2020).

Table 1 lists the objectives, conditions of germination,
parameters analyzed and quinoa ecotypes used in the dif-
ferent studies used in this review, which address the issue
of salinity and the repercussions on the nutritional value of
quinoa seeds.
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Table 1. Objectives, germination conditions, parameters analyzed and varieties used in the salinity studies.

Objectives of the study

Conditions for germination

Parameters analyzed Varieties used References

To study how seawater (SW) and -

different solutions of NaCl,
KCl, CaCl, and MgCl, affect
the germination and
biochemical composition of
quinoa seeds.

To study the effects of
pretreatment with CaCl,, H,0,
and sodium nitroprusside
(SNP) on the germination of
quinoa seeds exposed to
salinity.

To examine the alterations
caused by NaCl at different
concentrations on antioxidant
composition and lipid
peroxidation during
germination in three quinoa
varieties, as well as the

Sterilization with 20% NaClO for
20 minutes. Washing and soaking
in distilled water for 1h.

Nine replicates of 50 seeds with

seawater (SW) at 25%, 50%, 75%

and 100% salinity and solutions
of NaCl (0, 100, 200, 300 and
400 mM), KCI (0, 2.54, 5.08, 7.62
and 10.2mM), CaCl, (0, 2.54,
5.08, 7.62 and 10.2mM) and
MgCl, (0, 13.4, 26.7, 40.1 and
53.5mM)

Petri dishes sealed with parafilm:
3ml of each solution and seeds
on filter paper. Germination:
darkness, 25°C and 70% relative
humidity.

Imbibition of 100mg of seeds in
0, 0.1 and 0.2mM SNP, 0, 2.5
and 5mM H,0,, 0, 2.5 and 5mM
CaCl, or a combination of the 3
(0.1,2.5 and 2.5; 0.2,5 and 5) at
room temperature for

60 minutes.

10 Petri dishes: 100 seeds and
addition of 10 ml NaCl at 0, 50,
100 and 200 mM. Germination:
25°C, 16h light and 8h darkness
cycle for one week

Seeds: soaked in 2% NaOC| for
12 minutes and washed.
Germination: Petri dishes
moistened with 5ml NaCl at
different concentrations: 0
(control), 150, 300 and 400 mM
and 21°C.

Total antioxidant activity Panuccio et al. (2014)
(AA) and total phenolic

compounds (TPC).

Danish-bred quinoa
(Chenopodium quinoa
cv.Titicaca).

a- and B-amylase activity,
soluble proteins, total

amino acids, water-soluble
sugars, glucose and starch.

Chenopodium quinoa
Willd.

Hajihashemi et al.
(2020)

Causin, Borddn, and
Burrieza (2020)

Soluble proteins, total Chenopodium quinoa
antioxidant capacity and var. CICA (Puno region,
betalain concentration. Peru)
Chenopodium quinoa
var. Villarrica (Araucania
region, Chile)
Chenopodium quinoa

influence of betalains on salt
stress tolerance.

var. Chadmo (Lagos
region, South of Chile).

In their study Panuccio et al. (2014) analyzed the impact
of different concentrations of seawater (SW) and different
solutions of NaCl, KCl, CaCl, and MgCl, on the germination
and biochemical composition of Danish-bred quinoa
(Chenopodium quinoa cv.Titicaca) seeds. They germinated
the seeds with the different solutions in darkness, at 25°C
and a relative humidity of 70%, observing an increase in
antioxidant activity in all samples with respect to the control
sample, reaching the highest value of 4.13+0.15 pumol
a-tocopherol/g FW (fresh weight) in the 50% seawater sam-
ple. As well as a significant increase of total phenolic com-
pounds in the presence of NaCl and especially seawater, the
maximum being 625+20mg TAET (tannic acid equiva-
lents)/g DW (dry weight) in 75% seawater.

Despite the decrease in germination observed at higher
seawater concentration, increases in both antioxidant activ-
ity and total phenolic compounds were observed, so that
this variety of quinoa could be suitable for cultivation in
high salinity areas. This may be due to the activation of
antioxidant enzyme systems (superoxide dismutase, ascor-
bate peroxidase, glutathione peroxidase, glutathione
S-transferase, guaiacol peroxidase and catalase) and
non-enzymatic systems such as the accumulation of
glycine-betaine, betalains and/or polyamines and structural
and physiological variations to maintain adequate osmosis
of water and ions (Causin, Bordén, and Burrieza 2020).

Hajihashemi et al. (2020) soaked Chenopodium quinoa
Willd. seeds in 0, 0.1 and 0.2mM sodium nitroprusside
(SNP), 0, 2.5 and 5mM H,0,, 0, 2.5 and 5mM CaCl, or
a combination of the 3 (0.1,2.5 and 2.5; 0.2,5 and 5). They
then germinated them with 10ml of NaCl at 0, 50, 100
and 200mM at 25°C and a cycle of 16h of light and 8h
of darkness for one week, with the aim of evaluating the
effects of pretreatment with CaCl,, H,0, and sodium nitro-
prusside (SNP) on the germination of these seeds exposed
to salinity. They observed that pretreatments with SNP,
H,0,, CaCl, and combinations of these significantly
increased: a- and P-amylase activity, protein content, total
amino acids, water-soluble sugars and glucose. There was
also a decrease in starch content. Thus, the most effective
pretreatment is the combination of 0.2mM SNP, 5mM
H,0, and 5mM CaCl,. In relation to these results,
Hajihashemi et al. (2020) concluded in their study that,
although quinoa is a halophilic plant, salt stress causes a
decrease in its germination. Pretreatments with NO-donor
(SNP), O,-reactive (H,0,) and Ca2+-source (CaCl,) sub-
stances decrease the adverse effects of salt stress on ger-
mination and induce a- and P-amylase enzymes. These
enzymes hydrolyze starch into small glucose molecules,
which activate seed germination and growth. The combi-
nation of the 3 substances increases germination above
control levels.
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In another study, Causin, Bordén, and Burrieza (2020)
investigated the alterations caused by NaCl at different con-
centrations on antioxidant composition and lipid peroxida-
tion during germination in three quinoa varieties
(Chenopodium quinoa var. CICA (Puno region, Peru),
Chenopodium quinoa var. Villarrica (Araucania region, Chile)
and Chenopodium quinoa var. Chadmo (Lagos region, south-
ern Chile). As well as the influence of betalains on tolerance
to salt stress. The data they collected at the end of their
research were: the germination initiation time in the control
sample and in the saline samples, in order of highest to
lowest, was Chadmo > Villarrica > CICA and
CICA > Villarrica> Chadmo, respectively. This means that
the Chadmo variety is the most sensitive, while the CICA
variety is the most resistant to salt stress. However, there
is a decrease in antioxidant activity in the following order
Villarrica > CICA > Chadmo, as well as a four- to five-fold
increase in Na* levels in the seed coat in the 300 mM sam-
ples, with the highest value for the Villarrica variety. While
in the case of CI' it is not so clear and there is no noticeable
variation in Ca®*". Regarding K* levels, a slight decrease was
observed at the same concentration of 300mM NaCl and a
clear increase in the Na*/K* ratio in the canopy of the 3
quinoa varieties studied. Based on these results, Causin,
Bordén, and Burrieza (2020) concluded that, of the 3 vari-
eties studied, var. CICA is the most resistant to salt stress
and oxidative damage, while var. Chadmo is the most sen-
sitive to NaCl variations. In addition, the seed coat of all
3 varieties is a major obstacle to Na* penetration. In the
case of the var. CICA it seems that the penetration of Na*
reduces the osmotic effect, making it a more tolerant variety.

Germination

The consumption of germinated sprouts emerged in Asian
countries, with interest in this technique now also spreading
to Europe, the United States and Australia (D’ambrosio
et al. 2017).

Table 2 shows the objectives, germination conditions,
parameters determined in the flour production process, as
well as the ecotypes used and the references of the different
studies.

Hager, Mékinen, and Arendt (2014) concluded that the
most suitable germination temperature was 15°C, as this
was where the lowest number of non-germinated and/or
abnormally germinated seeds were detected. Significant
changes in a-amylase action as well as in sugars at 24 hours
are a sign of the beginning of starch hydrolysis. Germination
causes an increase in enzyme activity. Starch grains are
found mainly in the perisperm of the seed in the form of
single units or spherical aggregates. Hydrolysis of starch
(amylose and amylopectin chains) into glucose molecules
at the radicle growth stage starts by the action of a- and
B-amylase, debranching and a-glucosidase enzymes (Hager,
Mikinen, and Arendt 2014). In such a way, there is a
decrease in starch due to the mobilization of its reserves
and an increase in reducing sugars (sucrose and other sug-
ars). The embryo appears to participate in the synthesis and

accumulation of a-amylases (Hager, Madkinen, and
Arendt 2014).

The study of modifications at the structural and chemical
level of germination on proteins and starch and how these
may affect the practical uses of germinated quinoa flour
was carried out by Sudrez-Estrella et al. (2020a). For this
purpose, they used whole and pearled seeds of Chenopodium
quinoa Willd. Var. Titicaca germinated at 22°C and 90%
relative humidity for 12, 24, 48 and 72h. The results of
their study were that the starch and sucrose content
decreased in the first 24h. At the end of germination, they
observed an increase in sucrose as the activity of the
enzymes that synthesize sucrose increased. The B-amylase
activity did not change, however, the a-amylase activity
underwent a 4-fold increase in the first 12h. Despite the
structural changes of the proteins due to endogenous pro-
tease activity, the content of accessible thiols remained
unchanged. These alterations in the protein part generated
a decrease in foaming capacity at 48 or 72h. The conclusions
drawn by Sudrez-Estrella et al. (2020a)were that germination
can improve both nutritional and functional properties of
quinoa by producing changes in protein structures due to
increased action of endogenous proteases. And also by pro-
ducing a decrease in starch due to increased a-amylase
activity. In addition, the longer the germination time, the
greater the stability of the foam formed and the lower the
foaming capacity.

Variations in the phenolic and proximate composition of
Peruvian quinoa seeds subjected to germination and baking
was the purpose of the study by Pilco-Quesada et al. (2020).
They used seeds of Chenopodium quinoa var. Chullpi that
germinated at 22°C, 90-95% relative humidity for 72h,
which they subsequently dried at 40°C for 1h. At the end
of the study, the results recorded were that the total amount
of protein increased 72h after germination, from 9.6 to
26.0g/100g dry weight. This increase is due to the mobili-
zation of sucrose together with proteins and amino acids
from the embryo to the radicle. Lipid content decreases
because they are involved in respiratory activity and are a
source of energy in germination. There is also a decrease
in ash and carbohydrate content, while phenolic compounds
(coumaric acid being the most abundant) increase in ger-
mination. This increase in phenolic compounds is due to
the activity of endogenous esterases that release the content
of phenols bound to the cell wall and/or their
neosynthesis

In the work of Carciochi et al. (2016a), they used seeds
of Chenopodium quinoa Willd. var. Real and germinated
them in darkness, at 20°C and 90% relative humidity for
72h with the aim of analyzing changes in antioxidant capac-
ity and phenolic substances produced by germination.
Vitamin C and a-tocopherol levels were increased to a max-
imum of almost 16 times the initial level and 134% at 72h,
respectively. There was also a 101% increase in total phe-
nolic compounds (mainly p-coumaric acid and vanillic acid)
and a doubling of antioxidant activity at 72h as a conse-
quence of the increase in vitamins and phenolic compounds
with antioxidant capacity.
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Likewise, Zlotek et al. (2019) studied how germination
and subsequent drying affect phenolic and antioxidant com-
position in Bolivian red quinoa (Chenopodium quinoa) and
Chilean white quinoa (Chenopodium quinoa var. Regalona)
seeds. The seeds were germinated in darkness for 96h and
dried at 30, 45 and 60°C until a relative humidity of 12%
was achieved. Red quinoa has a higher concentration of
phenolic compounds (including ferulic acid) than white
quinoa. In both cases, germination increases the content of
flavonoids and total phenolic compounds, mainly vanillic
acid and ferulic acid. The subsequent drying process barely
modifies the antioxidant values, so germination could be
used for the manufacture of functional nutrients.

Similar results were obtained by Vrancheva et al. (2020)
where they assessed the antioxidant capacity of quinoa seeds
Chenopodium quinoa Willd during germination and com-
pared them with different grains (chia, common oats, proso
millet, amaranth, buckwheat, flaxseed and einkorn). Quinoa
was the one with the highest content of total flavonoids
and total phenolic compounds, with ferulic acid being the
major compound.

Pifiuel et al. (2019) used protein isolates by isoelectric
precipitation from germinated seeds of white, red and black
quinoa (Chenopodium quinoa Willd. Var. Real) to evaluate
antioxidant activity and the ability to inhibit reactive oxygen
species (ROS) in zebra (Danio rerio) larvae. The antioxidant
activity is affected both by the germination time and by the
seed variety used. The use of germinated quinoa and ger-
minated quinoa protein isolates could be used for the man-
ufacture of foods with high antioxidant and protein
concentration in view of the growing demand by consumers
for this type of products.

Paucar-Menacho et al. (2018) used response surface meth-
odology (RSM) to determinate the best germination condi-
tions that maximally increase phenolic, GABA content and
antioxidant activity of quinoa seeds. They germinated seeds
of Chenopodium quinoa Willd var. INIA-415 Pasankalla at
90% relative humidity and temperature and time between
12-28°C and 12-72h, respectively. After analysis, a signifi-
cant increase in GABA, total phenolic compounds and anti-
oxidant activity was obtained. Within polyphenols, both
flavonoid, non-flavonoid and total compounds increased,
with quercetin glucuronide and kaempferol
dirhamnosyl-galactopyranose being the majority phenols.
With these data, Paucar-Menacho et al. (Paucar-Menacho
et al. 2018), concluded that the most favorable conditions
for increasing GABA content, total phenolic compounds and
antioxidant activity are 20°C and 42h of germination time.
The increase in antioxidant activity is due to the increase
in vitamin C that originates during germination. As well as
the increase in phenolic compounds due to the accumulation
of phenolic compounds, the release of phenolic compounds
that were bound to the cell wall and the neosynthesis by
the pathway of phenylpropanoids.

In their work Jimenez, Lobo, and Samman (2019) eval-
uated the modifications in the nutritional composition in
the seed flour of three quinoa varieties (Chenopodium qui-
noa var. Cica, Chenopodium quinoa var. Kamiri and
Chenopodium quinoa var. Inga Pirca) subjected to
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germination. The seeds were germinated at 22-24°C, 80-90%
relative humidity and darkness until radicle size of
1.00-1.50cm (24h), dried at 50°C and ground to obtain
flour. After the study, the following results were obtained:

o Increase in protein content, except in Inga Pirca.

o Increase in total sugar content, protein digestibility
percentage and significant decrease in starch content
(total, resistant and digestible).

o Increase in total fiber and insoluble fiber in all
varieties.

o Significant increase in the content of reducing sug-
ars, with the highest in the Kamiri variety.

o There were no significant changes in gelatinization
temperature, but there was a significant decrease in
gelatinization enthalpy, with the highest in the Cica
variety. Significant increase in the percentage of ret-
rogradation, with the highest in the Kamiri variety.

From the study of Jimenez, Lobo, and Samman (2019),
it is concluded that germination increases the protein con-
centration, protein digestibility and starch retrogradation,
ash, total and insoluble fiber, total and reducing sugars, as
well as a decrease in gelatinization energy. Consequently,
there is an increase in the nutritional value of the seeds
and structural and functional changes due to the proteolytic
activity, which can produce modifications in the technolog-
ical, functional, rheological and/or sensory properties when
these germinated seed flours are used in the manufacturing
of foodstuffs.

These flours have been used for the production of pasta
products (Table 3) and their properties have been evaluated
in the developed foods.

Demir and Bilgigli (2020) studied how to improve the
quality of noodles with the addition of germinated black
quinoa powder by improving the functional, nutritional and
organoleptic properties by adding different proportions of
raw quinoa flour (RQF) and germinated quinoa flour (GQF).
In the study, they observed that the germinated quinoa flour
increased the ash content (due to a decrease in carbohy-
drates), crude protein (due to amino acid neosynthesis),
total phenolic compounds, antioxidant activity and all min-
erals, with the highest increase of calcium (88.3%), potas-
sium and phosphorus, as well as a reduction in crude fat
content (possible source of energy for seed growth) and
phytic acid. During germination, there is an increase in the
activity of enzymes such as endogenous esterases and the
enzyme phytase. Due to the action of the former, new phe-
nolic compounds are synthesized. Phytase, by hydrolyzing
phytates, decreases phytic acid and increases the bioavail-
ability of minerals. However, the concentration of quinoa
played a role in the quality of the pasta. The translucent
bright yellow color, a sign of pasta quality, decreases in
pasta with a higher proportion of quinoa flour. The param-
eters of water absorption, volume and cooking loss also
increase as the proportion of germinated quinoa flour (GQF)
increases, reaching maximum in the sample with 30% of
this flour. Therefore, increasing the proportion of germinated
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Table 3. Objectives, conditions of germination, parameters analyzed and varieties used in quinoa flour-based products in the studies on germination.

Objectives of the study

Conditions for germination

Parameters analyzed Ecotypes used

References

Improve the quality of noodles -
with addition of germinated
black quinoa powder by
improving the functional, .
nutritional and organoleptic
properties by adding different -
proportions of raw quinoa
flour (RQF) and germinated
quinoa flour (GQF).

To find the level of enrichment -
with germinated quinoa to .
achieve maximum productivity -
in bread making and then

compare it with pearled .
quinoa (PQ) to estimate its
usefulness in the bread .

making process.

To evaluate the nutritional and .
functional composition of
gluten-free (GF) pasta with .
the addition of raw and
sprouted quinoa flour (QF).

Seeds washed and disinfected .
with 2.5% NaClO solution for

10 minutes.

Raw quinoa flour (RQF): dried
and ground seeds.

Germinated quinoa flour (GQF):
seeds soaked in water for

3 hours. Germination 2days at
20°C and 80-90% humidity.
Oven-dried at 45°C and milled.
Control dough: 100% wheat
semolina in a 100:30
semolina:water ratio.

RQF and GQF samples:
substitution of 0, 10, 20 and 30%
(w/w) wheat semolina.

Germination: at 22°C for 48h.
Drying: at 55°C for 6h.
Pulverization of germinated and
pearled seeds to size < 250um. -«
Commercial wheat flour (WF)

with 123 mg/g db protein.

5 mixtures: 10:90, 20:80 and

30:70 of SQ:WF (sprouted
quinoa:wheat flour), 100% WF

and 20:80 of PQ:WF.

Once the different breads had

been made, they were examined

at 2, 24 and 72h after baking.
Germination: 20°C for 48h, .
wetting every 12h.

GF paste: drying at 45°C to 10%
moisture and milling to size <

500 mm, obtaining raw and
germinated QF.

Control GF sample: with rice (RS)
and maize semolina (CS) in
proportion (50:50), 400 ml water
and 3% guar gum.

Other samples: with RS:CS (50:50) -
plus raw/sprouted QF at 10, 20
and 30%, 400-436 ml water and
309 guar gum.

Chenopodium
quinoa Willd.

Values of ash, crude .
protein and fat, phytic
acid, total phenolic
content (TPC) and
antioxidant activity (AA) in
wheat semolina, RQF, GQF
and pasta samples.
Physical parameters: color
of raw materials and
samples (L (brightness), a
(red-green) and b
(yellow-blue)), firmness,
cooking properties (water
absorption (WU), volume
increase (VI) and cooking
loss (CL)) of the samples.
Organoleptic parameters
(odor, flavor, appearance
and approval).

Sticking, gluten
aggregation, mixing and

Chenopodium

fermentation properties. Titicaca.

Color and texture and

firmness of crumb,

electronic tongue.

Parameter L (brightness), a « Chenopodium
(red-green) and b quinoa Willd.

(yellow-blue)

Ash, phytic acid, fat and
crude protein content of
both raw materials used
and samples.

Total phenolic compounds
(TPC), minerals (Ca, Fe, K,
Mg, P and Zn).

Water absorption (WU),
volume increase (VI), loss
of solids (CL).
Organoleptic characteristics
(taste, odor, appearance
and general acceptability),
firmness and texture of
the different samples.

quinoa Willd. var.

Demir and Bilgicli (2020)

Sudrez-Estrella et al.
(2020)

Demir and Bilgicli (2021)

quinoa flour results in pasta of lower technological quality
and lower firmness.

Sudrez-Estrella et al. 2020b used germinated and pearled
seeds of Chenopodium quinoa Willd. var. Titicaca in their
study with the aim of finding the level of enrichment with
germinated quinoa to achieve maximum productivity in
bread making and then comparing it with pearled quinoa
(PQ), thus estimating its usefulness in this process. They
germinated the seeds at 22°C for 48h, dried them at 55°C
for 6h and then pulverized them milled to obtain the flour.
The addition of sprouted flour resulted in a significant
decrease in the breakage and viscosity values after cooling.
As the concentration of sprouted flour increased, there was
a reduction in the gluten aggregation time due to a decrease
in gluten. A higher proportion of sprouted flour led to an
increase in the degree of softening and gas production,
decreasing the dough’s retention capacity. A comparison of

bread with sprouted flour versus pearl flour showed an
increase in water absorption and softening, as well as a
decrease in development time and stability in the sample.
The color of the crumb is redder, yellower and softer in
the sample with sprouted flour. Sprouted quinoa flour in
bread produces a softer crumb by decreasing starch retro-
gradation. In addition, the inclusion of this flour reduces
rancidity, which can be useful for bread making by increas-
ing the shelf life of the product. Therefore, in this study
it was concluded that the use of germinated quinoa can be
an alternative with greater potential than pearl in the pro-
duction of bread and derived products with a higher fiber
and protein with high biological value.

In another research by Demir and Bilgi¢li (2021), they
evaluated the nutritional and functional composition of
gluten-free (GF) pasta when raw and germinated quinoa
flour (QF) was added. They used Chenopodium quinoa



Willd. seeds that were germinated at 20°C for 48 h, wetting
them every 12h. The germinated versus raw quinoa flour
paste had higher mineral content (calcium, iron, potassium,
magnesium, phosphorus and zinc), ash, total protein, total
phenolic compounds and antioxidant activity, as well as
lower fat and phytic acid content. Additionally, from an
organoleptic point of view, the sample with 10% sprouted
quinoa flour had better taste, aroma, appearance and
acceptability. In this study, it was found that germinated
quinoa flour increases the nutritional properties of
gluten-free pasta. Increases in fat, protein, total phenolic
compounds, antioxidant activity and mineral content were
directly proportional to the percentage of sprouted quinoa
flour. Although this leads to a decrease in yellow color and
brightness and an increase in reddish color, the latter due
to the increase in phenolic compounds during germination.
There is also an increase in firmness and loss of solids
which may affect in terms of consumer acceptability and
technological properties of the pulp, respectively.

Different seed varieties, light, temperature, humidity and
germination time are determining factors in the nutritional
quality of sprouts (D’ambrosio et al. 2017). Ready-to-eat
sprouts have a short shelf life and can easily deteriorate if
improperly stored. They may suffer from oxidation reactions,
loss of their sensory characteristics or nutritional value. As
a result, strategies such as post-packaging and cold storage
can increase their shelf life.

Among the different types of packaging, modified atmo-
sphere packaging (active or passive) may be suitable for
increasing the shelf-life of quinoa germinated sprouts. The
advantages of modified atmosphere packaging (MAP) include
reduced respiration, enzymatic activities and ethylene pro-
duction (D’ambrosio et al. 2017). In MAP packaging, it is
important to take into account factors such as product res-
piration, temperature, fill volume and weight, film surface
area and permeability.

In their study Dambrosio et al. (2017) evaluated the
chemical and sensory properties of two quinoa seed varieties
(Var. chilena (Chenopodium quinoa Willd. var. Regalona
Baer) and Var. boliviana (Chenopodium quinoa Willd. var.
Real)) after 4days of germination and quality in passive
modified atmosphere packaging and storage. Seeds were
germinated at 20°C, 70% humidity and photoperiod of 24h
and 4days and 25g of fresh sprouts were packed in micro-
perforated polypropylene (PP) bags for 7days at 5°C in
passive MAP. The Regalona Baer variety has a higher ger-
mination power, total phenol content, antioxidant activity,
acetaldehyde and ethanol content. In both cases, passive
MAP packaging decreased oxygen levels and increased car-
bon dioxide levels. The Real variety had more unpleasant
odors than the Regalona Baer variety.

In addition to producing changes such as an increase in
proteins, bioactive compounds or a reduction in
anti-nutritional factors, among others, germination can also
lead to changes in the microbiota (lactic acid bacteria (LAB)
and yeasts). Perri et al. (2020) investigated the effects of
germination on lactic acid bacteria and yeasts in quinoa
(Chenopodium quinoa Willd.), barley, wheat, chickpea and
lentil seeds. There was a lower number of LAB but a greater
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variety of strains in the germinated flour than in the raw
quinoa flour. Yeast (Clavispora lusitaniae and Debaryomyces)
did increase in the germinated flour. It was also observed
that germination increases the use of carbohydrates and
nitrogen as energy sources, as well as the content of total
phenols and insoluble dietary fiber. The metabolic profile
of the flour varies depending on the changes in the micro-
biota. Furthermore, there is a correspondence between ger-
mination time and increases in both nutritional composition
and microbiota composition. This may have both techno-
logical and sensory implications for germinated quinoa
flour and its application in baking.

Metabolomics makes it possible to determine and quan-
tify the metabolites that are present in a plant or plant
organ and to know their energetic, oxidative, reproductive
and anabolic status at a given time. The nuclear magnetic
resonance (NMR) analytical platform provides different per-
spectives for targeted and untargeted metabolic fingerprint-
ing studies. These techniques are used to recognize
differential biomarkers of different species grown in different
regions. In particular, the 1H-NMR technique allows the
detection of secondary metabolites (flavonoids, saponins,
etc.) and primary metabolites (amino acids, organic acids,
etc.) simultaneously. In their study Lalaleo et al. (2020) used
three ecotypes produced and consumed in Ecuador:
Chenopodium quinoa var. Chaucha, Chenopodium quinoa
var. Tunkahuan and Chenopodium quinoa var. “Pata de
Venado”. The results obtained show significant differences
in metabolites between the germinated seed group and the
rest of the non-germinated groups (control, washed, cooked,
washed with cooking), but not between the different eco-
types. It was found that 30 metabolites were detected,
including 12 amino acids, 8 organic acids, saccharides,
nucleosides and choline. The sample with the highest
amount of metabolites was the germinated quinoa. Regarding
these results, Lalaleo et al. (2020) conclude that the increases
in nutritional values observed during germination correlate
with increased bioavailability of macro- and micronutrients,
mainly due to increased enzyme activity during germination,
decreased saponins and phytic acid, and a decrease of sapo-
nins and phytic acid.

Malting

The malting process involves a first germination stage fol-
lowed by a kilning or drying stage, in order to inactivate
the enzymatic processes and increase the stability and stor-
ability of the dried product. Sometimes there might be a
third roasting stage to give the product the optimal sensory
characteristics (color, flavor, aroma, etc.). Some authors use
germination and malting interchangeably, although germi-
nation itself comprises only imbibition until radicle
elongation.

Table 4 lists the objectives, conditions of germination
and drying, parameters analyzed, quinoa ecotypes used in
each study and the reference of the different studies used
to evaluate the effects of malting on the nutritional char-
acteristics of quinoa seeds.
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Table 4. Objectives of the study, conditions of germination and malting, parameters analyzed, ecotypes used and references.

Objectives of the study

Conditions for germination and malting

Parameters analyzed Ecotypes used

References

To assess the effect of malting -
quinoa seeds on phenolic
content and antioxidant
activity, as well as the
conditions suitable for
increasing antioxidant

activity.

To determine the effect of .
malting on folate in
quinoa, amaranth and .

buckwheat seeds.

To assess the effects on the
nutritional composition of
malting on the seeds of 3
Peruvian quinoa varieties. -

T

o

investigate the effects on

the technological,
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The assessment of the effect of malting quinoa
(Chenopodium quinoa Willd.) seeds on phenolic content and
antioxidant activity, as well as the conditions suitable for
increasing antioxidant activity were the subject of the study
by Carciochi et al. (2016c). For this purpose, the response
surface methodology (RSM) was used for suitable germina-
tion conditions: germination time (10, 20 and 30°C), soak-
ing degree (36, 40 and 44%) and germination time (24, 48
and 72h). Seeds were germinated in darkness, at constant
temperature, 80-90% relative humidity and radicle > 2mm.
To malt the seeds, they germinated them first in darkness
at 23°C for 72h and baked the sprouts at 50°C for 24h to
obtain green quinoa malt (G). Finally, they roasted the qui-
noa green malt at 100, 145 and 190°C for half an hour.
These conditions are the same as in a previous study with
raw quinoa seeds (Carciochi et al. 2016b). These authors
showed that the factors that most affect the germination
percentage are germination temperature and the degree of
soaking. More precisely, the temperature of 23°C is where
both the germination percentage and speed of germination
reach their maximum. On the other hand, at 145°C the
highest level of total phenolic compounds, antioxidant activ-
ity, reducing power, fluorescent intermediate compounds
and melanoidins was reached. This reaction is also favored
by the increase in temperature during malting. Roasting
green quinoa malt results in a significant increase in quinoa
antioxidants and can therefore be used to enrich gluten-free
products and beverages.

Motta et al. (2017) studied the effect of malting on folate
in quinoa, amaranth and buckwheat seeds. White quinoa
(Chenopodium quinoa) seeds were germinated in darkness
at 23°C for 48h, dried at 42°C to below 5% humidity for
10h and milled. There was a decrease in folic acid (FA),
5-methyltetrahydrofolate (5-MTHF) and total folate (TF)
values and a slight increase in the 10-formyltetrahydrofolate
(10-CHOTHEF) value of malted quinoa compared to raw
quinoa. In the case of quinoa, the malting technique pro-
duces a decrease in values except for the 10-CHOTHEF value,
in contrast to the other pseudocereals.

In their study Aguilar et al. (2019) analyzed the effects
on the nutritional composition of malting on the seeds of
3 Peruvian quinoa varieties (Chenopodium quinoa Willd.
var. Inia Salcedo, Chenopodium quinoa Willd. var. Red
Pasankalla and Chenopodium quinoa Willd. var. Black
Collana). Seeds were germinated at 25°C for 48h, moist-
ened with water every 8h to have 100% moisture, dried at
55°C for 24h to 5.8% moisture when radicle between
7-10mm, removed the radicles by hand and ground. Malting
was carried out according to the study of Carciochi et al.
(2016c) with some variations. According to the results
obtained in the malted sample compared to the unmalted
sample, the contents of total phenols, total flavonoids, vita-
min C and antioxidant activity increased. On the contrary,
ash content, total fat content and reducing sugars decreased.
The conclusions of the study were that malting affects each
of the varieties used differently. The variety with the most
advantages in terms of nutritional composition, phenolic
compounds and antioxidant activity is Red Pasankalla fol-
lowed by Black Collana. Black Collana also showed a
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significant increase in protein values and could be used
alone or in combination with Red Pasankalla (increased
reducing sugars, phenolic compounds and vitamin C) in
the manufacture of more nutritious foods.

Miranda-Villa et al. (2019) used quinoa (Chenopodium
quinoa Willd.) seeds to study the effects on the technolog-
ical, nutritional and sensory properties of gluten-free muffins
to which different amounts of whole quinoa flour (WQF)
and malted quinoa flour (MQF) have been added. The addi-
tion of quinoa flour and malted quinoa increases the pro-
tein, mineral and amino acid content of the muffins in the
final product. In addition, it increases firmness and chew-
iness without changing the elasticity, cohesiveness and
strength of the crumb. The use of 24h malted quinoa flour
is the closest to the final product without quinoa flour. The
sample with this flour has the best color and brightness
characteristics of the crust and crumb, being the second
sample in the preference ranking test. As the malting time
increases, the color of the crumb changes, becoming darker
as the amount of phenolic compounds increases during
malting as a result of the Maillard reaction. Therefore, the
use of this type of flour increases nutritional quality but
significantly affects sensory parameters such as odor, flavor,
color and texture.

In their work Bhinder et al. (2021) analyzed the changes
in mineral content, polyphenol content, anti-nutritional fac-
tors and Maillard reaction products (MRP) produced by
germination and malting in malted quinoa flour of two
varieties (Chenopodium quinoa Willd. var. white and
Chenopodium quinoa Willd. var. black). They germinated
the seeds in darkness at 95-100% humidity at 24°C for 24,
48, 72 and 96h, dried them in an oven at 50°C for 24h
and milled them. In this work they found differences in
nutritional content and bioactive profile between the differ-
ent quinoa flours used. The contents of protein, ash, mois-
ture, reducing sugars, calcium, iron, manganese and available
lysine are higher in white quinoa flour (WQ) than in black
quinoa flour (BQ). On the contrary, total free flavonoid
content (FTFC), total flavonoid and phenol content (TFC
and TPC), free, bound and total antioxidant activity (FAA,
BAA and TAA) are higher in BQ than in WQ. The malting
process increases the content of reducing sugars, flavonoids
and phenols (total, bound and free), antioxidant activity
(total, free and bound) and fluorescent intermediate com-
pounds (FIC). There is also a decrease in ash content, mois-
ture content, mineral content (calcium, potassium,
magnesium and zinc) and anti-nutritional factors (saponins,
phytic acid and tannins) as a result of malting.

The aim of the research by Motta et al. (2019) was to
compare the amino acid content of pseudocereal seeds by
applying different techniques (boiling, steaming and malt-
ing). In the case of quinoa, they used Chenopodium quinoa
Willd. seeds, germinated them in darkness at 23°C for 24h,
dried them at 42°C to less than 5% humidity for 10h and
milled them. Malting produced an increase in protein and
in all essential amino acids except cysteine. Also of all
non-essential amino acids (alanine, aspartic acid, glutamic
acid, serine), with glutamic acid being the most important
amino acid during malting.
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Fermentation

Lactic acid bacteria (LAB) are interesting from a rheological
and technological point of view. It has been shown that the
presence of LAB can improve the volume and texture during
baking of doughs, increase the fiber content and act as a
prebiotic. LAB can act as preservatives by inhibiting different
pathogens such as Listeria, Bacillus, Aspergillus and
Penicillium (Ruiz Rodriguez et al. 2016).

The pH, temperature, humidity and type of feed are
factors that affect the activity of the phytase enzyme. The
use of techniques such as imbibition, fermentation, germi-
nation or malting can also increase it, as well as the use of
exogenous phytase of plant or microbial origin (BAL)
(Castro-Alba et al. 2019).

Table 5 summarizes the objectives, fermentation and cul-
ture conditions, parameters analyzed and LAB used from
the studies used in the review.

Carrizo et al. (2016) studied the use of lactic acid bacteria
(LAB) from quinoa seeds (QG) and spontaneous sourdough
(QSS) as starter cultures in the manufacture of gluten-free
fermented products. For sourdough fermentation they used
commercial quinoa flours Q1 and Q2 and quinoa seeds
(QG) of three varieties (CHQ, RCQ and RHQ). In this work
they identified 44 different patterns belonging to Lactobacillus
strains in both QSS and QG. L. plantarum and P. pentosaceus
stood out in Q1SS and Q2SS, respectively. L. rhamnosus
CRL 1963 was the strain that produced the highest concen-
tration of riboflavin. While all strains showed phytase activ-
ity, with the highest values in E. mundtii CRL 2007, E.
casseliflavus CRL 1988, Leuc. mesenteroides CRL 2012 and
L. rhamnosus CRL 1983. Based on these results, LAB may
have potential in the production of gluten-free fermented
products enriched in folate and riboflavin, as they are opti-
mal for the preparation of quinoa sourdough starter cultures.
L. rhamnosus CRL 1963 stands out, as it produces folate
and riboflavin and shows both phytase and amylolytic
activity.

Ruiz Rodriguez et al. (2016) conducted an investigation
on the technological, nutritional and food safety character-
istics of the different LAB present in the spontaneous fer-
mentation of quinoa sourdough, which took 10days to
acidify. There was a significant increase of LAB and total
mesophiles in the samples until the sixth day, after which
they stabilized, reaching their maximum microorganism
counts value on the tenth day. L. plantarum CRL1905 and
Leuc. mesenteroides CRL1907 are the strains with the best
profile for use as starter cultures. These strains are safe for
food use as they have no antibiotic resistance, antimicrobial
activity (against Bacillus and Aspergillus) and acidifica-
tion power.

Castro-Alba et al. (2019) studied the effect of fermenta-
tion and dry roasting on the biochemical composition and
organoleptic characteristics of quinoa. They used quinoa
flour, quinoa seeds and L.plantarum 299v°. In all cases there
was a decrease in pH and phytate without significant vari-
ation with fermentation time. The sample with raw flour
fermented for 4h and toasted for 3 minutes at 120°C had
the best sensory characteristics. Fermentation and roasting

significantly affect the sensory attributes of the seeds, espe-
cially the aftertaste and flavor, which are clearly involved
in consumer approval. To improve color and flavor, it is
best to roast the seeds first and then ferment. Both roasting
and fermentation produce significant decreases in the molar
ratios of minerals to phytate (phytate to calcium, zinc and
iron), which results in an increase in the bioavailability of
these minerals, especially when fermentation is followed by
roasting.

In their study Lorusso et al. (2018) evaluated whether
the addition of fermented quinoa flour to pasta improves
the nutritional and technological characteristics of the pasta.
The LAB they inoculated were L. rossiae TOA16 and L.
plantarum T6B10 grown 12h to late exponential phase of
growth. An increase in protein, total dietary fiber, ash, total
phenol content, lipid content and antioxidant activity was
observed in the quinoa pasta and fermented quinoa pasta
compared to the control pasta. Besides, there was a signif-
icant decrease in the starch content. Therefore, the addition
of fermented quinoa flour can further improve the nutri-
tional properties of the pasta, without significantly affecting
its rheological characteristics, as it does not modify either
the strength or the cohesiveness.

The objectives of the study by Castro-Alba et al. (2019)
were to analyze the effects of spontaneous and L. plantarum
299v® (Lp299v°®) fermentation on phytate, as well as mineral
bioavailability before and after fermentation. There was a
decrease in phytate content in the fermented and inoculated
seeds and flours. Fermentation with Lp299v® results in a
more controlled fermentation, increased lactic acid, lower
pH and increased phytate degradation. As well as, accessi-
bility and bioavailability of iron, zinc and calcium improved.
Quinoa flour fermented with Lp299v® has the best values
compared to the other two pseudocereals used (canihua and
amaranth).

Future challenges and trends

Figure 1 shows a summary infographic with the different
mechanisms influencing the variables studied (salinity, ger-
mination, malting and fermentation) affecting quinoa quality.
Germination, malting, and fermentation are inexpensive and
simple processes that produce physical, chemical, functional,
technological and organoleptic changes in quinoa seeds and
the products made from them.

The future trend for quinoa due to its high nutritional
value, genetic variability and adaptability to different climatic
conditions should be an increase in the expansion of its
crop, improvements in its genome, a decrease in the amount
of saponins in its seed coat, as well as improvements in
germination, malting and/or fermentation conditions. All of
this may serve to obtain a more resistant quinoa with better
nutritional properties, as well as contribute to the production
of functional foods with suitable organoleptic, sensory and
nutritional properties. Therefore, quinoa will be able to
diversify the diet and counteract facts such as the growing
increase in world population and the demand for animal
protein with an increase in vegetable protein. Moreover, its
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Figure 1. Summary infographic on on the effect of salinity, germination and fermentation on quinoa quality.

resilience makes it suitable for climate change. Quinoa, cul-
tivated since ancient times in the Andes region, is spreading
to other areas and could become a global staple food due
to its excellent nutritional properties; it has a high biological
value protein, is gluten-free and has a low glycemic index,
which makes it suitable for all kind of people.

Conclusions

Quinoa is a facultative halophilic plant, resistant to var-
ious abiotic stresses such as salinity. The higher the salt

concentration, the lower the germination and consequently
the lower the yield of the crop. However, in some varieties
there was an increase in antioxidant activity and total phenol
content. The ecotype is therefore a determinant of resistance
to salt stress. The use of pretreatments with NO-donor
(SNP), O2-reactive (H,0,) and Ca?"source (CaCl,) sub-
stances reduces the effects of salinity, thus increasing ger-
mination and crop yield.

Factors such as germination temperature, humidity, time
and ecotype used influence germination. Germination leads
to an increase in a-amylase activity. Consequently starch



content decreases and reducing sugar content increases. It
also leads to an increase in protein content and total phe-
nols (especially vanillic acid and ferulic acid) due to
increased enzyme activity, release of wall-bound com-
pounds and neosynthesis of phenolic compounds and pro-
teins. Ash and mineral content also raise. The latter is due
to an increase in phytase activity and a decrease in
anti-nutritional compounds, which results in an increase
in bioavailability. The use of germinated quinoa flour
decreases the phytic acid content, increases the protein
and mineral content, ash, total phenols and antioxidant
activity. The higher the proportion of sprouted flour used,
the higher the content, although in most cases this means
a decrease in the quality of the pasta, especially in terms
of consumer acceptability.

Malting increases the content of amino acids (especially
essential amino acids), proteins, minerals, phenols and total
flavonoids. This increase in polyphenolic compounds trans-
lates into an increase in the antioxidant activity of quinoa.
Factors such as seed color, ecotype and germination time
influence the content of protein, saponins and phytic acid.
The use of malted quinoa flour in the production of
gluten-free products results in increased firmness and
chewiness. Further studies would be necessary to find the
ideal proportion of malted quinoa flour to be added to
improve the nutritional quality of these products without
significantly affecting the sensory parameters of the
product.

Fermentation with LAB can be suitable for the production
of gluten-free fermented functional products enriched in
different nutrients. These LAB are used to obtain starter
cultures for quinoa sourdough, notably L. rhamnosus (pro-
duces folate and riboflavin and has phytase and amylolytic
activity), L. plantarum CRL1905 and Leuc. mesenteroides
CRL1907. The latter two due to their acidification power,
activity against Aspergillus and Bacillus and no resistance to
antibiotics. Fermentation produces modifications in the
nutritional and sensory characteristics of the seeds, such as
a decrease in phytate and an increase in the bioavailability
of minerals. Inoculation with L. plantarum 299v°® has been
shown to produce a greater increase than if the fermentation
is done spontaneously.

Quinoa undergoing processes such as fermentation, malt-
ing and germination can be used in the production of
functional products, which are in great demand today by
health-conscious consumers. Further studies would be nec-
essary to see how much germinated, malted or fermented
quinoa flour should be added to achieve better nutritional
properties without losing the technological characteristics
of the product, especially in gluten-free products. In addi-
tion, conditions of temperature, salt concentration, humid-
ity, quinoa ecotype, etc., are the most suitable to improve
the performance of both the crop and the nutritional, func-
tional, technological and sensory characteristics of the qui-
noa seeds.
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