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HyperMix: An Open-Source Tool for Fast Spectral
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Abstract—Spectral unmixing has been a popular technique for
analyzing remotely sensed hyperspectral images. The goal of un-
mixing is to find a collection of pure spectral constituents (called
endmembers) that can explain each (possibly mixed) pixel of the
scene as a combination of endmembers, weighted by their coverage
fractions in the pixel or abundances. Over the last years, many
algorithms have been presented to address the three main parts
of the spectral unmixing chain: 1) estimation of the number of
endmembers; 2) identification of the endmember signatures; and
3) estimation of the per-pixel fractional abundances. However, to
date, there is no standardized tool that integrates these algorithms
in a unified framework. In this letter, we present HyperMix, an
open-source tool for spectral unmixing that integrates different
approaches for spectral unmixing and allows building unmixing
chains in graphical fashion, so that the end-user can define one
or several spectral unmixing chains in fully configurable mode.
HyperMix provides efficient implementations of most of the algo-
rithms used for spectral unmixing, so that the tool automatically
recognizes if the computer has a graphics processing unit (GPU)
available and optimizes the execution of these algorithms in the
GPU. This allows for the execution of spectral unmixing chains
on large hyperspectral scenes in computationally efficient fash-
ion. The tool is available online from http://hypercomphypermix.
blogspot.com.es and has been validated with real hyperspectral
scenes, providing state-of-the-art unmixing results.

Index Terms—Graphics processing units (GPUs), HyperMix,
hyperspectral imaging, open-source, spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL remote sensing is based on the ca-
pability of imaging spectrometers to collect reflectance

data, along different wavelength bands, for the same area on
the surface of the Earth. For instance, the NASA Jet Propulsion
Laboratory’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) covers the wavelength range from 0.4 to 2.5 μm (vis-
ible and near-infrared spectrum) using 224 spectral channels
[1]. A hyperspectral data set can be therefore seen as a cube
in which each pixel is given by the spectral signature of the
underlying materials in that area of the image.
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One of the main issues in hyperspectral analysis is the mixed
pixel problem [2], which depends on the spatial resolution of
the data and also on the characteristics of the area which is
being imaged. To address this problem, spectral unmixing finds
a collection of pure spectral constituents (called endmembers)
that can explain each (possibly mixed) pixel of the scene as
a combination of endmembers, weighted by their coverage
fractions in the pixel or abundances [3].

Over the last years, many algorithms have been presented
to address the three main parts of the spectral unmixing chain:
1) estimation of the number of endmembers; 2) identification
of the endmember signatures; and 3) estimation of the per-
pixel fractional abundances [2]. Two major techniques have
been used for spectral unmixing purposes: the linear mixture
model, which assumes that the materials are combined linearly,
and the nonlinear mixture model, which assumes that there are
nonlinear interactions between the endmember substances [4].
The linear model is generally considered more computationally
tractable, but in both cases, the complexity and high dimen-
sionality of the hyperspectral scenes bring computational chal-
lenges that make spectral unmixing techniques appealing for
implementation in high-performance computing systems [5],
[6]. For instance, graphics processing units (GPUs) have been
widely used to accelerate hyperspectral imaging algorithms [7],
[8]. GPUs are a low-weight and low-cost hardware platform
in which it is possible to accelerate operations and methods in
order to easily obtain better computational performance. The
number of processor cores depends of the architecture and the
model of the GPU. The possibilities of these units go beyond
their price and offer an unprecedented potential to accelerate
hyperspectral imaging problems.

Despite the popularity of hyperspectral unmixing techniques
and their high computational demands, to date, there is no
standardized tool that allows for the computationally efficient
execution of spectral unmixing chains in a unified, graphical,
and fully configurable framework. In this letter, we describe
HyperMix, an open-source tool for spectral unmixing which in-
tegrates different approaches for spectral unmixing and allows
building unmixing chains in graphical and fully configurable
fashion, allowing an end-user to intuitively define the charac-
teristics of spectral unmixing chains for hyperspectral analysis
applications. In previous developments [9], the tool included
several unmixing algorithms covering the different parts of the
unmixing chain. A main innovation presented in this letter is
the capability of the tool to define unmixing chains in graphical
fashion and to automatically recognize if the computer has a
GPU available, in which case the execution of the algorithm is
optimized for the available GPU device.
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without checking if a different ordering of the endmembers or
the reference signatures when performing the matching would
improve the results. The second method (average SAD) per-
forms the matching after a number of executions of the min-
imum SAD algorithm by randomly sorting the endmembers
and the reference signatures, thus making sure that a more
optimal matching is achieved. Table III shows the SAD scores
(in degrees) obtained by the HyperMix tool after comparing the
extracted endmembers with the reference USGS signatures. As
shown by Table III, the extracted endmembers are very similar,
spectrally, with regard to the reference USGS signatures. An
evaluation of the NRMSE scores obtained using the HyperMix
tool after comparing the reconstructed versions of the two
considered hyperspectral scenes also reveals high similarity
scores, with values of 0.0185 for the Cuprite scene and 0.0058
for the WTC scene using the considered unmixing chain.

IV. CONCLUSION AND FUTURE LINES

In this letter, we have presented an open-source tool called
HyperMix which contains a variety of algorithms (iterative and
parallel) for spectral unmixing of remotely sensed hyperspectral
data sets. The tool offers an easy way to manage these algo-
rithms and build spectral unmixing chains, along with compre-
hensive options to display and validate the obtained unmixing
results. The developed open-source tool and quantitative com-
parison of unmixing algorithms is expected to be of great
interest to both algorithm developers and end-users of spectral
unmixing techniques, as this is the first tool of its kind in
the area of spectral unmixing. In addition to the inclusion of
additional techniques for spectral unmixing (which is very easy
to manage in the current version), our future lines of research
will be focused toward offering remote access to a repository of
hyperspectral scenes [24] through HyperMix and extending the
capability of HyperMix to include other kinds of techniques for
hyperspectral image processing. We will maintain and expand
the tool with additional versions compatible with new GPU
families.
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