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Neurogenesis is a very intensive process during early embryonic brain development,
becoming dramatically restricted in the adult brain in terms of extension and intensity.
We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF)
in developing brain neurogenic activity. We also showed that cultured adult brain neural
stem cells (NSCs) remain competent when responding to the neurogenic influence of
embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here,
by means of an organotypic culture of adult mouse brain sections, we show that local
administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger
a neurogenic program in NSCs. This leads to a significant increase in the number of
non-differentiated NSCs, and also in the number of new neurons which show normal
migration, differentiation and maturation. These new data reveal that embryonic CSF
activates adult brain NSCs, supporting the previous idea that it contains key instructive
components which could be useful in adult brain neuroregenerative strategies.

Keywords: embryonic cerebrospinal fluid (CSF), brain development, ventricular-subventricular zone (SVZ), neural
stem cells, neurogenesis, stem-cells, brain

INTRODUCTION

Neural stem cells (NSCs) in the adult mammalian brain are regarded as a useful tool to
regenerate neurons in pathological conditions such as neurodegenerative diseases or acute
brain injury. Neurogenic potential has been demonstrated in only two specific areas of the
normal mammal brain in adults, namely, the subventricular zone (SVZ) of the lateral ventricle
(LV) and the subgranular layer of the hippocampal dentate gyrus (DG). In mammals, both
locations show neurogenic activity throughout life (Alvarez-Buylla and Lim, 2004; Lathia et al.,
2007; Kazanis et al., 2008). This neurogenic activity is not so intense in normal physiological
conditions, but several studies, have shown the existence of a non-developed reserve of neurogenic
activity in the SVZ, which is made evident in cerebral tissue damage (Yamashita et al., 2006;
Kaneko and Sawamoto, 2009; Kernie and Parent, 2010; Kaneko et al., 2011; Chang et al.,
2016).
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In the last few years, the study of the sequence of cellular events
from NSCs to mature neurons, has led to a functional concept,
the ‘‘cellular niche’’ (Alvarez-Buylla and Garcia-Verdugo, 2002;
Merkle and Alvarez-Buylla, 2006; Quiñones-Hinojosa et al.,
2006), which includes not only the NSCs and their progeny,
but also other mature cells in the surrounding area (neurons,
glia and ependimocytes), the extracellular matrix, blood
vessels and cerebrospinal fluid (CSF), which is in contact with
this complex cellular structure. The complex microenvironment
of diffusible signals and intercellular influences seems to be
responsible for the regulation of neurogenic activity in the
adult brain niche (Lathia et al., 2007; Zhao et al., 2008; Ming
and Song, 2011; Lim andAlvarez-Buylla, 2014).

E-CSF is a complex fluid involved in several brain
developmental mechanisms which include a key role in
neurogenesis (Gato et al., 2005; Parada et al., 2005b; Martin
et al., 2009; Desmond et al., 2014; Chau et al., 2015). This
ability seems to be based on the presence of several molecules
of a high biological value (Gato and Desmond, 2009). Many
of these molecules are proteins, as has been shown mainly by
proteomic analysis (Gato et al., 2004; Parada et al., 2005a, 2006;
Zappaterra et al., 2007; Chau et al., 2015). Several growth and
transcriptional factors have been identified in CSF as active
components; these include FGF2, IGF1 and EGF which has been
witnessed in the regulation of themitotic activity of NSCs (Miyan
et al., 2003; Martín et al., 2006; Lathia et al., 2007; Zappaterra
and Lehtinen, 2012), and the ‘‘retinol binding protein’’, which
regulate the intake of Retinol, the Retinoic Acid precursor, in
RALDH positive cells responsible for Retinoic Acid synthesis
(Parada et al., 2008; Alonso et al., 2011, 2014; Chang et al., 2016).

NSCs have been identified as neuroepithelial cells early in
development, radial glia in the fetal period and specific astrocytes
in the adult brain in mammals. They have been considered a
unique cellular lineage which evolves ontogenically (Kriegstein
and Alvarez-Buylla, 2009), whilst preserving their potential
of self-renewal and pluripotent differentiation. However, they
exhibit decreasing neurogenic activity with age in accordance
with ontogenical modifications in niche composition and
signaling. Several research studies (Alvarez-Buylla and Garcia-
Verdugo, 2002; Gato et al., 2005; Lehtinen and Walsh, 2011)
reveal the existence of a specific spatial relation of the NSCs
niche with the ventricular system and CSF. This direct contact
is particularly evident in neuroepithelial and radial glia cells, but
has also been described in adult brain astrocytic NSCs of the
SVZ (Merkle and Alvarez-Buylla, 2006). The influence of CSF
on NSCs behavior has been highlighted in the last few years
both during development (Miyan et al., 2003; Gato et al., 2005;
Gato and Desmond, 2009), and also in the adult brain (Lehtinen
and Walsh, 2011; Lehtinen et al., 2011; Zappaterra and Lehtinen,
2012). In fact, CSF is considered to be amain component of niche
signaling (Lathia et al., 2007).

However, studies have described different effects of CSF upon
NSCs during development (induction of precursor replication
and neurogenesis, Gato et al., 2005; Alonso et al., 2011; Chau
et al., 2015), compared with those encountered during the adult
period (role in migratory guidance, Sawamoto et al. (2006),
or the induction of gliogenesis, Buddensiek et al., 2010). The

contradictory role of CSF throughout life can be explained in
terms of ontogenic changes in its composition (Carnicero et al.,
2013), which range between Embryonic CSF (E-CSF), with a high
degree of neurogenic power, to Adult CSF (A-CSF) with low
neurogenic potential; however, it can also be explained through
the differential competence of adult and embryonic NSCs. In
this regard, previous studies have shown that, at earliest stages
of development, E-CSF has a complex composition with several
molecules such as growth factors andmorphogens (Kazanis et al.,
2008; Pathania et al., 2010; Lun et al., 2015) that function as
a cocktail of signals able to induce survival, replication and
neuronal differentiation in developing brain stem cells (Gato
et al., 2005; Martin et al., 2009).

Taking into consideration these concepts together with our
preliminary study showing that E-CSF is able to induce the initial
steps of neuronal differentiation on SVZNSCs cultured ‘‘in vitro’’
outside the niche (Carnicero et al., 2013), we assess the potential
of E-CSF on the entire behavior of adult NSCs.

MATERIALS AND METHODS

Our experimental approach was based on an organotypic tissue
culture of adult mouse brain sections (Schommer et al., 2017)
from the SVZ, with local administration of CSF soaked latex
micro-beads (Gato et al., 2005).

Obtaining Cerebrospinal Fluid
E-CSF was micro-aspirated from the mesencephalic cavity
of 12.5-day-old mouse embryos (Swiss-Webster strain), as
previously described (Martin et al., 2009).

A-CSF was obtained from 3- to 4-month-old mice of both
sexes, by micropuncture of the ‘‘cisterna magna’’, in accordance
with the technique of Liu and Duff (2008).

To minimize protein degradation, CSF samples were kept at
4◦C during handling and then lyophylized and frozen at −40◦C
until use.

Organotypic Culture of Sections
Containing Lateral Ventricle SVZ
Organotypic cultures were performed according to current
protocols (Stoppini et al., 1991; Schommer et al., 2017).
Animals were housed and handled in ways that minimize
pain and discomfort, in accordance with Spanish animal
welfare regulations (RD53/2013) and in agreement with the
European community Council Directive (2010/63/EU). Adult
mice brains from both sexes were obtained by surgery under
deep anesthesia, following Spanish animal care legislation
(approved by Comité de Ética en Experimentació Bienestar
Animal-CEEBA–University of Valladolid). Authorization for
the experiments was granted by the CEEBA-University of
Valladolid and the Consejeria de Agricultura de la JCYL) and the
experiments were performed under the surveillance of the animal
welfare officer responsible for the Valladolid University. Adult
mice brains from both sexes were used. Upon removal, each brain
hemisphere was immersed in sterile saline at 4◦C, then placed
in 3% liquid agar and stored for 1.5 h at 4◦C. Coronal 300-µm-
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FIGURE 1 | Representative images of adult mice brain slices at the
subventricular zone (SVZ) level. (A) Vibratome coronal slices showing the
striatum (ST), the lateral ventricle (LV) and the SVZ; latex micro-beads soaked
in PBS or CSF were implanted immediately behind the SVZ (white circles).
(B) Coronal histological section stained with hemeatoxylin-eosin at the same
level as (A). The image shows the location of the predetermined areas to study
the number and characteristics of neural stem cells (NSCs) for the neurogenic
niche (SVZ), the neighbor striatum (ST) and the rostral migratory stream (RMS).

thick sections from the SVZ were obtained with a Vibratome,
and carefully placed onto a Millipore filter paper (0.8 µm
pore diameter). A total of 5–6, latex micro-beads (50–100 µm
diameter Sigma SD-91) were implanted in each brain slice with
micro-forceps, close to the ventricular surface, as is shown in
Figure 1. Latex micro-beads were previously soaked for 24 h at
4◦C either in the culture medium, in E-CSF or A-CSF. Finally,
brain sections were covered with a collagen layer (collagen 1%
in DMEM-Fetal Bovine Serum 8:1:1). Brain sections were then
cultured in a floating system, as previously reported (Gato et al.,
2005). We used DMEM supplemented culture medium with 1%
Penicillin/Streptomicyn +25% of horse serum + 6mg/ml Glucose
+25%HBSS, at 37◦C and in a 5%CO2 atmosphere for 6 days. The
culture medium was also supplemented with BrdU (10 µM) to
detect cellular replication. Following culture, the samples were
fixed in Carnoy’s solution for 1 h, embedded in paraffin and
sectioned at 8 µm for immunohistochemistry. We performed a
total of five different cultures, generating 30 SVZ cultured brain
slices for experimental condition (Control, E-CSF and A-CSF).

Immunostaining
To evaluate NSCs behavior, histological sections obtained from
the in vitro cultured SVZ brain slices were used for single or
double immunolabeling procedures in order to evaluate NSCs
replication, migration and differentiation. For this purpose, we
have chosen some of the more representative antibodies in order
to clarify the influence of E-CSF in SVZ niche dynamics.

The BrdU added to the culture media, was incorporated
into the nuclei of DNA synthesizing cells, which in the SVZ
correspond with NSCs. This procedure allows the identification
of the stem cells and their offspring for a couple of cell divisions;
consequently, BrdU-immunolabeling was used to evaluate the
replication rate and also as a cellular lineage tracer in our SVZ
culture system to follow the presence of NSCs in the striatum and
in the rostral migratory stream (RMS).

To assess whether the NSCs population brings about an
increase in SVZ neurogenesis, we evaluated the presence of BrdU

co-localized with Sox2, a marker for NSCs in an undifferentiated
state; Neurod1, a transcription factor widely used as an early stage
neuron commitment marker; βIII-Tubulin (Tuj-1) a widespread
young neurons marker; Doublecortin, a specific marker for
migratory NSCs and Calretinin, a differentiated neuronal marker
(Perez-Asensio et al., 2013; Kaur et al., 2015; Ochi et al., 2016).

Immunolabeling was performed following standard
procedures and the antibodies used for immunostaining
were as follows: Anti BrdU (1/50 dilution, Dako, Ref. M7240);
Anti Sox2 (D-17) (1/50 dilution, Santa Cruz Biotechnology,
Ref.sc-17319); Anti Neurod1 (1/200 dilution, Sigma, Ref.
T2200); Anti β-III-Tubulin (Tuj 1) (1/20 dilution SIGMA, Ref.
T2200); Anti Calretinin (1:200 dilution, Millipore AB5054);
and Anti Doublecortin (DCX) (1/20 dilution, Abcam ab18723).
Secondary antibody for Anti Sox2 was Antigoat Ig G-Alexa 594
(1/1000 dilution Invitrogen, Ref. A110 58). Secondary antibody
for the rest was Antimouse Ig G-Alexa 488 (Invitrogen, Ref.
10680), 1/1000 dilution.

Immunolabeled cells were photographed with a Leica TCS
SPE confocal laser microscope.

Quantification and Statistical Analysis
To quantify the results, we randomly selected 20 laser
confocal brain images taken from 10 different animals
(n = 10) for each experimental condition (Control, E-CSF
and occasionally A-CSF) and immunolabeling type. All
images (which had a 0.0269 mm2 area) were carefully
obtained in the selected zones: SVZ, striatum (ST) and
RMS defined in Figure 1B. The total number of BrdU or
double immunolabeled cells in each case was counted and
plotted in the graph bars as mean ± standard deviation.
Statistical analyses of data were conducted by one-way ANOVA
analysis of variance followed by a post hoc Bonferroni test,
or alternatively we used the two-tailed Student’s t-test. In
both cases the significance threshold was set as p ≤ 0.05 or
p ≤ 0.001.

RESULTS

In this study, we evaluated the effect of E-CSF on the behavior of
SVZ NSCs in the adult mouse brain, taking into consideration
cellular replication, neuronal differentiation, migration and
maturation.

E-CSF Expands the Neural Precursor Cell
Population in the SVZ
In order to evaluate the effect of E-CSF on SVZNSCs replication,
we focused our attention on two different locations; the first
was the tissue underlying the ependymal layer lining the anterior
horn of the LV (Figures 1A,B, SVZ); the second was the striatal
tissue close to the SVZ (Figures 1A,B, ST). Both areas showed
BrdU positive nuclei in control and experimental conditions
and were close to the latex micro-bead implants (Figure 1A).
In our experience, E-CSF soaked latex micro-bead implants
are able to influence the surrounding area for several days
(Gato et al., 2005); moreover, as we showed in Figure 1A,
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FIGURE 2 | Effect of Embryonic CSF (E-CSF) on mitotic activity in SVZ niche
NSCs, monitored by nuclear incorporation of BrdU (red). Confocal
photomicrographs (A,B show the SVZ of “in vitro” cultured adult mice brain
slices (see Figure 1B). Note the substantial increase in NSCs mitotic activity
under the ventricular surface (white arrows) induced by E-CSF (B), compared
with the controls (A). Confocal photomicrographs (C–E) show the Striatum
area of “in vitro” cultured adult mice brain slices close to the SVZ (ST in
Figure 1B). Quantification of BrdU positive nuclei in Control (C), E-CSF (D)
and A-CSF (E) treated brain slices was plotted in graph bars (F) and
expressed as means ± SD (n = 20); the significant threshold was set at
p ≤ 0.001 (∗) according to the one-way ANOVA, post hoc Bonferroni test. The
results reveal a statistically significant increase (49%) in the number of BrdU
positive NSCs in CSF-E treated brain slices with respect to the controls and
A-CSF treated slices; this suggests a specific activation by E-CSF of mitotic
activity in NSCs of the SVZ niche. Confocal photomicrographs (G,I)
correspond to the striatum area of “in vitro” cultured adult mice brain slices,
close to SVZ (ST in Figure 1B). Images show double immunolabeling with
antiBrdU (green) and antiSox2 (red) antibody; co-localization of both
antibodies was interpreted as NSCs dividing (BrdU positive) but not
differentiating (Sox2 positive). Quantification of co-labeled BrdU and
Sox2 NSCs in Control (G) and E-CSF treated brain slices (I) was plotted in
graph bars (H) and expressed as means ± SD (n = 20); the significant
threshold was set at p ≤ 0.001 (∗) according to the two-tailed Student’s t-test.
The results reveal a statistically significant increase (141%) in the number of
NSCs that undergo replication but remain undifferentiated in CSF-E treated
brain slices, in comparison with the controls. Scale bar: 25 µm (A–E) and
10 µm (G,I).

latex micro-bead implants were located very close to the brain
ventricle, allowing E-CSF diffusible signals to interact with the
ventricular surface.

The SVZ in the control sections (Figure 2A) showed
the presence of several BrdU positive nuclei directly behind
the ventricular surface; however, these positive nuclei were
frequently away from each other and appeared as a discontinuous
line. Meanwhile, the SVZ in the E-CSF treated sections
(Figure 2B) revealed several areas underlying the ventricular

FIGURE 3 | Effect of E-CSF on the number of NSCs with neuronal
commitment, monitored by co-expression of BrdU (red) and Neurod1 (green).
Confocal photomicrographs show the Striatum area of “in vitro” cultured adult
mice brain slices close to the SVZ (ST in Figure 1B). Quantification of
co-labeled BrdU and Neurod1 NSCs in Control (A) and E-CSF treated brain
slices (C) was plotted in graph bars (B) and expressed as means ± SD
(n = 20); the significant threshold was set at p ≤ 0.05 (∗) according to the
two-tailed Student’s t-test. The results reveal a statistically significant increase
(78%) in the number of NSCs with neuronal commitment in CSF-E treated
brain slices with respect to the controls; this suggests an increase in adult
brain neurogenesis activity induced by embryonic CSF. Scale bar: 10 µm
(A,C).

surface with an evident increase in the number of BrdU positive
nuclei with respect to the control samples, which occasionally
formed a continuous cord with several layers of nuclei, indicating
an increase in the SVZ replicative activity of NSCs.

Given that highly proliferative NSCs were also located in
the striatal tissue close to the SVZ, we chose standard areas to
quantify the number of BrdU positive nuclei (see Figure 1B,
ST). In the control sections we found a discrete and scattered
number of BrdU positive nuclei (Figure 2C). The number
of positive nuclei was higher (49%) in the E-CSF treated
sections (Figure 2D) with respect to the control ones and was
statistically significant (Figure 2F). Regarding A-CSF treated
sections (Figure 2E), we could not find significant differences
with the controls (Figures 2C,F).

In order to clarify this result, we evaluated in the same area
(ST) the nuclear co-localization of BrdU and SOX2, which is a
molecular marker of undifferentiated NSCs (Khodosevich et al.,
2013). As is shown in Figures 2G–I, E-CSF induces a significant
increase (141%) in the number of cells which express both (BrdU
and Sox2) with respect to the controls.

E-CSF Also Induces Neurogenesis in SVZ
Although a considerable number of NSCs cultured with E-CSF
remained in an undifferentiated state (BrdU positive and
Sox2 positive), there were also many cells (BrdU positive and
Sox2 negative) in the SVZ (data not shown), which could be those
in a more advanced state of differentiation. To assess whether the
NSCs amplified population detected in E-CSF treated sections
also brings about an increase in SVZ neurogenesis, we evaluated
the expression of Neurod1 at an early stage in the neuronal
commitment marker and βIII-Tubulin (Tuj-1) as a young
neurons marker.

As is shown in Figures 3A–C, E-CSF exposure induced in
the selected striatum area (Figure 1B) a clear and statistically
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FIGURE 4 | Effect of E-CSF on early neurogenesis, monitored by
co-expression of BrdU (red) and Beta III Tubulin (green). Confocal
photomicrographs show the Striatum area of “in vitro” cultured adult mice
brain slices close to the SVZ (ST in Figure 1B). We evaluated individually new
neurons showing co-labeling of BrdU with low (A+, newborn neurons) and
high (A++, young neurons) Beta III Tubulin cytoplasmic expression.
Quantification of co-labeled NSCs in Control (B), E-CSF (C) and A-CSF (D)
treated brain slices was plotted in graph bars (E) and expressed as
means ± SD (n = 20); the significant threshold was set at p ≤ 0.05 (∗) or p ≤

0.001 (∗∗) according to the one-way ANOVA, post hoc Bonferroni test. The
results reveal a statistically significant increase in the total number of new
neurons derived from NSCs in E-CSF treated brain slices with respect to the
controls (34%). In contrast, A-CSF treated brain slices show a drop (10%) in
the total number of new neurons derived from NSCs with respect to the
controls. There is also a significant increase in the presence of high-level Beta
III Tubulin cytoplasmic expression in E-CSF treated brain slices with respect to
the controls (116%) and A-CSF (211%). This suggests that E-CSF significantly
increases neurogenesis in SVZ derived NSCs, but also accelerates transition
from newborn to young neuronal state. Note that A-CSF does not reproduce
this neurogenic activation. Scale bar: 25 µm (B–D).

significant increase (78% with respect to the control ones) in
Neurod1 positive cells which also co-express BrdU (as a cellular
lineage marker).

In order to test whether the increase in neuronal commitment
induced by E-CSF leads to an effective and persistent increase
in new neurons, we evaluated the number of cells with
co-expressed BrdU and βIII-Tubulin in the SVZ. Given the
presence of two types of co-labeled cells in the striatum area
studied in accordance with the amount of βIII-Tubulin in the
cytoplasm and identified as low (Figure 4A+: nuclei partially
surrounded by βIII-Tubulin) or high expression (Figure 4A++:
nuclei totally surrounded by βIII-Tubulin), we conducted an
individual study of both types of new neurons in order to assess
changes in the duration of the neurogenetic cycle. As in the
NSCs replication study, we included here three experimental
conditions: brain slices cultured with latex micro-beads soaked

FIGURE 5 | Effect of E-CSF on the number of migratory NSCs, monitored by
co-expression of BrdU (green) and Doublecortin (DCX, red). Confocal
photomicrographs show the RMS area of “in vitro” cultured adult mice brain
slices (RMS in Figure 1B). Quantification of co-labeled BrdU and (DCX) NSCs
in Control (A,B) and E-CSF treated brain slices (C,D) was plotted in graph
bars (E) and expressed as means ± SD (n = 20); the significant threshold was
set at p ≤ 0.001 (∗) according to the two-tailed Student’s t-test. The results
reveal a significant increase (127%) in the number of RMS migratory NSCs in
CSF-E treated brain slices with respect to the controls. Scale bar: 100 µm
(A,C) and 25 µm (B,D).

in defined media (Control, Figure 4B), in E-CSF (Figure 4C)
and in A-CSF (Figure 4D), in order to ensure the specificity
of the neurogenic induction of E-CSF. Results are shown in
Figure 4E, which includes the cells with low (+) and high
(++) expression of βIII-Tubulin. In basal conditions (control
treated with defined media) there was noticeable neurogenic
activity in terms of BrdU-βIII-Tubulin co-labeled cells; however,
almost 60% showed low βIII-Tubulin expression, which we
attributed to early newborn neurons. The sections treated with
E-CSF revealed a significant increase in the total number
of new neurons (nearly 34%) with respect to the controls,
but near to 69% of these cells showed high β3 tubulin
expression, which we attributed to young neurons. On the
other hand, sections treated with A-CSF displayed a significant
decrease (around 10%) in the total number of new neurons,
whilst 67.5% of these neurons revealed a low level of βIII-
Tubulin expression (newborn neurons) with respect to the
control cells.

E-CSF Induced Neurons Develop a Normal
Migratory Pattern
In order to evaluate the normal behavior of the new neurons
induced by E-CSF, we studied their migratory capacity by the
cytoplasmic expression of Doublecortin (DCX), a specific marker
for migratory NSCs, co-labeling with nuclear BrdU expression
as a cellular lineage marker. For this purpose we determined
the co-labeled cells in areas located at the starting point of the
RMS (Figure 1B, RMS), where we expected migratory NSCs to
be concentrated in the brain slices culture system.

The results are shown in Figure 5. We found a significant
increase of migratory cells congregated in coincidence with the
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FIGURE 6 | Effect of E-CSF on the number of NSC derived neurons which
co-expressed BrdU (green) and Calretinin (mature neuronal marker, red).
Confocal photomicrographs show the RMS area of “in vitro” cultured adult
mice brain slices (RMS in Figure 1B). Quantification of co-labeled BrdU and
Calretinin NSCs in Control (A) and E-CSF treated brain slices (C) was plotted
in graph bars (B) and expressed as means ± SD (n = 20); the significant
threshold was set at p ≤ 0.001 (∗) according to the two-tailed Student’s t-test.
The results reveal a statistically significant increase (61%) in the number of
NSC derived mature neurons in E-CSF treated brain slices with respect to the
controls; this suggests that neurogenesis induced by embryonic CSF drives
the development of mature neurons. Scale bar: 25 µm (A,C).

proximal segment of the RMS on E-CSF treated brain sections
(Figures 5C,D, images), compared with control brain sections
(Figures 5A,B, images). Data were plotted in Figure 5E to
show that the increased number of co-labeled cells (127% in
E-CSF treated sections with respect to controls was statistically
significant.

Neurogenesis Induced by E-CSF Leads to
Neuronal Maturity
The last part of our study sought to answer another relevant
question: the evolution to mature neurons of the newly generated
neurons in the SVZ niche under E-CSF influence.

Despite not being able to follow the migratory neural
precursors to their natural destination, the olfactory bulb, we
assume that in our coronal section culture system migratory
NSCs stop at the starting point of the RMS, where the maturation
of new neurons start. Consequently, here we attempted to locate
cells with co-labeling of BrdU (which, despite the decrease
in intensity, remained detectable) and Calretinin, a mature
neurons marker. As can be seen in Figure 6, the area at the
start of the RMS (Figure 1B) shows an accumulation of cells
which co-express BrdU-Calretinin; the number of these cells
was larger in E-CSF treated sections (Figure 6C) compared with
the controls (Figure 6A), representing a statistically significant
increase of 61% (Figure 6B).

DISCUSSION

We previously published (Carnicero et al., 2013) a study showing
the direct influence of E-CSF on neurogenic activity in adult
brain SVZ NSCs cultured ‘‘in vitro’’; this previous study only
showed that E-CSF is able to induce the initial steps of neuronal
differentiation in SVZ NSCs cultured ‘‘in vitro’’ (outside the

niche). This is the first report of the influence of E-CSF in
organotypic cultures of the SVZ neurogenic niche; moreover,
here we show the influence of E-CSF on the main steps of
the physiological behavior of SVZ NSCs including expansion of
the un-differentiated NSCs population and also the increase of
effective neuronal differentiation, migration and final neuronal
maturation.

Our results, based on BrdU incorporation of mitotically
active SVZ NSCs, show that E-CSF induces a large number of
proliferative NSCs, many of which remain in an un-differentiated
neural precursor; consequently, E-CSF seems to be involved
in the self-renovation of the SVZ NSCs population. We also
show that the mitogenic effect of CSF on NSCs is specific
for the E-CSF, suggesting ontogenic changes in SVZ NSCs
regulatorymechanims. The presence of BrdU positive nuclei with
Sox2 negative label in the SVZ and adjacent ST reflects NSCs
which underwent proliferation but are not necessarily in the
transitory amplifying state, since nuclear BrdU is also detectable
at the stages of differentiation and maturation. Therefore, we
cannot assign the overall increase in BrdU positive nuclei
induced by E-CSF exclusively to an increase in the NSCs
(undifferentiated) population. Our results have also shown that,
under E-CSF influence, a significant number of proliferative
SVZ NSCs initiate a process of neurogenesis (Neurod1 or βIII-
Tubulin expression), which shows an ‘‘accelerated’’ neurogenic
progress with respect to the controls. The results also suggest
that A-CSF could have an inhibitory effect on neurogenesis
from both the quantitative (reducing the number of new
neurons) and qualitative (delaying the transition from newborn
to young neuron) aspects. In our study, we used coronal
sections of adult mouse brain; therefore, we were unable
to track the final destination of these migratory neuroblasts
(olfactory bulb). However, our data relative to Doublecortin
positive cells, strongly suggest that E-CSF’s influence on
NSC activity involves also an increase in normal migratory
behavior. Finally, our study suggests that the final destination
of the new neurons generated under the E-CSF influence
in the SVZ could be transformation into mature neurons.
Taking together the results reported here, E-CSF seems to
activate the main steps of SVZ NSCs behavior, increasing
neurogenesis.

Here we show that the neurogenic instructive signals
present in E-CSF are capable of increasing the physiological
activity of adult brain NSCs. The CSF is deemed a key factor
in contributing to the niche microenvironment diffusible
signals in the developing brain (Gato et al., 2005; Miyan
et al., 2006; Chau et al., 2015), and in adult brain astrocytic
precursors (Alvarez-Buylla and Lim, 2004). Previous studies
have shown that E-CSF induces in embryonic NSCs niche
cell survival, replication and neuronal differentiation (Gato
et al., 2005; Martin et al., 2009). Nevertheless, A-CSF does
not maintain these neurogenic inductive properties in
adult brain NSCs nor support neuron survival (Buddensiek
et al., 2010; Carnicero et al., 2013; Ma et al., 2013). These
studies confirm an ontogenic loss of the neurogenic inductive
properties of CSF, which can be explained by the progressive
modification of the proteic composition of this fluid across
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life revealed by proteomic studies (Parada et al., 2005a,
2006; Zappaterra et al., 2007). These changes could be an
ontogenic adaptation to specific necessities to generate new
neurons.

Our results show that the local application of a neurogenic
stimulus (such as E-CSF) to the adult SVZ niche brings about
complete activation of the NSCs including the two main steps in
neurogenesis activity: an increase in mitotic activity leading to
precursor population expansion and subsequent differentiation
to young neurons able to migrate and progress to a mature state.
This is in agreement with previous research showing the E-CSF
neurogenic properties at the earliest stages of brain development
(Zappaterra and Lehtinen, 2012; Gato et al., 2014), and also with
the report of changes in the properties in A-CSF, described as
mitogenic but ‘‘non’’ neurogenic in the adult brain neurogenic
niche (Buddensiek et al., 2010; Carnicero et al., 2013) and in
the embryonic brain (Gato and Desmond, 2009). Other specific
properties of A-CSF in the neurogenic niche include migratory
guidance instructive signals for reaching the proper destination
(Sawamoto et al., 2006).

Taking into account these data together with the cellular
lineage of the NSCs concept, we propose the theory that CSF is
a changing brain component which evolves throughout life and
plays a key role in neurogenesis.

Further studies are necessary to better understand the
molecular basis of embryonic CSF neurogenic properties and
the changes induced by age, which probably limit adult
neuroregeneration.

About how E-CSF influences NSC behavior, E-CSF is a
complex fluid involved in neurogenesis (Gato et al., 2005; Parada
et al., 2005b; Martin et al., 2009; Desmond et al., 2014; Chau et al.,
2015). Studies conducted to identify active components in CSF
as growth and transcriptional factors have been developed and
shown the implication of FGF2, IGF1 and EGF (among others) in
their mitogenic properties (Miyan et al., 2003; Martín et al., 2006;

Lathia et al., 2007; Zappaterra and Lehtinen, 2012). In addition,
the influence of E-CSF on neurogenesis have been related with
the retinol binding protein, and their involvement in Retinoic
Acid synthesis (Parada et al., 2008; Alonso et al., 2011, 2014;
Chang et al., 2016).

Concluding Remarks
This study supports the idea that the CSF could
actually be considered an ‘‘inner lake’’ for brain cellular
intercommunication, playing a key role in establishing the niche
microenvironment in the developing and adult brain.

Here we report new data relating to E-CSF properties. This
represents the ability to induce global changes in adult mouse
SVZ niche NSCs activity, promoting an expansive increase in
the NSCs population, migratory activity and neurogenesis with
neuronal maturation.

Our main conclusion is that E-CSF could be a cocktail of
instructive signals, with hidden key information on neurogenesis
control from NSCs throughout life. Further studies are necessary
to check the usefulness of these properties in adult brain ‘‘in vivo’’
neurogenesis induction.
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