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  ABSTRACT 

  

The following work shows the application of DASPK in EcosimPro™ with the aim of to calculate 

the partial derivatives of the state variables with respect to the decision variables (sensitivities) and 

to improve the dynamic optimization. The implementation of DASPK was tested in three examples: 

disturbance rejection in a stirred tank with heater, the optimal production policy of hydrogen in a 

model of a hydrodesulfuration plant and the optimal trajectory of the feeding in a batch bioreactor. 

The sensitivities with DASPK was compared with another two possible options: obtain the gradients 

using finite differences and to solve the extended system with the analytical expressions of the 

sensitivities. The outcomes shows that the implementation of DASPK is a suitable option to ensure 

optimality in dynamics optimization without the need of writing the sensitivities by hand, 

nevertheless the CPU time must be improved to become this option attractive. 

 

Keywords: Dynamic optimization, DASPK, Sensitivities analysis, EcosimPro. 

I. INTRODUTION 

 

I.1. DYNAMIC OPTIMIZATION 

 

A general problem of dynamic optimization can be written 

as eq. 1 shows. 

 

       
 

Where  represents the decision (or input) 

variables,  are the state variables,   

are the equations of the model (DAE system), 

 are the path constraints and 

 are the terminal constraints. 

 

This problem can be solved using an indirect approach, 

solving the optimal control problem (see Sargent [1] for a 

summary). This option is not used very often because the 

difficulty in solving a problem with both bounds undetermined 

(see Pontryagin’s Maximum principle and Dynamic Programming 

with the Hamilton – Jacobi – Bellman equations [2]). 

Instead of this option, the dynamic problem can be 

discretized in order to use standard NLP techniques to solve it. 

This is called the direct approach and there are two ways to 

perform the discretization: 

 Simultaneous: the decision and the state variables are 

discretized transforming the DAE system in a set of algebraic 

equations using methods of collocation solving the discretized 

problem with non linear programming techniques [3]. 

Sequential: only the decision variables are discretized 

using piece-wise polynomials. With this information, continuous 

time integration is performed to calculate the state variables 

solving the DAE system [4] and calculating the value of the 

objective function and the constraints. If the integration is carried 

out from the initial to the final time the method is called single 

shooting, on the other hand if the time is cut in intervals and 

several integrations are performed is called multiple shooting [5]. 

A very comprehensive summary of methods for dynamics 

optimization can be found in the work of Srinivasan and co – 

workers [6].  

In this work we will use the direct approach using the 

simultaneous method with the single shooting technique, 

summarized in Figure 1. 
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Figure 1: Diagram of the direct sequential method. 

Source: Authors, (2018). 
 

Figure 1 shows the parametrization of the decision 

variables using  parameters. Also it can be seen the 

necessity to estimate the gradients of the objective function and 

the nonlinear constraints in order to update the value of the 

decision variables. In this work we will consider only two ways to 

obtain this information (dashed lines): the optimizator can 

estimate these gradients using perturbations in the decision 

variables around the current value and then calculate with finite 

differences (  switch ON) or the simulator gives gradient 

information to the optimizator (  switch ON). 

 

I.2. SENSITIVITY ANALYSIS 
 

To obtain the gradient information from the simulation, 

consider the chain rule of the objective function: 

 

 

 

 

(2) 

 

Where  is defined as the vector of 

sensitivities , which are the partial derivatives of the state 

variables  with respect to the decision variable . 

The sensitivities can be obtained from the original DAE 

system, if a total differentiation is performed. 

 

 
 

Generating  additional equations that must be 

solved in each simulation. The entire system to be solved (called 

extended system), can be summarized merging the model 

equations  with the sensitivities equations (3), as eq. 4 shows: 

 

 

I.3. METHODS TO OBTAIN THE SENSITIVITIES 

 

In this work we will use two methods to obtain the value 

of the sensitivities: Analytical and Numerical. The Analytical 

Sensitivities approach consists in to simulate the entire system, 

writing by hand the analytical expressions to the partial 

derivatives of  with respect to x , which gives a  DAE 

set that must be solved in each simulation.  

The Numerical Sensitivities method is presented in the 

works [7]-[8]. The idea is to use the special structure of the 

extended system: if the Jacobian matrix of the model equations is 

known, then eq. 5 is a linear ODE system. DASPK is a multi – 

step integrator that discretizes the time and solves a set of 

algebraic equations in each step (eq. 5) [9]. 

 

 
 

It can be seen that the Jacobian of the model is calculated 

to solve eq. 5, therefore it can be used to obtain the sensitivities in 

a numerical way. The version 3.0 of DASPK has a utility to get 

these values, the code allows to choose among three different 

ways to obtain the sensitivities [8]: 

 

 Staggered direct method: At each time step, the states 

are computed solving eq. 5. With the gradient information, the 

sensitivities are obtained by solving a linear system. This method 

is considered inefficient because the Jacobian matrix must be 

evaluated and factorized at every time step. 

 Simultaneous corrector method: The state and sensitivity 

variables are computed simultaneously by solving eq. 5 applied to 

the extended system from eq 4. This method is more eficiente in 

terms of evaluating the Jacobian matrix, but has the drawback that 

a large set of nonlinear equations is solved at each instant. 

 Staggered corrector method: Similar to the direct 

corrector, this method first evaluate the state variables and then 

gets the sensitivities, but the Jacobian isn’t updated in every time 

instant, therefore an additional nonlinear corrector term must be 

added. This method has the advantage of evaluate and factorize 

the Jacobian only when is necessary, but has the inconvenience 

that instead of solving a linear set of equations, a nonlinear one 

must be solved. 

 

I.4. OBJECTIVE OF THIS WORK 

 

The objective of this work is to test the implementation of 

DASPK in EcosimPro 4.6 to calculate the sensitivities. 

EcosimPro is a simulation tool for modelling simple and complex 

physical processes that can be expressed in terms of: DAE 

equations or ODE equations and discrete events. Actually this 

program uses DASSL and 4th order Runge Kutta as numerical 

integrators [10]. 

The numerical sensitivities will be used to solve three 

dynamic optimization problems: 

 The rejection of disturbances in a stirred tank that has an 

electrical heater. 
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 The optimal policy of hydrogen production in a 

simplified model of a hydrodesulfuration plant. 

 The optimal trajectory of substrate feeding in a batch 

Bioreactor. 

 

The outcomes obtained with the numerical sensitivities 

method (DASPK) will be compared with the other options 

mentioned: finite differences and analytical sensitivities
1
; in terms 

of optimality, feasibility and CPU time. At last some concluding 

remarks will be mentioned. 

 

II. APLICATION IN ECOSIMPRO 

 

The following results were obtained in a computer with 

processor Intel® Core™2 Quad Q9550 @2.83GHz, with 3.25 GB 

in RAM memory. In all the examples tested the optimizations 

were performed with a sequential quadratic programming 

algorithm implemented in the Nag routines [11]: nag_opt_nlp. 

(e04ucc). 

 

II.1. STIRRED TANK WITH A HEATER 

 

The system is a perfectly agitated tank like the one 

represented in Figure 2. The temperature (T) and the liquid height 

(h) can be modified by changing the valve aperture (a) and the 

voltage of the electrical resistance (V). The caudal and the 

temperature of the influent (q, Ti) are unmeasured disturbances 

(presented in Figure 3), therefore the manipulated variables (a, V) 

can be modified with the aim of keep the controlled ones (T, h) 

closer to their set points (wh,,  wt). 

 

 
Figure 2: Diagram of the Stirred tank with Heater. 

Source: Authors, (2018). 

 

                                                           
1
For the examples tested, we will refer to optimization using: analytical 

sensitivities if the sensitivities values are obtained by writing the 

derivatives of f by hand and simulate the extended system; numerical 

sensitivities is referred to obtain the sensitivities by using one of the 

methods that provides DASPK; finite differences if non information of 

sensitivities is used and the gradients are calculated by perturbations in 

the decision variables. 

 
Figure 3: Diagram of the disturbances in the influent. 

Source: Authors, (2018). 

 

 
Where A is the area of the tank, ρ and Cp are the density 

and the heat capacity of the liquid, k  is a valve constant, Uenv is a 

heat transfer coefficient, Tenv is the outside temperature and α are 

weights for the objective function. 

The dynamic optimization was solved using piece – wise 

linear parametrization of the manipulated variables with equally 

spaced intervals. Theprediction horizon was 90 min and the 

control horizon was 50 min for the voltage and 80 min for the 

valve aperture. To choose the method to calculate the numerical 

sensitivities in the optimization (simultaneous, staggered 

corrector or staggered direct), numerical simulations with DASPK 

were performed for an increasing number of decision variables 

(N). These results are in Figure 4. 

 

 
Figure 4: Comparison of the CPU time for the numerical sensitivity 

methods. 

Source: Authors, (2018). 
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The results shows that the staggered direct method is the 

most efficient to calculate the sensitivities in terms of time, 

therefore this method was used to calculate the gradient in the 

optimization. The optimizations were carried out for an increasing 

number of decision variables with the aim of to refine the 

solution.The outcomes for the manipulated variables and for the 

controlled variables, obtained with the largest number of decision 

variables tested (24 for V and 32 α), are presented in Figure 5, 6 

and 7 for: analytical sensitivities, numerical sensitivities with the 

staggered direct method and finite differences respectively. 

 

 
(a) 

 
(b) 

   Figure 5: (a) Manipulated and (b) controlled variables. 

   Source: Authors, (2018). 

 

 
(a) 

 
(b) 

   Figure 6: (a) Manipulated and (b) controlled variables, 

   Source: Authors, (2018). 

 

 
(a) 

 

 
(b) 

Figure 7: (a) Manipulated and (b) controlled variables. 

Source: Authors, (2018). 

 

The optimization results shows that for the three methods 

tested in this example, the same trajectories in the manipulated 

variables are obtained. This trajectories fulfill the KKT conditions 

for the reformulated NLP problem of eq. 9, therefore we can say 

that they are locally optimal. 

About the controlled variables it can be seen that those 

values are near to the set points, so the disturbance in the 

temperature and caudal of the influente is rejected.  

About the value of the objective function and the time to 

perform the optimizations as a function of the decision variables 

(N), Table I summarizes this. 

 

              Table 1: CPU Time and objective function value. 

 
Source: Authors, (2018). 

 

It can be observed that for the three methods tested in this 

example the results are the same. About CPU time, finite 

difference seems to be the most efficient method to run the 

optimization for a large number of decision variables. 
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II.2. SIMPLIFIED MODEL OF A HYDRODESULFURATION 

UNIT 

 

The second example is a simplified model of a 

hydrodesulfuration plant (HDS) represented in Figure 8. The aim 

of this process is to reduce the súlfur content in the fuel in order 

to accomplish with the environmental policies. 

 

 
Figure 8: Diagram of a HDS plant. 

Source: Authors, (2018). 

 

To produce the desulfuration the rich – sulfur hydrocarbon 

(FC) is mixed with the hydrogen in a catalyzed reactor (R-1 and 

R-2). The hydrogen comes from different sources (F1, F2 and F3) 

with different purities (x1, x2 and x3, ordered from the greater to 

the lower value). The quantity of hydrogen fed is given by the 

flow of the hydrocarbon and its sulfur concentration. 

The excess of hydrogen is recovered in a separation 

process (T-1). A fraction of this stream must be purged (F10) in 

order to ensure a purity of hydrogen inside the reactor greater than 

a lower bound compatible with the catalyst. 

The hydrogen stream that comes into the reactor (F5) also 

must have a purity greater than a lower bound because the 

compressor specifications (C-1). 

In practice the changes in the hydrocarbon load are 

scheduled, therefore a dynamic optimization can be formulated in 

order to obtain an optimal policy of the hydrogen production 

ensuring that the purities remains above their lower bounds. 

Having this in to account and other assumptions: isobaric 

and isothermal operation, CSTR reactor, perfect separation in T-1, 

first order dynamics consumption and zero orther kinetics; a 

dynamic optimization can be formulated when a step change in 

the hydrocarbon is realized (eq. 7).  
 

 
Being: xi and Fi the purity and the molar flow of the stream 

i, Cj  the cost associated to produce hydrogen in the source j, ρ1 

the ratio between hydrogen required and the hydrocarbon load, Fx 

the hydrocarbon load, P and T the pressure and temperature of the 

system and Z and R parameters of the gas equation of state. 

The dynamic optimization was solved using piece – wise 

linear parametrization of the manipulated variables, with equally 

spaced intervals. The simulated time was 10 hours. The path 

constraints where handled as a soft constraints using a function 

that penalizes the quadratic violation of its value. This way of 

handling the constraints modifies the objective function like eq. 8 

shows: 

 
 

 

 

Similar to the previous example, to know which method 

must be used in the numerical sensitivities, simulations were 

performed for different number of decision variables. These 

results are presented in Figure 9. 

It can be noted that the staggered direct method is again 

the most effective way to obtain the numerical sensitivities using 

DASPK, therefore this method was used in the optimization. 
 

 
Figure 9: Comparison of the CPU time for the numerical 

sensitivity methods. 

Source: Authors, (2018). 

 

To study the effect of the number of decision variables 

several optimizations were performed for na increasing number of 

decision variables in order of refine the solution. The results 

obtained with the largest number of decision variables tested 

(120) are presented in Figure 10, 11 and 12 for the optimizations 

realized by means of: analytical sensitivities, numerical 

sensitivities with the staggered direct method and finite 

differences respectively. 

 
Figure 10: (a) Manipulated and (b) constrained variables. 

Source: Authors, (2018). 
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(10) 

9) 

 

 
Figure 11: (a) Manipulated and (b) constrained variables. 

Source: Authors, (2018). 

 

 
Figure 12: (a) Manipulated and (b) constrained variables. 

Source: Authors, (2018). 

 

From the previous Figs. it can be noted that for the three 

optimizations the hydrogen purities xH2 and x5 are greater or equal 

to their lower bounds: 0.7 and 0.9 respectively, so the solutions 

presented are feasible. 

About the optimal trajectory for this problem a physical 

guess can be postulated: because the initial value of the purities 

are greater than their lower bounds it’s logical to expect that the 

decision variables bring this variables to their limits. There are 

two ways to do this: closing the purge stream (F10) in order to 

accumulate impurities and using the minimal quantity of high 

purity hydrogen (F1). Once that the purity constraint xH2 is active, 

the purge stream must be opened with the aim of keeping this 

value constant. This behavior can be observed in the outcomes 

obtained with the optimizations using analytical and numerical 

sensitivities.  

The optimality in both methods is fulfilled (according to 

the SQP optimizator, KKT conditions were satisfied). On the 

other hand the results of the optimization using finite differences 

give trajectories of the decision variables that only ensure feasible 

solutions keeping the purity inside the reactor greater than its 

lower bound spending more hydrogen than the necessary. With 

this method the maximum number of outer iterations of the SQP 

method were reached (100), with no improvements in the 

objective function. 

The summary of the CPU time and the value of the 

objective function for all the optimizations realized are presented 

in Table II as a function of the number of decision variables N. 

 

 

 

 

            Table II: CPU Time and objective function value. 

 
Source: Authors, (2018). 

 

Table II shows that for all the optimizations performed, the 

use of numerical sensitivities and analytical sensitivities has not 

difference in the optimal solution, instead of finite differences 

where sub–optimal results were obtained for all the optimizations 

performed. 

About CPU time, it seems that finite diferences is the 

fastest way to obtain the gradient information, nevertheless, the 

fact that only feasible solutions were obtained indicates that these 

optimizations finished earlier because no improvements in the 

objective functions were observed. 

 

II.3. OPTIMAL TRAJECTORY OF BATCH BIOREACTOR 

 

The system is a fed - batch bioreactor with inhibition and 

biomass constraint [6], represented in Figure 13. In this system 

the substrate (S) can be fed during all the batch time. The 

substrate can be transformed by the microorganisms in two 

products: biomass (X) which gives the idea of the growing of the 

microorganisms and in a desired product designated with letter P. 

These reactions are summarized in eq. 9. 

                                 

The velocity of these reactions (µ and v), defined as the 

change in the respective concentrations in time, depend on the 

concentration of the substrate: if S is more concentrated there is 

more reactant available to produce biomass and the desired 

product, but there are critical concentrations where the reactions 

are inhibited decreasing the conversion rate. Having this in to 

account, a dynamic optimization can be formulated in order to 

calculate the optimal trajectory of the substrate feeding (u) that 

maximizes the production of P at the final time, subject to: molar 

balances, equations of velocity of reaction (monod with inhibition 

kinetics [12]) and path constraints in the biomass concentration, 

as eq. 10 shows.  

 

 
 

10



    

                                     López, Rodríguez, Herrero and  de Moraga, ITEGAM-JETIA. Vol. 04, Nº 13, pp 05-13. March, 2018. 

 

 
 

Being V the reaction volume µm, Km, Ki, Vm and K0  

kinetics parameters. 

 

 
Figure 13: Diagram of a Batch Bioreactor. 

Source: Authors, (2018). 

 

The dynamic optimization was solved using piece – wise 

linear discretization of the decision variable with equally spaced 

intervals. To handle the path constraint a hard representation was 

used with a “max” function that register the time where X has the 

maximum value and is replaced in the constraint. With this 

representation there is only one constraint to evaluate; unlike 

other methods where a discretization in time is performed and 

then the constraint is evaluated in every discrete time increasing 

the number of constraints. 

As in the previous examples, numerical simulations of the 

model was solved with DASPK to test which of the available 

methods is the most eficiente to calculate the numerical 

sensitivities. The results of these simulations in terms of the CPU 

time are presented in Figure 14 as a function of the number of 

decision variables. 

 

 
Figure 14: Comparison of the CPU time for the numerical 

sensitivity methods.  

Source: Authors, (2018). 

 

As the previous examples, the most effective method to 

calculate the numerical sensitivities is the staggered direct one; 

therefore this method was used in the optimization with numerical 

sensitivities. 

The dynamic optimization was solved for a fixed final 

time of 8 hours, for an increasing number of decision variables 

with the aim of to refine the optimal solution. The outcomes of 

the optimizations solved with the largest number of decision 

variables tested (80), are presented in Figure 15, 16 and 17 for the 

optimizations solved with: analytical sensitivities, numerical 

sensitivities with the staggered direct method and finite 

differences respectively. 

 

 
a) 

 
b) 

Figure 15: (a) Manipulated and (b) constrained variables. 

Source: Authors, (2018). 

 

 

 
a) 

 
b) 

Figure 16: (a) Manipulated and (b) constrained variables. 

Source: Authors, (2018). 
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a) 

 
b) 

Figure 17: (a) Manipulated and (b) constrained variables. 

Source: Authors, 2018. 

 

The optimal trajectory for this problem, can be found in 

the work of Kadam and co-workers [13]. In the cited work, the 

authors distinguish six arcs in the optimal trajectory: 

 Time 0 to 0.8h: u=u
UP

. 

 Time 0.8h to 3.8h: sensitivity seeking arc. 

 Time 3.8h to 5.4: u=u
LO

. 

 Time 5.4 to 6.6h: sensitivity arc. 

 Time 6.6h to 7.9h: u remains constant in 0.42 (g/l), 

keeping the biomass constraint active. 

 Time 7.9 to 8h: u=u
LO

. 

The six arcs of the optimal trajectory mentioned before can 

be easily distinguished in the outcomes of the optimization using 

analytical and numerical sensitivities. In both cases the 

optimizator indicates that KKT conditions where fulfilled. On the 

other hand, the results obtained using finite differences as a 

gradient estimator shows some variation with respect to the 

optimal arcs mentioned, this plus the fact that the optimizator 

gave a warning because the constraints were not satisfied for the 

required tolerances (1e-4) and no improvements were observed in 

the merit function, indicates that the solution can be considered as 

infeasible. 

The summary of the objective function value and the CPU 

time for all the optimizations realized is presented in Table III as 

a function of the decision variables N. 

 

              Table III: CPU Time and objective function value. 

 
   Source: Authors, (2018). 

 

About the value of the objective function, it can be noted 

that the optimizations with analytic sensitivities, numerical 

sensitivities and finite diferences have very similar solutions, 

nonetheless the constraints was not satisfied in the finite 

diferences method for the required tolerances. 

About the CPU time, the situation is similar to the 

previous example for the finite differences method, however the 

numerical sensitivities gives better results than analytic 

sensitivities. 

 

III. CONCLUSIONS 

 

From the previous examples tested, local optimal solutions 

were obtained when the gradient was calculated using the 

sensitivities obtained by analytical and numerical ways, unlike the 

calculus of the gradient using finite differences where only in the 

first example optimality was reached This situation is expectable 

having in to account that the Nag instructions says that it’s 

imperative to provide gradiente information to the optimizator to 

ensure optimality [11]. The difference between the methods that 

ensures optimality is the previous information available, because 

in the analytical sensitivities it’s necessary to calculate by hand 

the partial derivatives of the state variables with respect to the 

decision variables before running the optimization, which can be 

very intractable for large scale systems, in contrast to the 

numerical sensitivities were no further information is required to 

estimate the gradient. Hence, from the point of view of optimality 

the numerical sensitivities calculus with DASPK is a good 

alternative to be implemented in a simulation software such as 

EcosimPro™ to solve a dynamics optimization problem. The 

drawback of the numerical sensitivities implementation is the 

time used to optimize, which makes this option not very attractive 

to be used in real time applications. This can be explained for the 

increase in the simulation time when the number of sensitivity 

variables is increased (see Fig.4, 9 and 14) because a greater 

linear system must be solved at each time step and also because 

the Jacobian has more terms that must be evaluated with finite 

differences. To overcome this problem, the developers of DASPK 

indicates that its necessary to use an automatic differentiation 

application to calculate the Jacobian [8]. 

Therefore as a future work, the implementation of a 

numerical differentiation software [14] like TAPENADE [15] 

must be done, with the aim to improve the CPU time and become 

DASPK a real option for dynamic optimization in EcosimPro. 
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