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Abstract— Solving the mixture problem in remotely sensed
hyperspectral images remains a challenging task. In particular,
solutions are needed in order to obtain a response for applications
with real-time constraints. In the last decade, several efforts
have been developed, many of them using graphics process-
ing units (GPUs) and focused on the exploitation of spectral
information alone. However, a few spectral unmixing chains
have been developed using other architectures such as multicore
processors, field programmable gate arrays, or Intel Xeon Phi
coprocessors. In this letter, we develop a new parallel unmixing
chain for multicore processors. Compared with other approaches,
the proposed spatial–spectral alternative takes advantage of the
complementary information provided by the spatial correlation
of the pixels in the image in addition to the spectral information.
Our implementation has been optimized using the application
program interface OpenMP and the Intel Math Kernel Library
on two multicore architectures, and using real analysis scenarios.
The results reveal competitive real-time performance compared
with another compute unified device architecture implementation
previously developed for GPUs.

Index Terms— Graphics processing units (GPUs), hyperspec-
tral unmixing, multicore processors.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors collect a large
number of images in different wavelength channels for

the same area of the surface of the Earth [1], [2]. As a
consequence, each pixel of the image is characterized by a
vector with hundreds of components representing the materials
in these areas at different wavelength values as a spectral
signature. These signatures provide distinguishing features and
allow us to describe the imaged materials in great level of
detail [3], [4]. Accordingly, a hyperspectral image can be
represented as a 3-D data cube, where the first two dimensions
represent the spatial coordinates in a 2-D space and the last
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one captures the spectral singularity of each pixel in the
scene [5], [6].

Spectral unmixing is among the most popular tech-
niques to process hyperspectral images. In the literature, two
models have been mainly used to characterize mixed pixels
in hyperspectral images. The nonlinear mixture model [7]
assumes that the interactions between the endmembers follow
a nonlinear model with multiple scattering effects [8] and other
nonlinearities. The linear mixture model [9] considers that the
mixed pixels present in the scene can be modeled as a linear
combination of the pure spectral signatures (endmembers)
weighted by their corresponding abundances. The linear mix-
ture model can be expressed in mathematical form as follows:

Y = EA + N (1)

where Y = [y1, y2, . . . , yn], E = [e1, e2, . . . , ep] is a
matrix of l-dimensional endmember signatures containing p
endmembers, A = [α1,α2, . . . ,αn] contains the abundance
fractions αi associated with each endmember in each pixel
of the scene, and N accounts for the noise.

Many linear spectral unmixing techniques exhibit a high
computational cost but, at the same time, need to satisfy the
demands of real-time applications. To address this problem,
several parallel systems have been exploited to achieve real-
time performance; from small clusters of computers and
general-purpose multicore processors to specific accelerators
such as field programmable gate arrays (FPGAs), graphics
processing units (GPUs) or Intel Xeon Phi coprocessors.

The goal of this letter is to explore the possibility of
achieving real-time spectral unmixing on the state-of-the-art
multicore architectures, which are quite general and flexible.
Our aim is to optimize these architectures by developing a
parallel version of a variety of techniques that cover all the
stages of the hyperspectral unmixing chain. A comparative
evaluation of the performance of our newly developed mul-
ticore implementations against single core and GPU versions
developed in previous works is also carried out. The analysis
is conducted using real hyperspectral scenes widely used as
benchmarks.

The remainder of this letter is structured as follows.
Section II briefly describes our hyperspectral unmixing chain.
Section III is focused on the parallel implementation of the
techniques proposed for each stage of the unmixing chain.
In Section IV, we describe the experimental process conducted
and analyze the results obtained. Finally, Section V concludes
with some remarks and hints at plausible future research.
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TABLE II

MEAN EXECUTION TIMES AND SPEEDUPS (IN THE PARENTHESES) FOR THE PARALLEL VERSIONS OF THE PROPOSED CHAIN
EXECUTED ON TWO DIFFERENT PLATFORMS (MULTICORE AND GPU) AFTER 10 MONTE CARLO RUNS

To conclude this section, we have evaluated the power con-
sumption considering both MC2 and GPU2 architectures using
the software solution PowerMeter daemon (pmlib) [21], which
gathers power results periodically from the tools provided by
manufacturers (namely, running average power limit for the
Intel Xeon CPU and NVIDIA Management Library for the
NVIDIA GPU).

From Figs. 3 and 4, a few observations can be made
about the power dissipation. First, if we analyze the plots,
the best platform is the MC2 architecture, which dissipates
193 W on average (411 J) and 287 W at most. Compare
this, for example, with the 191 W (696 J) on average for the
GPU2 architecture. Second, the best tradeoff solution between
performance measured in Mpixel/s and energy consumption is
achieved by the MC2: 0.00034 Mpixel/s/J versus 0.00012 for
the GPU2 architecture.

V. CONCLUSION

In this letter, we have presented a new implementation of
a full unmixing chain for multicore platforms. The obtained
results indicate that it is possible to achieve significant
speedups and even a higher performance than those achieved
for other parallel implementations specifically developed for
CPU/GPU architectures. The parallel approaches achieve real-
time performance in all cases studied. Future work will focus
on the development of hybrid multicore/GPU implementations
exploiting the advantages of both architectures, and studying
other hyperspectral analysis algorithms that could be signifi-
cantly improved in terms of computational performance.
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