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We report evidence of a nonadiabatic Kohn anomaly in boron-doped diamond, using a joint theoretical
and experimental analysis of the phonon dispersion relations. We demonstrate that standard calculations of
phonons using density-functional perturbation theory are unable to reproduce the dispersion relations of the
high-energy phonons measured by high-resolution inelastic x-ray scattering. On the contrary, by taking into
account nonadiabatic effects within a many-body field-theoretic framework, we obtain excellent agreement
with our experimental data. This result indicates a breakdown of the Born-Oppenheimer approximation in
the phonon dispersion relations of boron-doped diamond.
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The Kohn anomaly (KA) is one of the most striking
manifestations of the influence of electron-phonon cou-
pling on the lattice dynamics of metals [1]. KAs result from
the screening of lattice vibrations by virtual electronic
excitations across the Fermi surface [2] and manifest
themselves through distinctive dips in the phonon
dispersion relations. The existence of KAs was confirmed
by inelastic neutron scattering experiments [3] shortly after
Kohn’s theoretical prediction [1]. Since then, KAs have
been observed in a number of metals [4–6] and conven-
tional superconductors [7,8], as well as superconducting
semiconductors [9].
Interest in KAs was recently reignited by the discovery of

nonadiabatic KAs in carbon materials, such as graphene
[10,11], carbon nanotubes [12,13], and graphite intercalation
compounds [14–16]. At variance with adiabatic KAs, which
are well described in the adiabatic Born-Oppenheimer
approximation [1], nonadiabatic KAs arise when the elec-
tronic screening takes place on time scales which are
comparable to the period of lattice vibrations, and signal
the breakdown of the Born-Oppenheimer approximation. In
the majority of current first-principles calculations, these
nonadiabatic effects are ignored on the grounds that they
should be of the order ofm=M, withm the electron mass and
M the characteristic nuclear mass. While the calculations of
nonadiabatic phonon linewidths may be performed using
standard implementations [17], first-principles studies of
renormalization effects on the phonon dispersions due to
nonadiabaticity are extremely challenging and have thus far
been confined to low-dimensional compounds. In particular,
for metallic compounds characterized by a two-dimensional,
quasi-two-dimensional, or one-dimensional structure, it has
been shown that nonadiabatic effects can alter significantly

the phonon dispersion relations [10–16,18]. Instead, for
three-dimensional bulk metals, it has been suggested that
nonadiabatic effectsmight be too small to be observable in an
experiment [15].
The strong coupling between electrons and longitudinal

optical (LO) phonons in diamond, manifested, for instance,
by a 0.6 eV zero-point motion band-gap renormalization
[19–21] and the emergence of type-II superconductivity for
sufficiently high B doping [22], make it a good candidate for
the observation of nonadiabatic effects in the phonon dis-
persions. Pristine diamond has previously attracted consid-
erable interest due to the anomalous overbending of the optical
phonon branch [23]. In the presence of B dopants, the
electron-phonon interaction induces a softening of the LO
phonons at longwavelengths anda concomitant broadeningof
the spectral lines [9,24]. These effects are taken to be the
signatures of a doping-inducedKA.Themeasured softening is
found to be between 4 and 7meV forB-doping concentrations
of 1020–1021 cm−3 [9,24]. Intriguingly, first-principles cal-
culations [25–29] gave a considerably more pronounced
phonon softening, in the range of 20–30 meV. This unusually
large discrepancy between the experiment and theory remains
an outstanding question in the physics of superconducting
diamond [30]. This led us to formulate the hypothesis that in
order to explain the measured KA in diamond it might be
necessary to invoke nonadiabatic effects.
In this work, we analyze the dispersion relations of the LO

phonons of B-doped diamond using state-of-the-art first-
principles calculations and inelastic x-ray scattering (IXS)
measurements. By comparing the theory and experiment, we
demonstrate that the nonadiabatic correction to theLOphonon
energy is indeed very large, up to 10 meV. After including
nonadiabatic effects within a field-theoretic framework, we
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obtain an unprecedented agreement between the theory and
experiment, and we resolve the discrepancy between earlier
theoretical works and measured phonon dispersions. Our
results demonstrate a breakdown of the adiabatic Born-
Oppenheimer approximation in the phonon dispersion rela-
tions of boron-doped diamond, revealing that these effects
may be sizable also in three-dimensional bulk compounds.
The B-doped diamond samples were prepared by micro-

wave plasma-enhanced chemical vapor deposition from a
hydrogen-rich gas phase with added diborane (B2H6). The
samples were grown homoepitaxially on type Ib synthetic
crystals with (001)-oriented surfaces at thicknesses of
25� 5 μm [31]. The boron concentration was determined
fromsecondary ionmass spectroscopy (SIMS)of 11B−, 12C−,
and 11B12C− ions. For a B-doping concentration of
1.4×1021 cm−3, the samples exhibit superconducting behav-
ior with critical temperature Tc ¼ 2.8 K. IXS spectra were
measured at beam line ID28 at the European Synchrotron
Radiation Facility (ESRF) with an energy resolution of
3.2 meV. The samples were aligned with the beam directed
parallel to the surface and passing through the substrate or the
B-doped diamond film, for measurements of pristine dia-
mond and B-doped diamond, respectively. The scattering
vector Q was varied from ð2.06; 0; 0Þ2π=a (close to Γ)
to ð3;−0.12; 0Þ2π=a (close to X), with a ¼ 3.67 Å. The

small deviations in the ð0; k; 0Þ direction are given in
Supplemental Table I [32]. The measured IXS spectra are
shown in Figs. 1(c)–1(e) as heat maps and in Supplemental
Fig. 1 as individual scans [32]. For the undoped case, our
measurements are in excellent agreement with previous
experimental data [33].
Nonadiabatic phonon dispersions were computed from

first principles within the many-body theory of electron-
phonon coupling. Nonadiabatic effects were accounted for
via the phonon self-energy ΠNA

qν [17]:

ℏΠNA
qν ðωÞ ¼ 2

X
mn

Z
dk
ΩBZ

gbmn;νðk;qÞg�mn;νðk;qÞ

×

�
fnk − fmkþq

ϵmkþq − ϵnk − ℏðωþ iηÞ−
fnk − fmkþq

ϵmkþq − ϵnk

�
;

ð1Þ

where ϵnk and fnk denote single-particle energies
and Fermi-Dirac occupation factors, respectively, η
is a positive infinitesimal, and ΩBZ is the Brillouin
zone volume. The screened electron-phonon matrix
elements gmn;νðk;qÞ were obtained as gmn;νðk;qÞ ¼
ðℏ=2MωqνÞ1=2hψmkþqj∂qνVjψnki, where ψnk denote
Kohn-Sham single-particle eigenstates, M the C mass,

FIG. 1. (a) Density-functional theory band structure of diamond for a B concentration of 1.4 × 1021 cm−3. (b) Adiabatic phonon
dispersions of pristine (blue lines) and B-doped diamond (dashed black lines) for momenta along L-Γ-X, as obtained from density-
functional perturbation theory. (c)–(e) Measured IXS spectra of pristine and B-doped diamond. The critical momentum for the onset of
the KA, qc ¼ 2kF, is indicated by vertical dashed lines; see also (a). (f)–(h) Nonadiabatic spectral function, obtained from Eqs. (1) and
(2), for the LO phonon of (c) pristine and (d),(e) B-doped diamond along Γ-X. The phonon branch considered here is marked by the red
line in panel (b). (i)–(k) Phonon energies obtained from Eq. (3) in the adiabatic approximation (ΠNA

qν ¼ 0) and from the fully
nonadiabatic theory (present theory). Nonadiabatic phonon dispersions of undoped diamond are reported for comparison. All doping
concentrations are in units of cm−3.
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and ∂qνV the derivative of the self-consistent potential
associatedwith the νth phononmodewithwave vectorq and
energy ℏωqν. gmn;νðk;qÞ is obtained from the bare matrix
element gbmn;νðk;qÞ by screening the variation of the ionic
potential using the electronic dielectric function. Here we
calculate gbmn;νðk;qÞ by unscreening gmn;νðk;qÞ and neglect
local-field effects for simplicity. Equation (1) accounts for
both the screened and the bare electron-phonon vertices
(g and gb), and it thus avoids the approximation employed
in previous first-principles calculations, whereby the
matrix elements gbmn;νðk;qÞg�mn;νðk;qÞ were replaced by
jgmn;νðk;qÞj2 [17]. The nonadiabatic phonon dispersions,
that is, the dispersions modified by the phonon self-energy
of Eq. (1), were extracted directly from the phonon spectral
function [34]:

AqνðωÞ ¼ π−1Im

�
2ωqν

ω2 − ω2
qν − 2ωqνΠNA

qν ðωÞ
�
: ð2Þ

Equation (2), which constitutes the phonon counterpart of
the electronic spectral function [2], exhibits peaks at the
nonadiabatic phonon frequencies Ωqν given by

Ω2
qν ≃ ω2

qν þ 2ωqνReΠNA
qν ðΩqνÞ; ð3Þ

with a full width at half maximum Γqν ¼ 2ℏImΠNA
qν ðΩqνÞ.

Nonadiabatic phonon spectral functions obtained
from Eq. (2) are reported in Figs. 1(f)–1(h), whereas the
phonon dispersions derived from Eq. (3) are shown in
Figs. 1(i)–1(k).
An inspection of Eq. (1) reveals that nonadiabatic effects

may become important whenever the transition energies
between occupied and empty electronic states (ϵmkþq−ϵnk)
approach the characteristic phonon energy ℏωqν. As in
solids ℏωqν is typically ≲100 meV, this condition is
satisfied only in metals, doped semiconductors, and nar-
row-gap semiconductors, wherein low-energy intraband
transitions may be excited. Therefore, in these systems
one may expect to observe (i) phonon damping effects, with
a characteristic time scale set by the phonon lifetime τqν ¼
ℏ=Γqν, and (ii) a renormalization of the adiabatic phonon
frequencies, arising from the finite value of ReΠNA

qν ðΩqνÞ in
Eq. (3). On the other hand, the standard Born-Oppenheimer
approximation is recovered in the limit ΠNA

qν ¼ 0.
Calculations were performed using density-

functional theory (ground state and band structures) and
density-functional perturbation theory (phonon dispersion
relations and electron-phonon matrix elements), using
Quantum Espresso [38], EPW [44], and WANNIER90 [42]. The
doping was modeled in the rigid-band approximation, and
the spectral functions were computed at 300 K. Complete
calculation details are given in Ref. [34]. The phonon
dispersions of pristine diamond in the adiabatic approxi-
mation are presented in Fig. 1(b) for momenta along the

L-Γ-X path. The acoustic and optical phonon branches,
which correspond to the in- and out-of-phase oscillation of
the diamond sublattices, are denoted as AP and OP,
respectively, in Fig. 1(b). Pristine diamond is an insulator
with a fundamental band gap Eg ¼ 5.4 eV [45,46], and the
large optical phonon energy of ℏωph ¼ 164 meV reflects
the stiffness of its covalent bonds. Since Eg ≫ ℏωph,
nonadiabatic effects are relatively unimportant, and the
nonadiabatic corrections are smaller than 0.4 meV;
see Fig. 1(i). The resulting phonon dispersions are in
excellent agreement with our measured IXS spectrum in
Fig. 1(c), in line with the notion that phonons in wide-
band-gap insulators are well described in the adiabatic
approximation.
To quantify the importance of nonadiabaticity for

undoped semiconductors and insulators, we derive a simple
estimate of the energy renormalization. In the limit of
nondispersive electronic bands, one may replace ϵmkþq −
ϵnk ¼ Eg in Eq. (1). If we further assume an Einstein model
for the optical phonons ℏωqν ¼ ℏωE and we restrict
ourselves to the limit ℏωE ≪ Eg, the term in large
parentheses in Eq. (1) reduces to ℏωE=E2

g to first order.
An explicit approximation for Eq. (1) then is promptly
obtained: ℏΠ ¼ 2ϵ∞g2ℏωE=E2

g, with ϵ∞ being the dielec-
tric constant and g the average electron-phonon matrix
element. For diamond, using ϵ∞ ¼ 5.44, Eg ¼ 5.4 eV,
ℏωE ¼ 0.16 eV, and g ¼ 0.1 eV, we obtain ℏΠ ¼
0.5 meV, which is consistent with the first-principles
calculations shown in Fig. 1(i).
As compared to the undoped case, the IXS spectra of

B-doped diamond in Figs. 1(d) and 1(e) exhibit a redshift of
the LO phonon energy and an increase of the phonon
linewidth close to Γ, which indicate the emergence of a
doping-induced KA. To quantify the effect of doping on the
phonon energy, we define the phonon-softening parameter
ΔΩqνðnÞ ¼ Ωqνð0Þ −ΩqνðnÞ, where ΩqνðnÞ denotes the
phonon frequency at a carrier density n. The softening and
linewidth become more pronounced with the increase of
doping concentration. The KA is observed only for wave
vectors smaller than a critical cutoff value qc ¼ 2kF, with
kF being the Fermi momentum, which corresponds to the
maximum momentum transfer for electron-phonon scatter-
ing on the Fermi surface; see Fig. 1(a) [1]. Using the Fermi
momentum of the homogeneous electron gas model,
kF ¼ ð3π2n=NmÞ1=3, where Nm ¼ 3 is the degeneracy of
the valence-band top of diamond, we obtain qc ¼ 0.3 and
0.5 Å−1 for doping levels of 3 × 1020 and 1.4 × 1021 cm−3,
respectively. These values are marked by vertical dashed
lines in Figs. 1(d), 1(e), 1(j), and 1(k).
For momenta q < qc, we find adiabatic phonon

dispersions consistent with previous works [25,28,29].
As reported in Refs. [9,29], however, the adiabatic approxi-
mation leads to a systematic underestimation of the phonon
energy as compared to the experiment, which becomes
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more pronounced with the increase of doping concentra-
tion. Conversely, fully nonadiabatic calculations yield
phonon energies in excellent agreement with IXS, as
revealed by the comparison between Figs. 1(d) and 1(e)
and Figs. 1(j) and 1(k). To quantify the importance of
nonadiabatic effects, we compare in Fig. 2 the softening
ΔΩqν and the line shapes for the LO phonon of B-doped
diamond, as obtained from IXS, from the adiabatic
approximation and from fully nonadiabatic calculations.
Above the thresholdq > qc for theonset of theKA, the theory
and experiment yield a phonon softening smaller than 1 meV
for all doping concentrations. For q < qc, instead, the positive
phonon softening reflects the redshift of the phonon frequency
inducedbyelectron-phonon interactions. Figures 2(a) and2(b)
reveal that the adiabatic approximation overestimates the
experimental softening by as much as 300% close to Γ. At
a doping concentration of 1.4 × 1021 cm−3, for instance, the
adiabatic LO phonon energy at Γ is softened by ΔΩadiab

Γ ¼
22 meV, whereas from IXSwe haveΔΩexp

Γ ¼ 5.3 meV. The
nonadiabatic theory, on the other hand, yields a softening in
excellent agreement with the experiment: For instance, we
obtain ΔΩNA

Γ ¼ 7 meV for the same doping level. These
results are further corroborated by considering an Einstein
phonon model coupled to a homogeneous electron gas with
parabolic dispersion ϵk ¼ ℏ2k2=2m�

dos, with m�
dos ¼ 1.18

being the density-of-state effective mass of diamond.
Within these approximations, Eq. (1) reduces to ℏΠ ¼
2g2ϵ∞½χ0ðωEÞ − χ0ð0Þ�, with χ0ðωÞ being the long-wave-
length limit (q → 0) of the Lindhard function [2]. For
diamond, using ℏωE ¼ 0.16 eV, g ¼ 0.1 eV, m�

dos ¼ 1.18,
and ϵ∞ ¼ 5.44, we obtain ℏΠ≃ 8 meV for n ¼
1.4 × 1021 cm−3, in agreementwith our ab initio calculations.
These features are also nicely reproduced by the

phonon dispersions reported in Figs. 1(g) and 1(h),
confirming the nonadiabatic character of the KA.
Owing to the undamped nature of phonons in the
adiabatic approximation (here we ignore phonon-phonon
interactions), the adiabatic spectral functions are charac-
terized by infinitesimal linewidths. The nonadiabatic
spectra, on the other hand, correctly reproduce (i) the

increase of the spectral linewidth with doping concen-
tration and (ii) the decrease of the linewidth with phonon
momentum as shown in Figs. 1(c)–1(h) and in Fig. S3
[32]. The resulting spectral line shapes are in good
qualitative agreement with IXS, suggesting that electron-
phonon scattering constitutes the primary mechanism for
LO phonon damping in superconducting diamond.
The pronounced nonadiabatic character of the lattice

dynamics in doped diamond indicates a breakdown of the
adiabatic Born-Oppenheimer approximation. This effect
may be explained by considering the time scales involved:
While LO phonons oscillate with a period τph ¼ 25 fs, the
time scale of electronic screening τs is set by the plasma
frequency ωpl via τs ¼ 2π=ωpl ¼ 2πð4πn=m�ϵ∞Þ−1=2, with
m� being the carrier effective mass. Using this expres-
sion, we find τs ¼ 9 and 4 fs for n ¼ 3 × 1020 and
1.4 × 1021 cm−3, respectively, which are compatible with
the results of optical measurements [47,48]. As screening
operates on time scales that approach the characteristic
phonon period, the assumptions underlying the Born-
Oppenheimer approximation are not valid, and we see
the emergence of strong nonadiabatic coupling.
As a first step to explore the consequences of non-

adiabaticity in B-doped diamond, we examine the super-
conducting critical temperature Tc using McMillan’s
formula [49,50]: Tc ¼ hωi=1.2 expf−1.04ð1 þ λÞ=
½λ − μ�ð1 þ 0.62λÞ�g, where λ is the electron-phonon
coupling strength and hωi the logarithmic average of the
phonon frequency. Following Refs. [50,51], the Coulomb
pseudopotential μ� is set to the standard value of 0.11.
Noting that λ ∝ ω−2

qν [17], a small change in the phonon
frequency, as introduced by the adiabatic approximation,
may induce a large modification of Tc. At a doping
concentration of 1.4 × 1021 cm−3, for instance, the adia-
batic approximation underestimates the LO phonon fre-
quency in diamond by ∼10%. In turn, this results in an
overestimation of λ by ∼20%. This inaccuracy is amplified
by the exponential dependence of Tc on λ, leading to an
overestimation of the critical temperature by up to 50%.
Nonadiabatic effects thus carry important implications for
the theoretical prediction of Tc and should be considered in
future studies.
In conclusion, by combining first-principles calcula-

tions of the electron-phonon interaction and high-
resolution IXS experiments, we demonstrated the
emergence of a nonadiabatic KA in superconducting
diamond. Beside resolving a long-standing discrepancy
between the theory and experiment, these findings reveal
that a breakdown of the Born-Oppenheimer approxima-
tion may lead to sizable renormalization effects in the
phonon dispersions of three-dimensional crystals. Our
work calls for a systematic investigation of nonadiabatic
effects and Kohn anomalies in the phonon dispersions of
three-dimensional heavily doped semiconductors as well
as superconducting oxides.

FIG. 2. Energy renormalization of the longitudinal optical pho-
nons of diamond, for doping concentrations of (a) 1.4 × 1021 cm−3

and (b) 3 × 1020 cm−3: experiment (squares) and adiabatic (dashed
red line) and nonadiabatic theory (blue line).
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