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A DuMond analysis of X-ray diffraction patterns has been carried out in the

case of a combined �–� polarization configuration, obtained using a setup with a

double-crystal monochromator in reflection (Bragg) geometry and an analyser

in transmission (Laue) geometry. The derived analytical expressions allow the

characterization of the bending of the analyser and the quantitative estimation

of the curvature radius and its sign from the width of the crystal rocking curves.

The theoretical analysis is applied to the case of a thin, accidentally bent, Si crystal.

1. Introduction

Bending of perfect crystals affects the quality of X-ray optical

setups and causes changes in the observed angular widths of

the crystal Bragg reflections. These circumstances may also be

used to control the required divergence in beamline designs

and the crystal quality needed in the preparation of mono-

chromators. Graphical analysis via DuMond (1937) diagrams

has proven to be a reliable method to characterize the widths

of rocking curves in multi-crystal systems arranged in both

�–� and, in particular, the less commonly used �–� X-ray

polarization configurations (Servidori et al., 2001a). In the case

of Bragg geometry, DuMond analysis has been extensively

applied to both flat and curved crystals (Servidori et al.,

2001a,b). However, no derivation has been reported, to our

best knowledge, for the case of Laue (transmission) geometry

in a setup involving both � and � polarization. This case was

considered by Matsouli et al. (2000), but no formalism aiming

to achieve a quantitative analysis was drawn.

In particular, for single crystals with a thickness of several

tens of micrometres, i.e. mechanically thin crystals, the

reflection properties in this geometry critically depend on

thickness, and even slight bending is expected to lead to a

departure of the width of the rocking curve from that of the

perfect crystal (Uschmann et al., 1993). The analytical

description of the Laue case, particularly in the �–� polar-

ization configuration, is by no means trivial within the

framework of dynamical theory. However, DuMond analysis

provides a simple and reliable way to quantify the contribu-

tions, stemming from a crystal deformation, to the linewidths

of different reflections as a function of the specific features of

the beam.

2. DuMond analysis for a multi-crystal Bragg–Laue
setup

The experimental setup corresponding to the case study of this

investigation is depicted in Fig. 1. It consists of a double-

crystal monochromator operating in the vertical plane toge-

ther with a single-crystal analyser that diffracts the X-rays in

transmission geometry in the horizontal plane. The analyser is

placed at the sample position and will be referred to hereafter

as the sample. The general case of a curved sample in Bragg

geometry has been extensively discussed by Servidori et al.

(2001b). Let us denote with the subscripts m and s the quan-

tities referring to monochromator and sample, respectively.

Let ’m and ��m be the angular beam divergence in the plane

normal and parallel, respectively, to the diffraction plane of

the monochromator. They correspond to the full width at half-

maximum (FWHM) of the horizontal and vertical beam

profiles and are alternatively denoted by s0y and s0z in the

literature, respectively. For the sake of comparison with the

DuMond analysis of the Bragg geometry given by Servidori et

al. (2001b), we shall use a similar notation here.1 The relevant
Figure 1
Scheme of the experimental setup, consisting of a double-crystal
monochromator, a single-crystal analyser at the sample position and an
area detector to measure the intensity of the diffracted beam.

1 Note that Servidori et al. (2001b) considered the beam divergence half-width
at half-maximum, labelled ’ and ��. We shall reserve the label ��B for the
deviation from the kinematical Bragg angle �B.
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expressions to calculate the FWHM of a sample diffraction

profile result from the projection onto the ’m��m plane of the

common diffraction volume determined by the intersection of

the diffraction domains of monochromator and sample, shown

in Fig. 2. These expressions adapted to a sample in Laue

geometry become

ljj ¼
!s;� tan �B;m þ !m tan �B;s

ð1� �Þ tan �B;m

ð1Þ

for the angular dimension of the red band in Fig. 3(a) parallel

to ’m and

� ¼ arctan
cos �B;sð1� �Þ tan �B;m

tan �B;s

� �
ð2Þ

for the inclination angle of this band with respect to ’m

(Fig. 3b), where �B is the Bragg angle. The projection onto the

vertical plane of the illuminated area of the sample is given by

w� h (horizontal � vertical) in Fig. 3(b) and corresponds to

the intersection of the beam divergence (FWHM) with the

sample, i.e. in the absence of the monochromator. The term �
is given, in the Laue case, by

� ¼ ðL=RÞ cos �B;s; ð3Þ

L and R being the source-to-sample distance and the sample

curvature radius, positive or negative in the case of concavity

or convexity, respectively, i.e. � ¼ 0 for a flat sample. Note

that, in the Bragg case, a sinusoidal function replaces cos �B;s

in the definition of �. The Darwin FWHM !m (!s;�) of the

intrinsic �-polarized (�-polarized) diffraction profile of the

monochromator (sample) is found to be, in the symmetric case

(Zachariasen, 1945),

!Darwin ¼ 2j�HjC=sinð2�BÞ; ð4Þ

where C is the polarization factor: C ¼ 1 for � polarization

and C ¼ j cos 2�Bj for � polarization. In the asymmetric case,

the previous equations remain valid and one needs only to

employ the generalized expression for the Darwin width, i.e.

with a factor b1=2 in the denominator of equation (4), where b

is the so-called asymmetry factor.2 !m can be directly calcu-

lated in the symmetric Bragg case as the �-polarized angular

width in the range from ym ¼ �1 to ym ¼ 1, where

ym ¼
�00;m þ��B;m sinð2�B;mÞ

j�0H;mj
ð5Þ

is the dynamical incidence parameter {see equation [3.181] of

Zachariasen (1945)}. In (5), �00;m and �0H;m are the real parts of

the Fourier coefficients of zeroth and H order, respectively, of

4� times the crystal polarizability (�H), and ��B;m is the

deviation from the kinematical Bragg angle �B;m. !s;� is

obtained similarly to !m from the intensity profile of the Hth

Bragg reflection, for which the following approximated

expression of the more exact equation [3.185] of Zachariasen

(1945) was used:

IH

I0

¼
expð��0t0=�0Þ

2 1þ ys;�

� � 1þ 2
ðks As;�Þ

2

1þ ys;�

" #
: ð6Þ

In equation (6), IH and I0 are the diffracted and incident beam

intensities, respectively, �0 is the linear absorption coefficient,

t0 is the sample thickness, �0 is the direction cosine of the

incident wavevector with respect to the inward normal to the
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Figure 2
DuMond diagram for the �–� geometry, showing the common diffraction
volume identified by the intersection of the diffraction domains of
monochromator and sample. The diagram is drawn for the sample
entrance surface. The projection of the common volume onto the ’s��s

plane determines the shape of the sample image.

Figure 3
(a) Section of the diagram of Fig. 2 with a constant-’s plane, and (b)
illuminated and diffracting areas of the sample for (Laue) transmission
geometry.

2 Note that the Darwin width can be modified by a cylindrical bending if the
cylindrical axis has a nonzero projection normal to the diffraction plane.
However, this effect will not be considered in this work.
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entrance surface of the sample, ks ¼ �00H;s=�
0
H;s, where �00H;s is

the imaginary part of �H for the sample, and

As;� ¼
�j cosð2�B;sÞjj�

0
H;sjt0

	ðsin �B;s cos �B;sÞ
1=2

and ys;� ¼
��B;s sinð2�B;sÞ

j�0H;sjj cosð2�B;sÞj

ð7Þ

are the dimensionless sample thickness and the dynamical

incidence parameter, respectively, for the �-polarized

symmetric Laue case.

The approximation leading to equation (6) holds for

A>> 1, i.e. thick crystals in the sense of diffraction theory,

and jkjA< 0:4. Equation (6) was used under the assumption

that energy fluctuations and small thickness variations average

out reflectivity interference fringes if they are narrow enough

(A >> 1), which often happens in the real physical case. It

follows that the interference thickness fringes, typical of a

theoretical Laue case diffraction profile, do not appear, thus

enabling a much easier determination of a well defined

FWHM. In �–� geometry, a sample rotation with respect to

the monochromator implies a shift of the inclined red band in

Fig. 2 parallel to j’mj. As to j’mj, we recall that the divergence

of the beam normal to the diffraction plane of the mono-

chromator at the source exit, typically with a Gaussian profile,

does not change after diffraction from the monochromator.

Hence, approximating ljj to the FWHM of a Gaussian profile,

the FWHMs of the sample diffraction profiles (FWHMcalc) are

easily obtained as FWHMcalc ¼ ðl
2
jj þ ’

2
mÞ

1=2.

3. Experimental application

In order to apply the proposed framework, we took as a

sample a piece of a silicon single-crystalline wafer thinned to a

thickness of 60 mm. The wafer had the surface oriented

perpendicular to the [110] direction, which allowed us the

measurement of the 111 and 220 diffraction profiles in

symmetric Laue geometry. The sample was mounted on an

aluminium holder featuring two contact regions. The experi-

ment was performed on beamline ID16 of the European

Synchrotron Radiation Facility (ESRF) in Grenoble, France.

A double Si(111) crystal monochromator was employed to

obtain monochromatic X-rays of 7.908 keV, which were

diffracted by the sample and then collected by a silicon-diode

detector following the scheme displayed in Fig. 1. The beam

size at the sample position was 2:0� 1:1 mm (horizontal �

vertical), and the beam divergence was 40 � 22 mrad (8.25 �

4.54 arc seconds) in the horizontal � vertical directions. The

distance between the source and the sample was L ¼ 50:45 m.

Table 1 shows the values of A and jkjA along with the Bragg

angles of the 111 and 220 reflections, the Darwin width of the

monochromator (!m), and those of the sample reflections

(!s;�). As can be noticed from Table 1, from the viewpoint of

the dynamical theory of X-ray diffraction, the sample used in

our measurement cannot be deemed to be thin. It hence fulfills

the conditions for applying equation (6) and the above-

discussed DuMond analysis. We obtained experimental

diffraction profiles of 16.7 (2) and 15.90 (14) arc seconds

FWHM for the 111 and 220 reflections, respectively. Notice

that in Table 2, for a flat sample (R ¼ 1), neither the FWHM

of the 111 reflection nor that of the 220 reflection matches the

experimental value within its uncertainty, indicating that the

wafer is curved. The curvature radii obtained from equations

(1)–(3) that reproduce the FWHMexp values are also reported

in Table 2. The increase (decrease) of FWHMexp for 111 (220)

as referred to the calculated FWHM for a flat crystal

(FWHMcalc for R ¼ 1) is the result of the decrease (increase)

of the inclination angle � (see Fig. 3b). On the basis of the

above results it is reasonable to argue that the sample

experienced some bending across the beam footprint, owing to

the clamping in the sample holder. Clamping may induce

quasi-cylindrical deformations, characterized by an average

curvature radius, or even saddle-like distortions, with two

curvature radii of opposite sign (surfaces featuring both

convexity and concavity, the so-called anticlastic bending).

Fig. 4 exemplifies the behaviour of the calculated FWHM

versus the curvature radius R for the 220 reflection.
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Table 1
Crystal sample parameters for 	0 ¼ 0:15638 nm.

Reflection �B;m (�) �B;s (�) !m (arc s) !s;� (arc s) A kA

111 14.44 14.44 7.05 5.73 9.8 0.31
220 14.44 24.03 7.05 3.23 9.1 0.35

Table 2
FWHMs and curvature radii calculated using the parameters from
Table 1.

Sample
reflection ljj (arc s) � (�) R (m)

FWHMcalc

(arc s)
FWHMexp

(arc s)

111 12.78 44.08 1 15.21 16.7 (2)
111 14.52 40.44 407.70 16.70 16.7 (2)
220 15.44 27.81 1 17.51 15.90 (14)
220 13.59 30.93 �339.05 15.90 15.90 (14)

Figure 4
FWHM of the 220 reflection versus the curvature radius. The
experimental parameters of the X-ray source of the ID16 beamline at
the ESRF were employed in the calculation.
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4. Conclusions

The analysis method based on the three-dimensional DuMond

diagram in combined �–� polarization proved itself highly

sensitive to very small analyser deformations. The main

advantage of using the �–� setting instead of the �–�
configuration is that the sample bending in �–� always causes

an increase of the FWHM rocking curve, regardless of the

curvature sign. As has been shown here, this does not occur in

�–� geometry. Hence, the latter allows one to distinguish

between concavity and convexity via an increase or decrease

of the FWHM and/or the clockwise or anticlockwise deviation

of the inclination angle � of the diffracting area of the sample/

analyser (Servidori et al., 2001b). Therefore, saddle-like

distortions of the sample can only be detected using the �–�
combination. Moreover, the �–� combination is commonly

used for inelastic X-ray scattering (IXS) experiments at

synchrotron radiation sources, where the scanning double-

crystal monochromator operates in the vertical scattering

plane and the IXS spectrometer (the analyser) in the hori-

zontal plane.

It should be considered that, if images are taken of the

beam diffracted by the sample in addition to the measure-

ments of the diffracted beam profile, the sample curvature can

be determined by two independent parameters, i.e. the incli-

nation angle � and the FWHM of the sample’s rocking curve

(denoted in the text as ljj). This ensures higher reliability in the

measurement of the sample bending, as compared with the �–

� setup.

Actually, differences of a few degrees in � reveal rather

large curvature radii. The proposed DuMond framework

hence enables one to verify promptly the expected FWHM of

the rocking curve of a crystal analyser in Laue geometry with a

high degree of accuracy.

Summarizing, the versatility of the method allows one to

determine whether supposedly flat Laue crystals kept in

sample holders are actually flat or rather feature some

bending accidentally induced by the sample holder. In parti-

cular, it is possible to determine quantitatively the radius of

curvature of the induced bending and its sign for any desired

reflection.
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