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Abstract. We compare various concepts of attractor in the context of non-autonomous
dynamical systems. Then, we prove an appropriate version of the Pliss reduction prin-
ciple for non-autonomous differential systems with rapidly oscillating coefficients.

1. Introduction

An important theme in the theory of non-autonomous differential and discrete systems
is that of integral manifolds and the invariant sets which they contain. Questions concern-
ing the existence and properties of attracting invariant sets are of interest. In particular,
it is important to know when an invariant set which is locally attracting with respect to
the restriction of a differential system to the integral manifold, is actually locally attract-
ing with respect to the full differential system. That is, one wants to know if the “Pliss
reduction principle” (see [Pl]) is valid.

In this paper, we consider two topics concerning integral manifolds for non-autonomous
differential systems and the attractors which they may contain. In our discussion, we
will adopt the framework of skew-product flows ([Be],[Se]), which has been found to be
convenient in the study of a wide spectrum of problems concerning non-autonomous
differential systems.

The first topic is that of the relationship between diverse notions of “attractor” in the
skew-product framework. We adopt a Lyapunov type definition of attractor as starting
point, and compare it with a definition of pullback attractor which seems appropriate for
skew-product flows. This last concept has been widely discussed and applied in the recent
literature on non-autonomous dynamical systems (see e.g. [CRC], [S-H], [S]). Still another
type of attractor is determined in certain circumstances as a fixed point of a contraction
operator defined using a given skew-product flow; see e.g. [FJM], [JM] for examples of
such “fixed-point” attractors. We will see that, under mild hypotheses, an attractor is of
Lyapunov type if and only if it is of pullback type. We will also see that a fixed-point
attractor is of pullback type, and so of Lyapunov type as well.

The second issue we address concerns the behavior of solutions of non-autonomous
differential systems with rapidly varying coefficients, which lie in or near an integral
manifold. The construction of integral manifolds for such systems was studied by Coppel
and Palmer ([CP],[Pa1]). More recently this theme has been taken up by Cheban, Duan
and Gherco [CDG], and by Fabbri, Johnson and Palmer [FJP]. Our point of departure
is the theory presented in [FJP]. We consider differential systems with rapidly varying
coefficients for which the origin is an equilibrium point of neutral type. We state and
prove a result concerning the existence of the asymptotic phase for small solutions. We
also state and prove a result which is analogous to the Pliss reduction principle for
autonomous differential systems [Pl]. We follow the approach of Palmer [Pa2] to these
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questions, though we will see that some preparatory work is necessary in order to apply
his arguments.

It will be clear that the methods which we apply can be used to state and prove results
concerning the existence of the asymptotic phase and the validity of the Pliss reduction
principle for other classes of non-autonomous dynamical systems. In this regard, we can
refer to the contributions of Janglajew [Ja], Pötzsche [Pö], and Reinfelds-Janglajew [RJ].

This paper is organized as follows. In Section 2, we elaborate and compare the notions
of attractor mentioned above. In Section 3, we consider the questions of the existence
of the asymptotic phase and the validity of the Pliss reduction principle for differential
systems with rapidly varying coefficients.

2. Attractors

As stated in the Introduction, we will work in the skew-product framework for non-
autonomous differential systems. We now describe that framework.

Let P be a compact metric space, and let {τt : t ∈ R} be a flow on P. That is, for each
p ∈ P, the map τt : P→ P is a homeomorphism and, moreover, the following conditions
are satisfied:

(i) τ0(p) = p for all p ∈ P;
(ii) τt ◦ τs = τt+s for all t, s ∈ R;

(iii) the map τ : P× R→ P, (p, t) 7→ τt(p), is continuous.

We introduce some terminology related to the flow concept. If p ∈ P, then the orbit
through p is {τt(p) : t ∈ R}. The positive (resp. negative) semiorbit through p is {τt(p) :
t ≥ 0 (resp. t ≤ 0)}. A subset A ⊂ P is said to be invariant if τt(A) ⊂ A for all t ∈ R;
it is said to be positively (resp. negatively) invariant if τt(A) ⊂ A for all t ≥ 0 (resp.
t ≤ 0). If p ∈ P, the omega-limit set ω(p) = {p1 ∈ P : there exists a sequence tn →
∞ such that τtn(p)→ p1}.

Next, let d ≥ 1 be an integer. We define the concept of skew-product local flow on
P × Rd. By this, we mean a pair (Y, τ̃) which satisfies the conditions given below. We
write Z = P× Rd, and z = (p, x) for a generic point of Z.

(i) Y is an open subset of Z ×R which contains the set {(z, 0) : z ∈ Z}, such that, if
(z, t) ∈ Y , then (z, s) ∈ Y for all 0 ≤ s ≤ t if t ≥ 0, and for all t ≤ s ≤ 0 if t ≤ 0.
The map τ̃ : Y → Z is continuous.

(ii) τ̃(z, 0) = z for all z ∈ Z.
(iii) τ̃(τ̃(z, s), t) = τ̃(z, t+ s) whenever τ̃(z, s) and τ̃(τ̃(z, s), t) are defined.
(iv) If z = (p, x) ∈ Z and if τ̃(z, t) is defined, then τ̃(z, t) = (τ(p), xt) where xt ∈ Rd.
(v) The pair (Y, τ̃) is maximal with respect to the properties (i)-(iv).

Condition (iv) is called the skew-product property of τ̃ . We will sometimes write
τ̃(z, t) = τ̃t(z) when (z, t) ∈ Y .

One can define a skew-product local flow beginning with an appropriate family of
non-autonomous differential systems. Let |·| denote the Euclidean norm on Rd. Let f :
P×Rd → Rd be a continuous map such that, for each compact set K ⊂ Rd, the uniform
Lipschitz constant

LipK = sup
p∈P

sup
x1 6=x2

{
|f(p, x1)− f(p, x2)|

|x1 − x2|

}
is finite. Consider the family of differential systems

x′ = f(τt(p), x) (2.1)p
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where p ranges over P. For each p ∈ P and each x0 ∈ R, let x(t) be the solution of (2.1)p
such that x(0) = x0. Set z0 = (p, x0) ∈ Z, and put τ̃(z0, t) = (τt(p), x(t)) where x(·) is
the maximal solution of (2.1)p with initial value x0. Let Y = {(z, t) : τ̃ is well-defined} ⊂
Z × R. Then (Y, τ̃) is a skew-product local flow on P× Rd.

It is well-known that, if f̃ : R × Rd → Rd is uniformly continuous on R ×K for each
compact set K ⊂ Rd, and if f̃ is uniformly Lipschitz continuous in x ∈ K for each such
set R×K, then f̃ gives rise to a compact metric space P, a flow (P, {τt}), and a function
f : P× Rd → Rd satisfying the above conditions. See e.g. [Se].

Let P be a compact metric space, and let (P, {τt}) be a flow. Let τ̃ be a skew-product
local flow on P× Rd, and let π : P× Rd → P be the projection.

Definition 2.1. A compact set A ⊂ Z = P × Rd is said to be a Lyapunov attractor if
the following conditions are satisfied.

(i) If z = (p, x) ∈ A, then τ̃(z, t) is defined for all t ∈ R.
(ii) There is an open set W ⊂ Z containing A such that, if z ∈ W ,then τ̃t(z) is defined

for all t ≥ 0, and the omega-limit set ω(z) ⊂ A.
(iii) If V is an open set in Z containing A, then there is an open set V1 ⊂ V , which

contains A, such that, if z ∈ V1, then τ̃t(z) is defined and lies in V for all t ≥ 0.
(iv) The projection π(A) = P.

The last condition is imposed for reasons of convenience. In practice, it will not usually
entail any loss of generality, since one has the option of replacing P by π(A).

Our first goal is to show that a compact subset A ⊂ P × Rd is a Lyapunov attractor
if and only if it is a pullback attractor ([CRC], [CKS], [KR], [S-H], [S]). We give a def-
inition of the latter concept which seems appropriate in the context of skew-product
local flows. We make use of the concept of Hausdorff distance [KR]. Let (Z, dZ) be
a compact metric space, and let K1, K2 be two nonempty compact subsets of Z. Set
H∗(K1, K2) = supz1∈K1

inf{dZ(z1, z2) : z2 ∈ K2}, then set

H(K1, K2) = max{H∗(K1, K2), H∗(K2, K1)}.

The quantity H(K1, K2) is the Hausdorff distance between K1 and K2. If z ∈ Z and if
K ⊂ Z is compact, we abuse notation slightly and write H(z,K) in place of H({z}, K).

Let us introduce the following notation: if Z = P×Rd and X ⊂ Z, then Xp = X(p) =
({p}×Rd)∩X. Further, let dP be a metric on P compatible with its topology, and define
the metric d on Z = P× Rd by d(z1, z2) = dP(p1, p2) + |x1 − x2| whenever z1 = (p1, x1)
and z2 = (p2, x2).

Definition 2.2. Let A ⊂ Z = P × Rd be a compact invariant set such that π(A) = P.
Say that A is a pullback attractor if there is an open subset W ⊂ Z, which contains A,
with the following property: let D ⊂ W be a compact set such that Dp 6= ∅ for each
p ∈ P; then

lim sup
t→∞

sup
p∈P

H(τ̃t(Dτ−t(p)), A) = 0.

Our definition is related to that given in [S-H], [S]. However, our “universe” of sets
{D} is chosen so as to take account of the skew-product framework in which we work.

The following result is quite natural; however, so far as we know it has not appeared
in the literature.

Proposition 2.3. Let A ⊂ P × Rd be a compact invariant set. Then A is a Lyapunov
attractor if and only if it is a pullback attractor.
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Proof. Suppose first that A is a Lyapunov attractor. Let W ⊂ Z = P × Rd be an open
neighborhood of A such that ω(z) ⊂ A for all z = (p, x) ∈ W . We claim that the pullback
condition is satisfied by the family {D} of compact subsets D of W such that Dp 6= ∅,
p ∈ P.

To see this, let D ⊂ W be a compact subset such that Dp 6= ∅, p ∈ P. Suppose for
contradiction that there exist a number ε > 0 and sequences tn →∞, pn ∈ P such that

H(τ̃tn(D(τ−tn(pn))), A) ≥ ε, n ∈ N.
This means that, for each n ≥ 1, there exists xn ∈ D(τ−tn(pn)) such that, if zn =
τ̃tn(τ−tn(pn), xn), then

H(zn, A) ≥ ε. (*)

On the other hand, let δ > 0 be a number such that, if z ∈ Z and H(z, A) ≤ δ, then
H(τ̃t(z), A) ≤ ε/2 for all t ≥ 0. Such a number exists because A is a Lyapunov attractor.
If z∗ ∈ D, then ω(z∗) ⊂ A. Hence there exists a time t∗ = t∗(z∗) > 0 such that, if t ≥ t∗,
then H(τ̃t(z∗), A) < δ. There is a neighborhood N∗ = N∗(z∗) of z∗ in W such that, if
z1 ∈ N∗, then H(τ̃t(z1), A) < δ, and by compactness of D we can find a fixed time tf
such that, if z ∈ D, then for some time tz ∈ (0, tf ] there holds H(τ̃tz(z), A) < δ. But this
implies that, if t ≥ tf , then H(τ̃t(z), A) ≤ ε/2. This is inconsistent with the condition (*).
So indeed A is a pullback attractor.

Now let us suppose that the pullback condition is satisfied by A. Let W ⊂ P×Rd be a
neighborhood of A for which the pullback condition holds. We claim that, if z = (p, x) ∈
W , then ω(z) ⊂ A. For suppose not. Then there exist ε > 0 and a sequence tn →∞ such
that

H(τ̃tn(z), A) ≥ ε. (**)

Write zn = (pn, xn) = τ̃tn(z), so that τ̃−tn(zn) = z. Then x ∈ Dp for some compact set
D ⊂ W such that Dp1 6= ∅ for all p1 ∈ P (one can take, for example, D = A ∪ {z}). But
then (**) contradicts the pullback condition, so indeed ω(z) ⊂ A.

We now claim that the Lyapunov stability condition holds. For suppose not; then
there is a number ε > 0 with the following property: there are sequences {δn} ⊂ (0,∞),
{zn} ⊂ Z, and {tn} ⊂ (0,∞) such that δn → 0, H(zn, A) ≤ δn, and

H(τ̃tn(zn), A) ≥ ε. (***)

There is no loss of generality in assuming that τ̃tn(zn) ∈ W .
Now, however, zn = τ̃−tn(τ̃tn(zn)). Fix a compact neighborhood D of A in W . Then zn

lies in D for all large n. But then (***) violates the pullback condition. This shows that
A is indeed a Lyapunov attractor, and completes the proof of Proposition 2.3. �

Next we consider the following situation. Let V ⊂ Rd be an open set. Let CV = {c :
P→ V : c is bounded and continuous} with the usual metric

ρ(c1, c2) = sup
p∈P
{|c1(p)− c2(p)|}.

Then (CV , ρ) is a complete metric space. Suppose that, for some t0 > 0, there holds
τ̃t0(P× V ) ⊂ P× V . In this case, one can define a map ξ : CV → CV as follows:

(p, ξ(c)(p)) = τ̃t0(τ−t0(p), c(τ−t0(p))). (2.2)

We will suppose that the map ξ is a contraction with respect to ρ. That is, there exists
a constant α < 1 with the property that

ρ(ξ(c1), ξ(c2)) ≤ αρ(c1, c2)

for all c1, c2 ∈ CV .
4



Under these conditions, ξ admits a unique fixed point a ∈ CV : ξ(a) = a. Let

A = {(p, a(p)) : p ∈ P}.

Then A ⊂ P × V ⊂ Z is a compact set, and it is natural to conjecture that A is a
Lyapunov attractor for τ̃ . We will verify that this is indeed the case.

Proposition 2.4. Let V ⊂ Rd be an open set, and suppose that t0 > 0 is a number
such that τ̃t0(P × V ) ⊂ P × V . Suppose that the map ξ : CV → CV defined by (2.2) is a
contraction in CV with contraction constant α < 1. Then the fixed point a ∈ CV of ξ has
the property that

A = {(p, a(p)) : p ∈ P}
is a Lyapunov attractor for τ̃ .

Proof. We first show that A is τ̃ -invariant. This is not immediately clear because τ̃ is only
assumed to be a local flow. Let U ⊂ Rd be an open set such that, if z = (p, x) ∈ P× V ,
then τ̃t(z) ∈ P × U for all t ≥ 0. Define CU in the same way in which CV was defined;
then CV ⊂ CU . Fix a pair of integers n ≥ 1, 0 ≤ r ≤ n, and set u = rt0/n. Define a map
ξ1 : CV → CU via the relation

(p, ξ1(c)(p)) = τ̃u(τ−u(p), c(τ−u(p))), c ∈ CV .

Then the iterate ξ
(k)
1 is defined for each k ≥ 1. Note that ρ(ξ1(a), a) = ρ(ξ1(ξ

(n)
1 (a)), ξ

(n)
1 (a))

≤ αrρ(ξ1(a), a), so a is a fixed point of ξ1. This means that τ̃u leaves A invariant for all
u as above. By continuity of τ̃ , one has that τ̃t(A) ⊂ A for all t ∈ [0, t0], and it follows
that A is positively τ̃ -invariant.

We can now globally invert the local flow τ̃ onA by setting ˜̃τ−t(p, a(p)) = (τ−t(p), a(τ−t(p))),
t ≥ 0, p ∈ P. We omit the proof that ˜̃τ coincides with τ̃ on A.

Let us now show that A is a pullback attractor. In fact we will show that W = P× V
satisfies the condition of Definition 2.2. For this, let D ⊂ W be a compact set such that
Dp 6= ∅ for each p ∈ P. We must show that

lim sup
t→∞

sup
p∈P

H(τ̃t(D(τ−t(p))), A) = 0.

Suppose for contradiction that there exists ε > 0 with the following property: there are
sequences tn →∞, pn ∈ P, and xn ∈ D(τ−tn(pn)) such that

H(τ̃tn(τ−tn(pn), xn), A) ≥ ε. (2.3)

For each n ∈ N, there is a continuous map cn : P→ V such that cn(τ−tn(pn)) = xn. For
each n, let kn be the largest integer such that knt0 ≤ tn. We have

ρ(ξ(kn)(cn), a) = ρ(ξ(kn)(cn), ξ(kn)(a)) ≤ αknρ(cn, a),

and the right-hand side tends to zero as n→∞. Taking account of the definition of ξ and
of the continuity of τ̃ , we see that (2.3) is violated for sufficiently large n. This completes
the proof of Proposition 2.4. �

3. Asymptotic phase and reduction principle

In this section, we state and prove the principle of asymptotic phase and the Pliss
reduction principle in a form appropriate for ordinary differential systems with rapidly
varying coefficients. We first discuss the integral manifold theory for such a system as it
is presented in [FJP].
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Let I ⊂ R be a compact interval containing ε = 0 in its interior. Let f : R×Rd×I → Rd

be a function with regularity and recurrence properties which will be specified presently.
Consider the non-autonomous differential system

x′ = |ε|f(t, x, ε), t ∈ R, x ∈ Rd, ε ∈ I (3.1)

where ε is small. We write |ε| instead of ε before f because one might want, for instance,
to study the change of stability of an equilibrium point of (3.1) when ε passes through
zero.

The integral manifold theory for (3.1) can be formulated in an elegant way when f
depends on t in a “uniquely ergodic” manner. We pause to explain what this means.

Let P be a compact metric space and let {τt} be a flow on P. We review some basic
notions of ergodic theory. Let µ be a regular Borel probability measure on P. Then
µ is said to be invariant if, for each Borel set B ⊂ P and each t ∈ R, there holds
µ(τt(B)) = µ(B). An invariant measure µ is said to be ergodic if it satisfies the following
indecomposibility condition: for each Borel set B ⊂ P, the property

µ(τt(B)4B) = 0 for all t ∈ R (4 = symmetric difference)

implies that either µ(B) = 0 or µ(B) = 1. It is known [NS] that there exists at least one
regular Borel measure µ on P which is ergodic (with respect to {τt}).

Let us now impose the following hypotheses, which will be valid in all that follows.
First, we assume that the flow (P, {τt}) admits a unique invariant measure µ, which
is then necessarily ergodic. Second, we assume that there exist: (i) a continuous map

f̃ : P× Rd × I → Rd and (ii) a point p̃ ∈ P such that

f(t, x, ε) = f̃(τt(p̃), x, ε)

for all t ∈ R, x ∈ Rd, and ε ∈ I. This means in effect that f(·, x, ε) has recurrence
properties which are reflected in the structure of the flow (P, {τt}). Third, we assume

that f̃(p, 0, ε) = 0 for all p ∈ P, ε ∈ I.
There are well-known conditions on f which ensure the existence of objects P, {τt}, µ,

and f̃ which satisfy the above conditions. For example, if f is almost periodic in t,
uniformly on each set of the form K × I where K ⊂ Rd is compact, then the above
conditions are fulfilled. See [FJP] (also [Se] and many others references) for a discussion

of this matter. We will say no more about it; rather, we let P, {τt}, µ, and f̃ be as above,

then write f instead of f̃ , and consider the family of differential systems

x′ = |ε|f(τt(p), x, ε) (3.2)p

which includes the ε-dependent equation (3.1). We generally will not indicate explicitly
the dependence of the family (3.2)p on ε ∈ I.

We proceed to outline the integral manifold theory for a “uniquely ergodic family” (3.2)p
as it is worked out in [FJP]. We will assume throughout that, for some r ≥ 1, the function
x 7→ f(p, x, ε) : Rd → Rd is of class Cr for each p ∈ P and ε ∈ I. We further require
that the Fréchet derivatives ∂kxf : P × Rd × I → Lk(Rd,Rd) are continuous, 0 ≤ k ≤ r.
Here Lk(Rd,Rd) is the usual space of Rd-valued, k-linear maps defined on Rd × · · · × Rd

(k times).
We introduce the average

f̄(x, ε) =

∫
P

f(p, x, ε)dµ(p) = lim
|t|→∞

1

t

∫ t

0

f(τs(p), x, ε)ds.
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Because of the unique ergodicity of (P, {τt}), the limit on the right is uniform on P×K×I
for each compact subset K ⊂ Rd. Note that f̄(0, ε) = 0 for all ε ∈ I. Let us write

f̄(x, ε) = l̄εx+ n̄ε(x) (3.3)

where n̄ε(x) = o(|x|) as x → 0, uniformly in ε ∈ I. Set ε = 0; we impose a condition on
the matrix l̄0.

Hypothesis 3.1. The set of eigenvalues of l̄0 is the union of two disjoint nonempty
subsets, namely

Σ(0) = {λ ∈ C : λ is an eigenvalue of l̄0 and Re(λ) = 0},
Σ(−) = {λ ∈ C : λ is an eigenvalue of l̄0 and Re(λ) < 0}.

Let β > 0 be a number such that Re(λ) < −β for all λ ∈ Σ(−). Let L(−) ⊂ Rd be the
intersection with Rd of the sum of the generalized eigenspaces of l̄0 which correspond to
eigenvalues in Σ(−). Define L(0) in the analogous way. Let Q0 : Rd → Rd be the projection
with image L(−) and kernel L(0).

Next write
f(p, x, ε) = lε(p)x+ nε(p, x)

for p ∈ P, x ∈ Rd, ε ∈ I. Consider the family of linear systems

x′ = |ε|lε(τt(p))x. (3.4)p

If ε 6= 0, the change of variables s = |ε|t transforms (3.4)p into

dx

ds
= lε(τs/|ε|(p))x. (3.5)p

Moreover, (3.2)p is transformed into

dx

ds
= lε(τs/|ε|(p))x+ nε(τs/|ε|(p), x). (3.6)p

We recall a basic definition [Co], [SS].

Definition 3.2. The family of equations (3.5)p is said to have an exponential dichotomy
(ED) over P if the following conditions hold. Let Φp(s) be the fundamental matrix
solution of (3.5)p; then there are constants k > 0, σ > 0 together with a continuous,
projection-valued function p 7→ Qp : Rd → Rd, Q2

p = Qp, such that the following estimates
hold:

|Φp(u)QpΦp(s)
−1| ≤ ke−σ(u−s), u ≥ s,

|Φp(u)(I −Qp)Φp(s)
−1| ≤ keσ(u−s), u ≤ s.

We introduce the dynamical spectrum of the family (3.5)p. For this, let λ ∈ R and
consider the translated family

dx

ds
= [−λI + lε(τs/|ε|(p))]x. (3.7)p

Then the dynamical spectrum Σ(ε) of the family (3.5)p is

Σ(ε) = {λ ∈ R : the family (3.7)p does not admit ED over P}.
We can use a basic perturbation theorem of Sacker and Sell [SS] to prove the following

result.

Theorem 3.3. Let β be as above, and let α > 0 be a real number. There exists ε1 > 0
such that, if 0 < |ε| ≤ ε1, then Σ(ε) = Σ(0)(ε)∪Σ(−)(ε) where Σ(0)(ε) ⊂ {λ ∈ R : |λ| < α}
and Σ(−)(ε) ⊂ {λ ∈ R : λ < −β}.
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In the following developments, we will assume that α < β and that I ⊂ [−ε1, ε1]. We
then have that Σ(0)(ε) ∩ Σ(−)(ε) = ∅ for all ε ∈ I.

Next, fix λ∗ ∈ (−β,−α), so that the family of translated equations

dx

ds
= [−λ∗I + lε(τs/|ε|(p))]x

admits an ED over P. This family is of course (3.7)p with λ = λ∗. Let us write Qp,ε for
the dichotomy projection of this family of equations; see Definition 3.2. It turns out that,
if ε ∈ I, then Qp,ε does not depend on the choice of λ∗ ∈ (−β,−α) [SS]. Furthermore,
one has the following important continuity result; see [Co], [SS].

Theorem 3.4. The mapping

(p, ε) 7→
{
Qp,ε p ∈ P, 0 6= ε ∈ I,
Q0 p ∈ P, ε = 0,

is continuous on P× I.

Let us write Qp,0 = Q0 for all p ∈ P.
We can now describe the integral manifold theory for the nonlinear family (3.6)p.

Let us write L(0)(p, ε) = Ker(Qp,ε) ⊂ Rd and L(−)(p, ε) = Im(Qp,ε) ⊂ Rd. Let e =
dimL(0) so that d − e = dimL(−). It follows from Theorem 3.4 that dimL(0)(p, ε) = e
and dimL(−)(p, ε) = d − e for all (p, ε) ∈ P × I. If δ > 0 is a real number, let Bδ =
{x ∈ Rd : |x| ≤ δ}, then set L(0)(δ, p, ε) = L(0)(p, ε) ∩ Bδ, L

(−)(δ, p, ε) = L(−)(p, ε) ∩ Bδ

for each (p, ε) ∈ P × I. Let us note that, for each 0 6= ε ∈ I, the family of nonlinear
equations (3.6)p induces a skew-product local flow on P × Rd. Precisely, if p ∈ P and
x0 ∈ Rd, set τ̃ ε2 (p, x0, s) = ϕ(s) where ϕ(s) is the maximal solution of (3.6)p satisfying
ϕ(0) = x0. Then τ̃ ε is a local skew-product flow on P× Rd which covers the “fast flow”
τ ε on P defined by τ εs (p) = τs/|ε|(p). Say that a subset Y ⊂ P × Rd is locally invariant
with respect to τ̃ ε if, for each y = (p, x) ∈ Y , there exists s0 > 0 such that, if |s| < s0,
then τ̃ ε(y, s) ∈ Y .

Proposition 3.5 ([FJP]). There exist positive numbers ε2 ≤ ε1 and δ ∈ R together with
a family of maps

hp,ε : L(0)(δ, p, ε) −→ L(−)(δ, p, ε), p ∈ P, 0 < |ε| ≤ ε2

such that the following conditions hold.

(a) If 0 6= |ε| ≤ ε2, then the set

Mε =
⋃
p∈P

{(p, x) : x = u+ hp,ε(u), u ∈ L(0)(δ, p, ε)}

is a locally invariant subset of P × Rd with respect to the local flow τ̃ ε. We call
Mε an integral manifold of the family (3.6)p.

(b) Introduce the “center bundle” E
(0)
δ = {(p, u, ε) : u ∈ L(0)(δ, p, ε), p ∈ P, 0 6=

|ε| ≤ ε2} and the “stable bundle” E
(−)
δ = {(p, u, ε) : u ∈ L(−)(δ, p, ε), p ∈ P, 0 6=

|ε| ≤ ε2}. Then the map (p, u, ε) 7→ (p, hp,ε(u), ε) : E
(0)
δ → E

(−)
δ is continu-

ous. Moreover, for each p ∈ P and 0 6= |ε| ≤ ε2, the map u 7→ hp,ε(u) :
L(0)(δ, p, ε) → Rd is of class Cr. For each k = 0, 1, . . . , r, the Fréchet deriva-
tives ∂kuhp,ε, p ∈ P, 0 6= |ε| ≤ ε2, are well-defined. The collection of maps {hp,ε}
is F r in the sense of Foster [Fo] for each ε with 0 6= |ε| ≤ ε2. This means that,
for each k = 1, . . . , r one has the following statement. If (pn, un, εn) → (p, u, ε)
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in E
(0)
δ , and if x

(1)
n → x(1), . . . , x

(k)
n → x(k) are convergent sequences in Rd, then

∂kun
hpn,εn(x

(1)
n , . . . , x

(k)
n )→ ∂kuhp,ε(x

(1), . . . , x(k)).
(c) For each p ∈ P and each 0 6= |ε| ≤ ε2, one has hp,ε(0) = ∂xhp,ε(0) = 0. Thus the

manifold Mε ∩ ({p} × Rd) is tangent to L(0)(p, ε) at the origin x = 0.

One actually has that the family {hp,ε} extends in a Cr-way to ε = 0. It is fairly clear
what this means; in any case see [FJP].

From now on, we assume that I ⊂ [−ε2, ε2]. Our next goal is the following. Fix ε ∈ I
with ε 6= 0. We want to introduce (time-dependent) coordinates u ∈ Re, v ∈ Rd−e in
Rd such that, for each p ∈ P, the family of linear systems (3.5)p assumes the block-
diagonal form du

ds
= au, dv

ds
= bv. This is because we wish to apply Palmer’s methods

[Pa2] to the study of the asymptotic phase and the Pliss reduction principle relative to
the integral manifold Mε. It turns out, however, that in general we cannot achieve a
block-diagonalization over P. Instead we must introduce an appropriate “extension” of
the flow (P, {τ εs }) to do so. We now discuss this question in more detail.

It is convenient to assume that the original flow (P, {τt}) is minimal, i.e. that the orbit
{τt(p) : t ∈ R} is dense in P for each p ∈ P. (This implies that, for each ε 6= 0 in I,
the fast flow (P, {τ εs }) is minimal.) See [E] for a study of minimal flows. The condition
of minimality entails little loss of generality for the following reason. The flow (P, {τt})
admits by assumption just one invariant measure µ, which is therefore ergodic. Let Pµ

be the topological support of µ; that is, Pµ is the complement in P of the union over all
open sets O ⊂ P satisfying µ(O) = 0. Then Pµ is invariant and (Pµ, {τt}) is minimal.

We assume form now on that (P, {τt}) is minimal and uniquely ergodic (one says
that the flow is strictly ergodic). This implies that (P, {τ εs }) is strictly ergodic for each
0 6= ε ∈ I.

An extension (Q, {Tt}) of (P, {τt}) consists of a compact metric space Q, a flow {Tt}
on Q, and a continuous surjective map π : Q→ P such that

τt(π(q)) = π(Tt(q)), t ∈ R, q ∈ Q.

One says that π is a homomorphism of the flows (Q, {Tt}) and (P, {τt}). We will show
that, if 0 6= ε is sufficiently small, then there is an extension of (P, {τ εs }) with respect to
which one can block-diagonalize the family (3.5)p after it has been “lifted” to Q in an
appropriate way. We discuss the appropriate concept of lifting. To lighten the notation,
we will write {τs} instead of {τ εs } when ε ∈ I has been fixed.

Suppose that 0 6= ε ∈ I, and that (Q, {Ts}) is an extension of (P, {τt}) with flow
homomorphism π : Q → P. Set l(q) = lε(π(q)) and n(q, x) = nε(π(q), x). Consider the
family of linear equations

x′ = l(Ts(q))x (3.8)q

and the family of nonlinear equations

x′ = l(Ts(q))x+ n(Ts(q), x). (3.9)q

It is natural to view these families as lifts of the families (3.5)p and (3.6)p. Clearly the
statements of Theorems 3.3, 3.4 and 3.5 can be modified as to be valid for the lifted
families (3.8)q and (3.9)q. We will not write out these modified versions of Theorems 3.3-
3.5.

For each integer n ≥ 1, let Mn be the set of n×n real matrices with the usual operator
norm. If ϕ : Q→Mn is a map, let |ϕ|0 = sup{|ϕ(q)| : q ∈ Q}.

Theorem 3.6. There is a positive number ε3 ≤ ε2 such that, if 0 6= |ε| ≤ ε3, then
there exist a minimal extension (Q, {Ts}) of (P, {τs}) together with a continuous function
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σ : Q → Md with the following properties. First, the map σ−1 : Q → Md is well-defined
and continuous. Second, the map σ′ : Q → Md : σ′(q) = d

ds
σ(Ts(q))

∣∣
s=0

is well-defined
and continuous. Third, for each q ∈ Q the change of variables

x = σ(Ts(q))y

transforms equation (3.8)q into the block form

y′ =

(
a(Ts(q)) 0

0 b(Ts(q))

)
y, (3.10)q

where a : Q→Me and b : Q→Md−e are continuous. Fourth, |a|0 ≤ |l|0 and |b|0 ≤ |l|0.

Proof. The first step involves an application of some results presented in Coppel’s lecture
notes ([Co, pp. 37-41]). See also Daletskii-Krein [DK].

Let us note that, if λ ∈ (−β,−α) is fixed, and if 0 6= ε ∈ I, then the family (3.7)p
admits an ED over P with a dichotomy constant k which does not depend on ε. Moreover,
we can use Theorem 3.4 to determine a positive number ε3 ≤ ε2 such that, if 0 < |ε| ≤ ε3,
then for every p ∈ P, the angle [DK] between Im(Qp,ε) and Im(Q0) is less than π/6, and
the angle between Ker(Qp,ε) and Ker(Q0) is less than π/6.

Taking account of these facts, we can apply Lemma 3 on p. 41 of [Co] to determine a
constant θ ≥ 0, which is independent of p ∈ P and 0 6= |ε| ≤ ε3, for which the following
statements can be verified.

Let λ ∈ (−β,−α), p̄ ∈ P, and 0 6= ε̄ ∈ I be fixed. Let us write l(s) = −λI + lε̄(τ
ε̄
s (p̄)).

Consider the linear system
dx

ds
= l(s)x. (3.11)

There is a continuously differentiable function σ : R → Md, with continuously differen-
tiable inverse σ−1, with the following properties.

(i) The change of variables
x = σ(s)y

transforms equation (3.11) into the block-form

y′ = m(s)y, m(s) =

(
a(s) 0

0 b(s)

)
, s ∈ R

where a(·) ∈Me and b(·) ∈Md−e.
(ii) |m(s)| ≤ |l(s)| for all s ∈ R.

(iii) One has sups∈R |σ(s)| ≤ θ, sups∈R |σ(s)−1| ≤ θ.
(iv) dσ

ds
= l(s)σ(s)− σ(s)l(s), s ∈ R.

It follows from (iii) and (iv) that dσ
ds

is uniformly bounded, so σ and σ−1 are uni-

formly continuous functions. It then follows from (iv) that dσ
ds

is (bounded and) uniformly
continuous.

The second step involves a Bebutov-type flow and basic methods of topological dynam-
ics. We view σ as an element of the space C = {c : R→Md : c is bounded and continuous}.
We equip C with the topology of uniform convergence on compact sets. There is a
flow {Ts} on C induced by the translations: thus Ts(c)(u) = c(s + u) for c ∈ C and
s, u ∈ R. This is a flow of Bebutov-type [Be]. Since σ is uniformly continuous, the closure
Cσ = cls{Tt(σ) : t ∈ R} is compact; clearly Cσ is {Tt}-invariant.

If c ∈ Cσ, set C(c) = c(0). Then C : Cσ → Md is continuous. One can verify that
C−1 : Cσ →Md : C−1(c) = c(0)−1 is well-defined and continuous. Moreover, a basic result
of Analysis can be used to show that the map C ′ defined by C ′(c) = dc

ds
(0) is well-defined

and continuous.
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Let p ∈ P be a general point, and let {tn} ⊂ R be a sequence such that τtn(p̄) → p.
There is a subsequence {tk} ⊂ {tn} such that Ttk(σ) converges in C, say to σp. Let
lp(s) = −λI+ lε̄(τ

ε̄
s (p)). One can check that, if lp is substituted for l and σp is substituted

for σ, then all statements (i)-(iv) above are valid when m(s) is substituted by

mp(s) = σp(s)
−1lp(s)σp(s)− σp(s)−1dσp

ds
(s).

Caution: the function mp is not uniquely determined by p, since different subsequences
{tk} may give rise to different limit functions σp.

Now let Q ⊂ Cσ be an invariant set such that (Q, {Ts}) is minimal (see e.g. [E]). There
is a natural projection π : Q → Md : σ(q) = C(q). By stepping through the definition,
one can now verify all the assertions of Theorem 3.6. This completes the proof. �

From now on, we suppose that I ⊂ [−ε3, ε3]. We note an important corollary of the
proof of Theorem 3.6.

Corollary 3.7. Let 0 6= ε ∈ I, and let (Q, {Ts}) and σ be as in the statement of Theo-
rem 3.6.

(i) There is a constant θ ≥ 0, which does not depend on q ∈ Q and 0 6= ε ∈ I, such
that |σ(q)| ≤ θ and |σ−1(q)| ≤ θ.

(ii) Let Φ
(a)
q (s) be the fundamental matrix solution of the system

du

ds
= a(Ts(q))u,

and let Φ
(b)
q (s) be the fundamental matrix solution of the system

dv

ds
= b(Ts(q))v.

There is a constant k1 > 0, which does not depend on q ∈ Q and 0 6= ε ∈ I, such
that

|Φ(a)
q (s)| ≤ k1e

α|s|, s ∈ R,

|Φ(b)
q (s)| ≤ k1e

−βs, s ≥ 0.

The number k1 is only distantly related to the dichotomy constant k of the family (3.7)p
introduced in the proof of Theorem 3.6, and may be much larger. Nevertheless, we will
indicate k1 by k in the succeeding developments.

Next let 0 6= ε ∈ I. Introduce a minimal flow (Q, {Ts}) which satisfies the conditions
of Theorem 3.6. Let σ, a, and b be the functions of that theorem. Consider the nonlinear
family (3.9)q obtained by lifting the family (3.6)p to Q. For each q ∈ Q, introduce the

change of variables x = σ(Ts(q))y in equation (3.9)q. Set y =

(
u
v

)
where u ∈ Re, v ∈

Rd−e, and Rd = Re ⊕ Rd−e. Further set

g(q, u, v, ε) = σ−1(q)n(q, σ(q)y),

then put g =

(
g1

g2

)
where g1 ∈ Re, g2 ∈ Rd−e. Then equations (3.9)q take the form

du

ds
= a(Ts(q))u+ g1(Ts(q), u, v, ε),

dv

ds
= b(Ts(q))v + g2(Ts(q), u, v, ε).

(3.12)q
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Fix ε ∈ I. Return to the spaces L(0)(p, ε), L(−)(p, ε), L(0)(δ, p, ε), and L(−)(δ, p, ε) of
Proposition 3.5. These spaces can be lifted to Q by setting L(0)(q, ε) = L(0)(π(q), ε), etc.;
we have made an obvious abuse of notation. The functions hp,ε lift naturally to functions
hq,ε : L(0)(δ, q, ε)→ L(−)(δ, q, ε) where again we have abused notation. For a given number

δ > 0, let δ̂ = δθ−1 where θ is the constant of Corollary 3.7. Let us write

Re
δ̂

= Re ∩ {y ∈ Rd : |y| ≤ δ̂}.

We see that σ(q)Re ⊂ L(0)(q, ε), σ(q)Rd−e ⊂ L(−)(q, ε), and σ(q)Re
δ̂
⊂ L(0)(δ, q, ε) for all

q ∈ Q.
Note that the solutions of the family (3.12)q of non-autonomous differential systems

determine a local skew-product flow T̃ ε on Q× Rd.
Consider the functions

ĥq,ε = σ(q)−1hq,εσ(q) : Re
δ̂
−→ Rd−e,

and set

M̂ε =
⋃
q∈Q

{(q, y) : y = u+ ĥq,ε(u), u ∈ Re
δ̂
}.

Then M̂ε is a locally invariant subset of Q×Rd with respect to the local flow T̃ ε. Moreover,
the functions ĥq,ε satisfy conditions analogous to those stated in parts (b) and (c) of

Proposition 3.5. In particular, the collection of maps {ĥq,ε : q ∈ Q} is F r in the sense of

Foster, and ĥq,ε(0) = ∂uĥq,ε(0) = 0. We abuse notation still again, and write δ for δ̂, hq,ε
for ĥq,ε, and Mε for M̂ε.

We will now discuss results concerning the asymptotic phase and the Pliss reduction
principle which make reference to the set Mε defined by the family (3.12)q. It will be clear
that these results imply corresponding statements which make reference to the set Mε as
originally defined for the family (3.5)p.

The preceding constructions allow us to follow Palmer’s arguments [Pa2] in a fairly
straightforward way. He works in the context of autonomous differential systems, however.
For the reader’s convenience, we sketch how his statements and proofs can be modified
so as to apply to our family of non-autonomous equations (3.12)q.

Choose δ > 0 so that |∂uhq,ε| ≤ 1 for all q ∈ Q, |u| ≤ δ, 0 6= ε ∈ I. Then |hq,ε(u)| ≤ |u|
whenever |u| ≤ δ. Fix 0 6= ε ∈ I. For each positive number ∆ ≤ δ, let ω(∆) be the
maximum, as q ranges over Q, of the upper bounds of the norms of the derivatives ∂ug1,
∂vg1, ∂ug2, ∂vg2, ∂uhq,ε in the set |u| ≤ ∆, |v| ≤ ∆. Then ω(∆) decreases to zero as
∆→ 0+.

If q ∈ Q, consider the linearization of (3.12)q:(
du
ds
dv
ds

)
=

(
a(Ts(q)) 0

0 b(Ts(q))

)(
u
v

)
. (3.13)q

It admits the fundamental matrix solution(
Φ

(a)
q (s) 0

0 Φ
(b)
q (s)

)
.

By Corollary 3.7, there is a constant k > 0, which does not depend on q ∈ Q and
0 6= ε ∈ I, such that

|Φ(a)
q (s)| ≤ keα|s|, s ∈ R,

|Φ(b)
q (s)| ≤ ke−βs, s ≥ 0.

12



The conditions above are analogous to those stated on [Pa2, p. 274]. Caution: our
numbers α resp. β play the roles of his β resp. α.

Lemma 3.8. Let 0 6= ε ∈ I, q ∈ Q. Write h(s, u) = hTs(q),ε(u), a(s) = a(Ts(q)), b(s) =
b(Ts(q)), gi(s, u, v) = gi(Ts(q), u, v), 1 ≤ i ≤ 2, s ∈ R, u ∈ Re, v ∈ Rd−e. Let γ be a real
number such that 0 < γ < β − α.

There is a positive number ∆ ≤ δ/2, which does not depend on the choice of ε and q,

such that the following statements are valid. Let S > 0, and let

(
u(s)
v(s)

)
be a solution

of (3.12)q which is defined on the interval [0, S]. Then the solution ũ(s) of the system

du

ds
= a(s)u+ g1(s, u, h(s, u)) (3.14)

with ũ(s) = u(s) is defined on [0, S]. Moreover, |ũ(s)| ≤ 2∆ and

|u(s)− ũ(s)|+ |v(s)− h(s, ũ(s))| ≤ 2k|v(0)− h(0, u(0))|e−(β−γ)s

for all 0 ≤ s ≤ S.

Proof. Let us first show that h(s, u) is a C1 function of (s, u). This is not immediately
obvious, because Proposition 3.5 states only that h is continuous in s. However, we will
see that the local invariance of Mε actually implies that h is C1 in (s, u). Fix ∆ < δ, and
let Re

∆ = {u ∈ Re : |u| ≤ ∆}.
We will show that the partial derivatives ∂sh, ∂uh exist at each point (s0, u0) ∈ R×Re

∆,
and are jointly continuous on R × Re

∆. First note that, by Proposition 3.5, the partial
Fréchet derivative ∂uh(s0, u0) is defined and continuous as (s0, u0) varies over R × Re

∆.
Moreover one has

h(s0, u0 + u)− h(s0, u0)− ∂uh(s0, u0)u = o(u)

where o(u)/|u| → 0 as u→ 0, uniformly in s0 ∈ R.
We show that the partial derivative ∂sh exists and is continuous on R× Re

∆. For this,

fix s0 ∈ R and u0 ∈ Re
∆. Let v0 = h(s0, u0), and let

(
ū(·)
v̄(·)

)
be the solution of (3.12)q

satisfying ū(s0) = u0, v̄(s0) = v0. We have

h(s0 +s, u0)−h(s0, u0) = h(s0 +s, u0)−h(s0 +s, ū(s0 +s))+h(s0 +s, ū(s0 +s))−h(s0, u0).

However h(s0+s, u0)−h(s0+s, ū(s0+s)) = −∂uh(s0+s, u0)(ū(s0+s)−u0)+o(ū(s0+s)−u0)
and h(s0 + s, ū(s0 + s)) − h(s0 − u0) = dv̄

ds
(s0) + o(s) where we use the invariance of Mε

to obtain the second relation. Letting s→ 0 we obtain

∂sh(s0, u0) =− ∂uh(s0, u0)[a(s0)u0 + g1(s0, u0, h(s0, u0))]

+ [b(s0)h(s0, u0) + g2(s0, u0, h(s0, u0))].
(*)

The explicit expression for ∂sh in (*) shows that it is continuous in its arguments.
Now we follow the arguments of [Pa2]. Choose ∆ > 0 such that ∆ ≤ δ/2 and

4k2ω(2∆) ≤ min{2γ, β − α − γ, 4k2}. Let

(
u(s)
v(s)

)
be the solution of (3.12)q referred

to in the statement of the present lemma. Write z(s) = v(s)− h(s, u(s)). Then

dz

ds
=b(s)z(s) + g2(s, u(s), v(s))− g2(s, u(s), h(s, u(s)))

− ∂uh(s, u(s))[g1(s, u(s), v(s))− g1(s, u(s), h(s, u(s)))]

where we used (*). One completes the proof if the lemma by mimicking the estimates in
[Pa2]; we omit the details. �

13



Fix numbers γ ∈ (0, β − α) and ∆ > 0 which satisfy the conditions of Lemma 3.8. We
retain the notation introduced in the statement of Lemma 3.8.

Corollary 3.9. Fix 0 6= ε ∈ I and q ∈ Q. Let

(
u(s)
v(s)

)
be a solution of (3.12)q such that

|u(s)| ≤ ∆, |v(s)| ≤ ∆ for all s ∈ R. Then v(s) = h(s, u(s)) for all s ∈ R, and hence(
u(s)
v(s)

)
∈Mε for all s ∈ R.

This corollary may be proved by adapting the reasoning of [Pa2, Proposition 1]. The
next statement is proved by appropriate modification of the arguments of [Pa2, Proposi-
tion 2].

Theorem 3.10 (Asymptotic phase). Let

(
u(s)
v(s)

)
be a solution of (3.12)q which is defined

and satisfies |u(s)| ≤ ∆, |v(s)| ≤ ∆ for all s ≥ 0. Then there exists a solution u∞(s)
of (3.14) such that

|u(s)− u∞(s)|+ |v(s)− h(s, u∞(s))| ≤ 2k|v(0)− h(0, u(0))|e−(β−γ)s

for s ≥ 0.

Observe that

(
u∞(s)

h(s, u∞(s))

)
∈Mε for all s ≥ 0. Thus the solution

(
u(s)
v(s)

)
“tracks” a

positive semiorbit in Mε as s→∞.
Finally we have

Theorem 3.11 (Pliss Reduction Principle). Let A ⊂ Q×Rd be a compact, T̃ ε-invariant

set such that, if (q, y) ∈ A and y =

(
u
v

)
, then |u| ≤ ∆/2 and |v| ≤ ∆/2. Then A ⊂Mε.

Moreover, if A is a Lyapunov attractor relative to Mε, then it is a Lyapunov attractor
relative to Q× Rd.

Proof. It follows immediately from Corollary 3.9 that A ⊂Mε.
We indicate how the second statement can be proved. Introduce the family of equations

du

ds
= a(Ts(q))u+ g1(Ts(q), u, hTs(q),ε(u)). (3.15)q

Let U = {u ∈ Re : |u| < δ}. The family (3.15)q gives rise to a local flow on Q × U . The
mapping i : Q×U →Mε : (q, u) 7→ (q, hq,ε(u)) is a diffeomorphism onto its image, which
maps trajectories of the local flow in Q×U onto trajectories of the local flow in Mε. Let
A0 ⊂ Q× U be the compact invariant subset which is the preimage of A with respect to
this diffeomorphism.

One now argues as in [Pa2, Proposition 3] to show that, if A0 is a Lyapunov attractor
relative to (the local flow on) Q×U , then it is a Lyapunov attractor relative to Q×Rd.
This clearly implies that the second statement of Theorem 3.11 is valid. �
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di Firenze, Via S. Marta 3, 50139 Firenze, Italy.

E-mail address, Russell Johnson: johnson@dsi.unifi.it
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