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Abstract

The spin–orbit splittingD0 � 13 meV calculated ab initio for theG1
8 valence band state of diamond differs from that

observed for acceptors�.2 meV� and exciton states (.7 meV). A full-zonek·p band structure, together with a Slater–Koster
attractive potential, is used to explain these differences and thus clarify the contradictory assignments of spin–orbit splittings
found in the literature for diamond.q 2000 Elsevier Science Ltd. All rights reserved.
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Contrary to the case of other tetrahedral semiconductors,
no generally accepted experimental information is available
for the spin–orbit splitting of theG1

250 valence states of
diamond. Ab initio band structure calculations yield the
valueD0 � 13 meV2 [1,2] making the only reported experi-
mental result of 6 meV [3]3 rather dubious. In this letter we
discuss the seemingly discrepant values of spin–orbit split-
tings found in the literature for excitons (7 meV, [4]), accep-
tor states (2 meV [5] see also Refs. [6,7]), and excitons
bound to them (12 meV [4]). We interpret these values by
means of a calculation of acceptor levels and exciton bind-
ing energies which uses a full-zonek·p band structure [8]
and a Slater–Koster potential [9]. We conclude that theD0

splitting of theG1
250 band states is indeed 13 meV while the

corresponding ground state of the boron acceptor has a split-
ting of only 2 meV, the reduction being due to angular
momentum quenching by the spread in wavevector induced

by the impurity potential. The exciton calculation confirms
that the measured splitting of the free exciton is 7 meV. We
found no obvious way of relating to spin–orbit coupling the
splitting of 12 meV observed for the exciton bound to
neutral acceptors [4,10].

The electronic states of acceptors in tetrahedral semicon-
ductors are usually calculated by solving four coupled linear
differential equations based on the 4× 4 G1

8 Kohn–Luttinger
effective mass Hamiltonian [11]. This method assumes that
the valence bands are parabolic for a givenk-direction and
neglects coupling to theG1

7 spin–orbit-split band, thus
yielding no information aboutG7-like spin–orbit-split
acceptor states.4 If D0 is larger than the binding energy of
the acceptor ground state,Ea

b; a splitting of this state into a
G8 quadruplet and aG7 doublet is expected (we designate
the energy splitting byDa

0�: Such splittings have been calcu-
lated for Si:B within a 6× 6 Luttinger–Kohn formalism,
treating theG1

7 bands by perturbation theory [12]. The
authors of Ref. [12] show thatDa

0 . 1=2D0 whenEa
b . D0:

In the case of the boron acceptor in diamond,Ea
b .

370 meV is much larger thanD0�.13 meV� and the 6× 6
Luttinger–Kohn Hamiltonian should break down. An exact
calculation using a screened Coulomb potential is expected
to be mathematically very complex and would possibly lack
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physical transparency. We have therefore chosen a simpler
Slater–Koster potential (i.e. a finite interactionV0 when the
hole and the impurity are in the cell, zero otherwise; it
corresponds to a constant potential ink-space). This poten-
tial has been successfully used to interpret deep donor levels
in III–V compounds [13,14].Ea

b is obtained by solving the
equation

1
V0
� Gr�Eb� �1�

whereGr is the real part of the Green function of the valence
states that have the desired symmetry (eitherG8 or G7). The
potentialV0 can be fixed so as to reproduce, using Eq. (1),
theEa

b measured for theG8 states. Taking the same value of

V0 for the G7 states, the splittingDa
0 � Eb�G8�2 Eb�G7� is

found, without adjustable parameters, providedGr is known.
We calculateGr(G8) andGr(G7) by a Hilbert transforma-

tion of the density of states obtained from the 30× 30 full-
zonek·p Hamiltonian including theG8

1, G8
2, G7

1 and G2
7

admixture coefficients given by thek·p wavefunctions. As
k·p parameters we used those found in Ref. [1] (based on the
fit to an ab initio calculation) with some minor modifica-
tions. The full set of parameters employed is displayed in
Table 1.

The total density of states obtained with the 30× 30 k·p
Hamiltonian is plotted in Fig. 1 together with an LDA pseu-
dopotential calculation using the experimental lattice para-
meter and the Ceperly–Alder parametrization for the
exchange-correlation term [15] (for more details see caption
in Fig. 1). Although these LDA results lack accuracy in the
energy position of the features because of the so-called “gap
problem”, the agreement between both calculations is
remarkably good.

The projected densities of statesNv�G8� and Nv�G7�
(related to the imaginary part of the Green functions through
Nv�G8� � 2p21Gi�G8� and Nv�G7� � 2p21Gi�G7�� are
calculated with the tetrahedron method using 3× 105 tetra-
hedra within the reduced Brillouin zone. The contribution of
each tetrahedron to theNv‘s is multiplied by the sum of the
k·p expansion coefficients of the wavefunctions that have
the appropriate symmetry (G8 or G7) and added up to obtain
the whole projected density of states vs. valence band
energy,v v. The Hilbert transform leading toGr�G8� and
Gr�G7� is then calculated numerically by integration over
the whole range ofv v.

Fig. 2 showsGr�G8� andGr�G7� calculated for the valence
bands of diamond as described above. The ordinate is

J. Serrano et al. / Solid State Communications 113 (2000) 411–414412

Table 1
Parameters used in thek·p Hamiltonian. They were taken from Ref.
[1] unless otherwise specified

(eV) (a.u.)

EG1v
1

223.00 P 0.538
EG1v

250
0.00 Q 0.780a

EG2c
15

7.30 R 0.690a

EG2c
20 l

15.30 P0 20.300a

EG2c
120

26.33 P00 0.076b

EG1c
1

24.00 P000 1.060a

EG2c
20u

31.23b Q0 20.614b

EG2c
250

32.49 R0 0.921b

D0 0.013 T 0.150a

D 00 0.012 T0 0.750b

a Modified from those in Ref. [1] so as to fit the LMTO band
structure corrected for the “gap problem”.

b Data rescaled from those of Si given in Ref. [8].

Fig. 1. Total density of valence states calculated for diamond with
the 30× 30 k·p Hamiltonian, and the LDA-pseudopotential techni-
que, using a Troullier–Martins pseudopotential [16] and a plane-
wave expansion with a cutoff energy of 70 Ry and a grid of 16×
16× 16 in reciprocal space.

Fig. 2. Real part of the Green function of the valence bands of
diamond (labelled 1/V0 on the basis of Eq. (1)) vs.Ea

b: The inset
represents a blow-up of the rectangle drawn around the binding
energy of the boron acceptor. It allows one to seeGr�G8� and
Gr�G7� separately and to determineDa

0 vs. Ea
b as illustrated by the

horizontal line in the inset (see also Fig. 3).



labelled 1/V0 and the abscissaEa
b; as corresponds to Eq. (1).

The area around the binding energy of the substitutional
boron acceptor is shown by the rectangle and corresponds
to V0 � 6 eV; a reasonable value for the Slater–Koster
potential in diamond. The inset displays a blowup of this
rectangle in whichGr�G8� andGr�G7� can be seen separately.
From this construction, and takingV0�G8� � V0�G7�; we find
the acceptor level splittingDa

0 . 3:9 meV: This value is
nearly twice as large as the measured one [5–7]. We
must, however, keep in mind thatDa

0 results from a

quenching of the band splittingD0 � 13 meV: This calcu-
lated quenching is 132 4� 9 meV while the experimental
one is 132 2� 11 meV: Looking at it this way, the agree-
ment between our simple calculation and the experimental
value is satisfactory. In order to illustrate the dependence of
Da

0 on Ea
b; we plot in Fig. 3 results obtained with the

construction described above in the 0–1 eV range. We
have added to this figure the value of 2 meV measured for
the B acceptor.

A spin–orbit splitting of 7 meV has been observed for the
indirect exciton by means of cathodoluminescence [4]. We
have estimated this splitting vs. exciton binding energy,Eexc

b

�Eexc
b . 80 meV in diamond), with a method similar to that

described above forEa
b; using instead of the valence band

energies all possible differences in energies between the
conduction and the valence bands. We must, however,
take into account the indirect nature of the exciton arising
from the fact that the lowest conduction band minima are
along the {100} directions, close to the X-points and the
corresponding optical transitions atT � 0 K must be aided
by phonon emission. Therefore we must shift the conduction
bands ink-space so as to bring one of theD minima tok � 0
before performing the calculation. This shift makes it neces-
sary to use a tetragonal instead of the cubic reduced Bril-
louin zone, thus increasing the number of required sampling
points ofk-space by a factor of 6. The “tetragonal” nature of
the indirect gap should also result in a small splitting of the
G1

8 valence band exciton which is neglected here (.1 meV
is obtained from the expressions in Ref. [17]).

Fig. 4 shows the projectedGr calculated for the exciton
using as an abscissa the energy difference to the lowest
interband gap, i.e. in the spirit of Eq. (1) the exciton binding
energyEexc

b : In order to simplify the numerically cumber-
some calculation, we have only included the six upper
valence bands and the six lowest conduction bands; we
have estimated this choice to be sufficient in view of the
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Fig. 3. Spin–orbit splittingD0
a of a substitutional acceptor in

diamond vs. binding energyEa
b calculated as described in the text.

The point represents the value measured for a B-acceptor [10].
While theory and experiment differ by a factor of two, agreement
becomes more satisfactory when looking at the data in terms of the
quenching of theG1

8 2 G1
7 band splitting (calculated quenching:

9 meV, measured: 11 meV, as indicated by the vertical arrow).

Fig. 4. Real part of the Green function of the exciton bands, corre-
sponding to the product of the�G1v

8 ; G1v
7 � andD1, of the valence and

conduction bands, respectively. The inset shows a blow-up of the
free exciton binding energy and allows to calculateDexc

0 as a func-
tion of Eexc

b (see horizontal line).

Fig. 5. Spin–orbit splitting of the free edge exciton of diamond vs.
binding energy,Eexc

b ; calculated as described in the text. The point
corresponds to the experimental value [4].



small measured value ofEexc
b (80 meV). The integral corre-

sponding to Eq. (1) was cut off at 45 eV. We used for the
admixture coefficients those of eitherG8 orG7 valence states
andD1 for the conduction bands. ThisD1 projector is the
sum of the coefficients associated with theG1v

1 ; G1c
1 ; and

G2c
15 �z�: Another possibility is to useD20 states (correspond-

ing toG2c
20 l ; G

2c
20u; G

1v
250 andG1c

250 ), but in this caseGr becomes
very small and the bound state, in the sense of Eq. (1),
appears above the indirect gap, i.e. becomes a band reso-
nance. We thus obtain, by this procedure, two excitons
corresponding to a product of�G1v

8 ; G1v
7 � and D1 states.

The spin–orbit splittingDexc
0 induced byD0 is found to be

.8.6 meV from Fig. 5, usingEexc
b � 80 meV: This is in

reasonable agreement with the experimental value of
7 meV.

In conclusion, we have performed a systematic calcula-
tion of the spin–orbit splittings of acceptors�Da

0� and indir-
ect excitons�Dexc

0 � in diamond, based on a full-zonek·p
band structure and a Slater–Koster potential. The calculated
values agree semiquantitatively with experimental ones,
especially when the comparison is performed forD0 2 Da

0

andD0 2 Dexc
0 : The rich fine structure of theD0 andD 00 lines

found for excitons bound to neutral boron [10] cannot be
understood within our model, although one of the observed
splittings, by about 2 meV, could be attributed toDa

0: The
splitting of 12 meV between all components of theD0 and
D 00 lines [4,10], despite being rather close to the spin–orbit
coupling value at the band edge, seems to defy the argu-
ments underlying the present approach (an even smaller
splitting would be expected, according to Fig. 5, due to
the larger sum of acceptor plus exciton binding energy). It
is therefore likely that other effects or interactions have to be
invoked for their explanation. Similar work for acceptors in
silicon will be reported elsewhere [18].
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