

Universidad deValladolid

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Mecánica

Simulación y Optimización de un vuelo comercial

Autor: Sánchez Diez, Mario

Tutor:

Reyes Serrano, Miriam Departamento de Ingeniería Energética y Fluidomecánica

Valladolid,

Diciembre de 2023

Universidad de Valladolid

RESUMEN

Ante la necesidad de limitar las emisiones contaminantes, el sector aeronáutico se encuentra en una búsqueda constante de mejora de la eficiencia operativa de aeronaves. Este trabajo se enfoca en la simulación y optimización de un vuelo con el objetivo de reducir el consumo de combustible y los costes asociados al mismo. Para ello se emplean herramientas de simulación para modelar el rendimiento del vuelo y, posteriormente, se implementan estrategias de optimización. Se utiliza un enfoque integral para maximizar la eficiencia y minimizar los costos operativos. Los resultados demuestran que esta metodología no solo contribuye a la sostenibilidad ambiental, sino que también genera ahorros económicos significativos para las compañías aéreas. Este enfoque integrado presenta una solución viable y eficaz en el contexto actual de la aviación.

PALABRAS CLAVE

Motores a reacción, turbofán, optimización, empuje, combustible

ABSTRACT

In response to the compelling need to limit pollutant emissions, the industrial sector is engaged in a continuous quest for enhancing the operational efficiency of aircraft. This study is centered on the simulation and optimization of flight dynamics with the explicit objective of reducing fuel consumption and associated costs.

The research leverages advanced simulation tools to rigorously model and replicate flight performance, followed by the strategic implementation of optimization methodologies. A comprehensive approach is adopted to both maximize operational efficiency and minimize associated costs. The results illustrate that this systematic methodology not only contributes to environmental sustainability but also generates substantial cost savings for airline entities. This approach presents a viable and efficient solution within the present aviation landscape.

KEYWORDS

Jet Engines, Turbofan, Optimization, Thrust, Specific Fuel Consumption

Universidad de Valladolid

ÍNDICE GENERAL

RES	SUMEN			III
PAI	LABRAS	S CLAVE		III
ABS	STRACI			IV
KEY	YWORD	S		IV
ÍNC	DICE GE	NERAL		V
ÍND	DICE DE	FIGURAS		. VII
ÍNC	DICE DE	TABLAS		X
SIM	BOLOG	SÍA Y NOMENCLATURA	A UTILIZADA	XI
1.		INTRODUCCIÓN Y (OBJETIVOS	1
	1.1.	ANTECEDENTES		1
	1.2.	OBJETIVOS		1
_	1.3.	ESTRUCTURA DEL TH	RABAJO	2
2.		MARCO TEORICO		3
	2.1.	CICLO DE BRAYTON.	(3
	2.2.	MOTORES A REACCIO		7
	2.3.	EL TURBOFAN Y EL T	URBORREACTOR	9
	2.4.	CONDICIONES DE DIS		15
	2.5.	CUNDICIONES FUERA	A DEL PUNIO DE DISENO	16
2	2.6.		STICAS DE LAS TURBUMAQUINAS	17
3.	0.1	METODOLOGIA DE	I RABAJU	
	3.1.	AEDSYS		
	3.2.	GASTUKB		22
		3.2.1.		
		3.2.2.		24
		3.2.3.		25
		3.2.4.		25
		3.2.5.		25
		3.2.6.	EL PUNTO DE DISENO DEL CICLO	26
		3.2.7.		28
		3.2./.1.	MISSION	28
	3.3.	FLIGHTAWARE	A T	28
4.	4 1	SIMULACIÓN INICL	AL	31
	4.1.	DETALLES DEL VUEL	0	31
	4.Z.	ELECCION DE LA AEF	ΟΙΝΑΥ Ε ΝΕΙ ΜΟΤΩΡ ΕΙ ΕCIDO ΕΝ Ι Α SIMILI ΑCIÓΝ	34
	4.3.	LOPELIFICACIONES L	Dimensiones Trent VWR 84	30
	4.4	4.5.1.		5/
	4.4.	REQUERIMIENTUS D	DESO EN VACÍO DE LA AEDONAVE	37 20
		4.4.1.		
		4.4.2.		59
	4 5	4.4.3. Εςτιμιο τεόριςο ο		41
	4.5.		ÁDEA DE LAS ALAS	47
		4.5.1.		47
		4.5.2. 4 F 2		48
		4.5.3.	ANGULO DE BARRIDO (SWEEP ANGLE)	49
		4.5.4.	COEFICIENTE DE SUSTENTACIÓN	51
		4.5.5.	COEFICIENTE DE RESTEINCIA AERODINAIVILA (LD) Y COEFICIENTE	
				52
		4.5.6.		54
4.6.		CALCULU DE LOS R	EQUERIMIENTOS DEL VUELO MEDIANTE AEDSYS	56
		4.6.1.	ESTUDIO DE LAS FASES DEL VUELO	62

Universidad de Valladolid

		4.6.2.	VARIACIÓN DE LA FRACCIÓN DEL PESO DURANTE EL VUELO	66
		4.6.3.	VARIACIÓN DEL DRAG DURANTE EL VUELO	67
		4.6.4.	EMPUJE REQUERIDO	68
	4.7.	SIMULACIÓN GASTU	RB 14	70
		4.7.1.	PUNTO DE DISEÑO	71
		4.7.2.	ESTUDIO DESPEGUE COMO PUNTO FUERA DEL DISEÑO	79
		4.7.3.	VUELO COMPLETO	83
5.		OPTIMIZACIÓN DE	L MOTOR	91
	5.1.	PRIMERA OPTIMIZA	CIÓN DEL TURBOFAN	91
		5.1.1.	OPTIMIZACIÓN DEL PUNTO DE DISEÑO	91
		5.1.2.	VUELO COMPLETO OPTIMIZACIÓN DEL MOTOR 1	94
	5.2.	SEGUNDA OPTIMIZA	CIÓN DEL TURBOFAN	95
		5.2.1.	OPTIMIZACIÓN PUNTO DISEÑO	95
		5.2.2.	OPTIMIZACIÓN VUELO COMPLETO	99
	5.3.	TERCERA OPTIMIZA	CIÓN DEL TURBOFAN	. 105
		5.3.1.	OPTIMIZACIÓN DEL PUNTO DE DISEÑO	113
		5.3.2.	CÁLCULO DEL VUELO COMPLETO	116
6.		COMPARACIÓN DE	RESULTADOS	. 123
7.		ESTUDIO DE VIABI	LIDAD ECONÓMICA	. 129
	7.1.	INTRODUCCIÓN		. 129
	7.2.	JERARQUÍA DEL PRO	YECTO Y EQUIPO DE TRABAJO	. 129
	7.3.	FASES DE DESARROI	.LO	. 130
	7.4.	ESTUDIO ECONÓMIC	0	. 132
		7.4.1.	COSTE POR TRABAJADOR Y HORAS ANUALES	132
		7.4.2.	CÁLCULO DE AMORTIZACIONES PARA EL EQUIPO INFORMÁTICO	133
		7.4.3.	COSTE DEL MATERIAL CONSUMIBLE	134
		7.4.4.	COSTES INDIRECTOS	134
		7.4.5.	HORAS DE PERSONAL ASIGNADAS A CADA FASE DEL PROYECTO	134
		7.4.6.	CÁLCULO DEL COSTE TOTAL	135
8.		CONCLUSIONES		. 137
RE	FEREN	ICIAS		. 141

ÍNDICE DE FIGURAS

Figura 1.	Esquema Ciclo de Brayton [1]	3
Figura 2.	Diagrama del Ciclo de Brayton ideal [1]	4
Figura 3.	Diagrama ciclo de Brayton real [1]	6
Figura 4.	Turboreactor flujo único [2]	10
Figura 5.	Turborreactores de doble flujo [2]	11
Figura 6.	Configuraciones turbofán [2]	12
Figura 7.	Curvas características del compresor [3]	18
Figura 8.	Curvas características de la turbina [3]	19
Figura 9.	Menú Princial AEDsys [5]	21
Figura 10.	Módulo Termodinámica básica Gasturb 14 [3]	22
Figura 11.	Módulo Diseño de motor Gasturb 14 [3]	23
Figura 12.	Módulo Fuera de diseño Gasturb 14	24
Figura 13.	Enfriamiento del aire purgado [3]	27
Figura 14.	Tecnología ADS-B [6]	29
Figura 15.	Trayecto vuelo [6]	31
Figura 16.	Datos del vuelo [6]	32
Figura 17.	Airbus A350-900 [7]	34
Figura 18.	Fases vuelo A350-900 EuroControl [10]	35
Figura 19.	Motor Rolls Royce Trent XWB-84 [11]	36
Figura 20.	Peso de los pasajeros EASA Lufthansa Consulting [13]	39
Figura 21.	Esquema de evacuación Airbus A350-900 EASA [12]	40
Figura 22.	Datos de pesos de equipajes facturados EASA Lufthansa Consulting [13]	40
Figura 23.	Etapas para un hacer un estudio Fuel Planning [14]	42
Figura 24.	Taxi Fuel en distintas aeronaves [15]	42
Figura 25.	Gráfica representativa del peso en el despegue [4]	46
Figura 26.	Ala del Airbus A350-900 [8]	47
Figura 27.	Relación de aspecto [16]	49
Figura 28.	Ángulo de barrido [16]	50
Figura 29.	CLmax para aviones de pasajeros [4]	51
Figura 30.	Coeficiente de resistencia aerodinámica mínimo en aviones de pasajeros [4]	52
Figura 31.	Coeficiente de resistencia aerodinámica [4]	53
Figura 32.	Theta break en función de la relación de compresión [4]	54
Figura 33.	Panel principal Software AEDsys [5]	56
Figura 34.	Datos de entrada motor Aedsys	56
Figura 35.	Fases de vuelo representadas en AEDsys	58
Figura 36.	Representación del punto de diseño escogido	58
Figura 37.	Punto de diseño de diferentes aeronaves [4]	59
Figura 38.	Datos de entrada aeronave AEDsys	60
Figura 39.	Modelo de peso en vacío aeronave	60
Figura 40.	Etapas del vuelo estudiadas con el Software AEDsys	61
Figura 41.	Datos de entrada en la fase de despegue	62
Figura 42.	Resultados aportados por AEDSys	65
Figura 43.	Gráfica análisis de β en el vuelo completo	66
Figura 44.	Gráfica análisis de β en el vuelo completo	68
Figura 45.	Interfaz principal de Gasturb y turbofán escogido [3]	71
Figura 46.	Módulo de configuración de punto de diseño [3]	71
Figura 47.	Datos introducidos en el sistema principal [3]	73

Universidad de Valladolid

Figura 48.	Resultados aportados por Gasturb en el punto de diseño [3]	74
Figura 49.	Diagrama H-S punto de diseño	76
Figura 50.	Diagrama P-V punto de diseño	77
Figura 51.	Esquema de las estaciones del turbofán	78
Figura 52.	Módulo utilizado en Gasturb para el cálculo en el punto de despegue	79
Figura 53.	Datos introducidos en el sistema principal en el punto de despegue	80
Figura 54.	Resultados aportados por Gasturb en el punto de despegue	80
Figura 55.	Curvas características del HPC en el despegue	82
Figura 56.	Curvas características del HPT en el despegue	82
Figura 57.	Datos introducidos para el cálculo del vuelo completo	84
Figura 58.	Resultados del vuelo completo	85
Figura 59.	Gráfica relación de compresión total en el vuelo completo	86
Figura 60.	Curvas características del HPC de todos los puntos estudiados del vuelo	87
Figura 61.	Zoom de las Curvas características del HPC de todos los puntos estudiados del vue	lo87
Figura 62.	Curvas características del HPT de todos los puntos estudiados del vuelo	88
Figura 63.	Zoom Curvas características del HPT de todos los puntos estudiados del vuelo	88
Figura 64.	Gráfica que representa el empuje frente al consumo en el vuelo completo	89
Figura 65.	Gráfica que representa el consumo frente al número de mach en el vuelo completo	90
Figura 66.	Gráfica que representa el empuje frente a la altura en el vuelo completo	90
Figura 67.	Variables de optimización	91
Figura 68.	Límites de las variables a estudiar	91
Figura 69.	Especificación del objetivo de la optimización	92
Figura 70.	Datos del sistema principal resultantes de la optimización	92
Figura 71.	Resultados aportados por Gasturb en el punto de diseño	93
Figura 72.	Resultados del vuelo completo	94
Figura 73.	Limites de empuje en varios puntos simultáneamente Optimización	96
Figura 74.	Resultado de la optimización	96
Figura 75.	Datos en el sistema principal en el punto de diseño optimizados	97
Figura 76.	Resultados en el punto de diseño optimizado	
Figura 77.	Resultados del vuelo completo tras la segunda optimización	
Figura 78.	Relación de compresión total en los puntos estudiados	.100
Figura 79.	Curvas características del HPC de todos los puntos estudiados del vuelo	.101
Figura 80.	Zoom Curvas características del HPC de todos los puntos estudiados del vuelo	101
Figura 81.	Curvas características del HPT de todos los puntos estudiados del vuelo	.102
Figura 82.	Zoom Curvas características del HPT de todos los puntos estudiados del vuelo	102
Figura 83.	Gráfica que representa el empuie frente al consumo en el vuelo completo	103
Figura 84.	Gráfica que representa el consumo frente al número de mach en el vuelo completo	103
Figura 85	Gráfica que representa el empuje frente a la altura en el vuelo completo	104
Figura 86	Fases del vuelo A350-1000 [10]	106
Figura 87	Mana nistas Adolfo Suarez Barajas (Adantada de [17])	107
Figura 88	Fases del vuelo a estudiar	108
Figura 89	Determinación del nuevo nunto de diseño	109
Figura 90	Berresentación de diferentes nuntos de diseño de varias aeronaves [4]	110
Figura 90.	Datos de antrada en el punto de desnegue	111
Figura 91.	Datos de entrada en el punto de diseño	111
Figura 92.	Resultados de la tercera ontimización	11/
Figura 04	Nesuitaus de la tertera optimizado	111
Figura 94.	r uno ue unseno opunnizado	115 115
Figura 95.	Resultados del nuevo punto de diseno	115 11 <i>6</i>
Figura 90.	Comparación del ampuio requerido y apertado entimización 2	117
rigula 97.	comparación del empuje requertos y aportado optimización 3	. 11/

Figura 98.	Gráfica que representa la relación de compresión total p3/p2 117
Figura 99.	Curvas características del HPC de todos los puntos estudiados del vuelo118
Figura 100.	ZoomCurvas características del HPC de todos los puntos estudiados del vuelo 118
Figura 101.	Curvas características del HPT de todos los puntos estudiados del vuelo119
Figura 102.	Zoom Curvas características del HPT de todos los puntos estudiados del vuelo 119
Figura 103.	Gráfica que representa el empuje frente al consumo en el vuelo completo120
Figura 104.	Gráfica del consumo frente al número de mach en el vuelo completo 120
Figura 105.	Gráfica que representa el empuje frente a la altura en el vuelo completo121
Figura 106.	Resultados del ahorro de combustible instantáneo en cada etapa123
Figura 107.	Resultados de la simulación inicial124
Figura 108.	Resultados del ahorro de combustible total optimización 3125
Figura 109.	Resultados de ahorro de combustible segunda optimización127
Figura 110.	Diagrama de Gantt proyecto132

ÍNDICE DE TABLAS

Tabla 1.	Etapas del vuelo	33
Tabla 2.	Parámetros del A350-900 aportados por Iberia [7]	35
Tabla 3.	Dimensiones generales del A350-900 [8]	35
Tabla 4.	Datos A350-900 [9]	35
Tabla 5.	Especificaciones Trent XWB-84 EASA Certificate Data Sheet [9]	37
Tabla 6.	Pesos máximos certificados EASA Certificate [12]	38
Tabla 7.	Consumo de combustible EASA Lufthansa [13]	45
Tabla 8.	Capacidad de tanques de combustible EASA [12]	45
Tabla 9.	Cáracteristicas de las alas del Airbus A350-900 [8]	47
Tabla 10.	Fases de ascenso desde los 0m hasta la primera etapa de crucero	63
Tabla 11.	Etapas de crucero a 9144m, 1973m, 11582m y 12192m	63
Tabla 12.	Fases de ascenso, desde 9144-10973m, 10973-11582m y 11582-12192m	64
Tabla 13.	Fases de descenso , desde los 12192-6561m, 6561-3589m y 3589-2400m	64
Tabla 14.	Fase de aproximación desde los 2400m hasta los 678m	65
Tabla 15.	Empuje requerido	69
Tabla 16.	Empuje requerido por motor	69
Tabla 17.	Condiciones ambientales en el punto de diseño [3]	72
Tabla 18.	Condiciones ambientales en el punto de despegue	79
Tabla 19.	Comparación empuje requerido y aportado en el vuelo completo inicial	85
Tabla 20.	Comparación empuje requerido y aportado en el vuelo completo optimización 1	95
Tabla 21.	Comparación empuje requerido y aportado en el vuelo completo optimización 2	100
Tabla 22.	Ahorro de TSFC optimización 2	104
Tabla 23.	Longitud de las pistas del Aeropuerto Madrid-Barajas	107
Tabla 24.	Longitud de las pistas del Aeropuerto Aeropuerto Ciudad de México	107
Tabla 25.	Empuje requerido en el punto de despegue	111
Tabla 26.	Resultados del estudio de AEDsys en el vuelo completo	112
Tabla 27.	Cálculo empuje no efectivo total	112
Tabla 28.	Cálculo empuje no efectivo total por cada motor	113
Tabla 29.	Ahorro de TSFC optimización 3	121
Tabla 30.	Resultados de ahorro optimización 3	126
Tabla 31.	Resultados de ahorro optimización 2	127
Tabla 32.	Comparación de los resultados de las dos optimizaciones	128
Tabla 33.	Horas efectivas anuales	132
Tabla 34.	Coste por hora de cada empleado	133
Tabla 35.	Días necesarios para completar el proyecto	133
Tabla 36.	Coste de los equipos informáticos	133
Tabla 37.	Coste del material consumible	134
Tabla 38.	Costes indirectos	134
Tabla 39.	Horas por fases de cada trabajador	135
	F	

SIMBOLOGÍA Y NOMENCLATURA UTILIZADA

Sé mantendrá la Nomenclatura y forma de nombrar cada variable original del libro Aircraft Engine Design

ACRÓNIMOS

AR	Aspect ratio (Relación de Aspecto)
BPR	Bypass ratio (Grado de Derivación)
НРС	High-Pressure Compressor (Compresor de Alta Presión)
HPT	High-Pressure Turbine (Turbina de Alta Presión)
IPC	Intermediate-Pressure Compressor(Compresor de Presión Intermedia)
IPT	Intermediate-Pressure Turbine (Turbina de Presión Intermedia)
LPC	Low-Pressure Compressor (Compresor de Baja Presión)
LPT	Low-Pressure Turbine (Turbina de Baja Presión)
MFC	Maximum Fuel Capacity [I]
MFW	Maximum Fuel Weight [kg]
MLW	Maximum Landing Weight [kg]
MTOW	Maximum Take-off Weight (Peso máximo al Despegar) [kg]
MZFW	Maximum Zero Fuel Weight (Peso Máximo sin Combustible) [kg]
OEW	Operative Empty Weight (Peso Operativo en Vacío) [kg]
OPR	Engine Overall Pressure Ratio (Relación de Compresión Total)
РО	Power Offtake (Toma de Potencia)[KW]
TR	Throttle Ratio (Grado de Carga)
T_{SL}	Thrust at Sea Level (Empuje a nivel del mar) [N]
TSFC	Thrust specific fuel consumption $\left[\frac{g}{(kN*s)}\right]$

SIMBOLOGÍA DEL ALFABETO LATINO

а	Velocidad del sonido [m/s]
C_D	Coeficiente de resistencia aerodinámica (coefficient of drag)
C _{Dmin}	Coeficiente de resistencia aerodinámica mínimo
C_{DR}	Coeficiente de resistencia aerodinámica adicional
C_L	Coeficiente de sustentación
Ε	Empuje instalado [N]
FN	Empuje no instalado [N]
g	Aceleración gravitatoria [$\frac{m}{s^2}$]
М	Número de Mach
W	Peso [kg]
W_E	Peso en vacío (Overall Empty Weight, OEW [kg]
W_F	Peso del combustible (Fuel Weight) [kg]
W_{PL}	Peso de la carga de pago (Payload Weight) [kg]
W_{TO}	Peso de la carga al despegue [kg]

SIMBOLOGÍA GRIEGA

- *θ* Static temperature ratio (cociente de temperatura estática)
- $heta_0$ Theta break
- β Fracción del peso con respecto al despegue.
- α Fracción de empuje con respecto al nivel del mar.
- ρ Densidad
- Π Relación de compresión

1. INTRODUCCIÓN Y OBJETIVOS

1.1. ANTECEDENTES

Este trabajo de fin de grado surge del interés personal en los motores de reacción y el sector aeroespacial. Durante el grado en ingeniería mecánica he adquirido un entendimiento fundamental de las máquinas térmicas desde una perspectiva física y mecánica. Sin embargo, mi motivación por adquirir más conocimientos por el sector aeroespacial y los motores de reacción me ha impulsado a explorar más allá de los aspectos puramente mecánicos, estudiando procesos termodinámicos, aerodinámicos, y muchos otros parámetros que definen el rendimiento y la eficiencia de estos motores.

1.2. OBJETIVOS

El objetivo fundamental de este Trabajo Fin de Grado consiste en lograr una simulación precisa de un vuelo que se asemeje con el mayor grado de precisión posible a la realidad. Para ello, se simula un vuelo real, eligiendo el correspondiente motor montado en la realidad, en este caso un Rolls Royce Trent WXB-84, se busca optimizar dicho motor con el objetivo de mejorar la eficiencia en el consumo de combustible, al mismo tiempo que se garantizan las especificaciones esenciales para el correcto desempeño del vuelo. Para conseguir este objetivo, se proponen los siguientes objetivos secundarios:

- Realizar un estudio teórico de los requerimientos del vuelo, tanto fuerzas aerodinámicas como de sustentación
- Utilizar una metodología basada en la comparación de resultados teóricos y experimentales.
- Realizar un estudio experimental de los requerimientos de empuje de vuelo experimentalmente usado AEDsys.
- Simular el motor elegido con el sofware Gasturb y representar su funcionamiento durante un vuelo completo.
- Optimizar los resultados obtenidos siguiendo diferentes estrategias para que cumplan los requerimientos necesarios.
- Comparar y analizar todas las simulaciones y optimizaciones realizadas para hallar la mejor configuración de vuelo.
- Analizar su viabilidad económica para una futura implantación.

1.3. ESTRUCTURA DEL TRABAJO

La memoria de este Trabajo de Fin de Grado se estructura de la siguiente forma:

- <u>INTRODUCCIÓN</u>: se presentan los antecedentes y los objetivos del proyecto, a su vez se explica brevemente la metodología seguida para completarlos
- <u>MARCO TEÓRICO</u>: En este capítulo se presenta la base teórica en la que se fundamentan los cálculos posteriores, tanto los resueltos por mí como los realizados por AEDsys y Gasturb 14. También se explican los parámetros más importante a la hora de realizar un estudio aerodinámico y de sustentación, y las variables que más influyen en un vuelo.
- <u>METODOLOGÍA DEL TRABAJO</u>: Se introducen los diferentes software que se utilizan en los siguientes capítulos, a su vez se realiza una breve explicación del alcance de los programas, y de la estructura a seguir para conseguir un resultado del estudio satisfactorio.
- <u>SIMULACIÓN:</u> en este capítulo se realiza en primer lugar un estudio teórico de los requerimientos de vuelo, para posteriormente compararlo con un estudio de los requerimientos de empuje del vuelo realizado mediante AEDsys, y posteriormente se simula el motor a reacción escogido con GAsturb 14, tanto en puntos de especial importancia como el punto de diseño o el despegue, como en puntos del vuelo completo.
- <u>OPTIMIZACIÓN</u>: después de haber completado satisfactoriamente la simulación inicial, se realiza una estrategia de optimización basada en diferentes iteraciones donde se busca reducir el consumo de combustible
- <u>COMPARACIÓN DE RESULTADOS</u>: se presentan todos los resultados obtenidos para poder analizarlos en conjunto y poder hallar las conclusiones pertinentes. Se decide que estrategia de optimización es la más eficaz y se analiza el proceso seguido
- <u>CONCLUSIONES:</u> en este capítulo se hace una breve explicación de los resultados obtenidos y de cómo se acercan a los objetivos marcados
- <u>ESTUDIO DE VIABILIDAD ECONÓMICA</u>: en este capítulo se cuantifican todos los factores económicos asociados al proyecto, tanto horas empleadas por el personal a cargo del proyecto como costes asociados a recursos.

2. MARCO TEÓRICO

En este capítulo se detalla toda la base teórica en la que se fundamenta el estudio, de modo que ayude a la comprensión algunos términos técnicos del sector aernaútico, y se entienda la simulación correctamente.

2.1. CICLO DE BRAYTON

El ciclo empleado en las turbinas de gas es el conocido ciclo Brayton de aire estándar, hay dos tipos de ciclo de Brayton, el ideal y el real.

En el estudio de turbinas de gas abiertas se realiza una idealización que se basa dos suposiciones:

- La primera es que el fluido de trabajo de la turbina es aire, y además se supone como gas ideal.
- La segunda consiste en que la generación de calor necesario para la combustión interna se logra mediante la transferencia de calor desde una fuente externa

El ciclo Brayton cumple con las dos suposiciones mencionadas previamente. Además, se asume que los productos liberados al entorno interactúan con el medio de tal manera que pueden regresar al mismo estado que el aire ingresado al compresor. Esta suposición permite considerar que el aire sigue un ciclo termodinámico, simplificando el proceso al considerar que los gases que salen de la turbina pasan por un intercambiador de calor con el ambiente y regresan al compresor en el mismo estado que si fueran aire exterior.

En la figura 1 se presenta un esquema de este ciclo.

Figura 1. Esquema Ciclo de Brayton [1]

Si se ignoran las irreversibilidades que se producen durante la circulación del aire en el ciclo de Brayton, no se tendrán en cuenta cualquier pérdida de presión o transferencia de calor al ambiente. En ausencia de estos eventos, la presión del aire se mantiene constante en los intercambiadores de calor y no hay cambio de entropía en la turbina y el compresor, lo que implica que estos procesos serán isoentrópicos. De esta manera, se considera el ciclo de Brayton ideal, cuyos diagramas p-v (presión-volumen) y T-s (temperatura-entropía) se representan en la figura 2.

Figura 2. Diagrama del Ciclo de Brayton ideal [1]

Las diferentes etapas del ciclo de Brayton se describen de la siguiente manera:

1-2: Durante esta etapa, se produce una compresión isoentrópica en el compresor. Esta compresión se considera adiabática, asumiendo que no hay transferencia de calor con el entorno.

2-3: En esta fase, se lleva a cabo una absorción de calor isóbara desde una fuente externa hacia el fluido de trabajo, en este caso aire. Esta transferencia de calor se realiza manteniendo la presión constante.

3-4: En esta etapa ocurre una expansión isoentrópica en la turbina, que también se considera adiabática. Durante esta expansión, el aire realiza trabajo sobre la turbina.

4-1: En la última fase, se produce una cesión de calor isóbara del fluido de trabajo (aire) al ambiente. Esta transferencia de calor permite que el aire regrese a su estado inicial, cerrando así el ciclo termodinámico.

Es importante resaltar que las áreas bajo las curvas de los diagramas p-v y T-s representan, respectivamente, el trabajo y el calor por unidad de masa.

Al considerar que tanto la turbina como el compresor funcionan de manera adiabática, y al aplicar balances de masa y energía en cada volumen de control estacionario, podemos obtener las principales transferencias de energía.

$$\dot{W}_{turbina} = \dot{m}(h_3 - h_4) \qquad \qquad Ec \ (1.1)$$

$$\dot{W}_{compresor} = \dot{m}(h_2 - h_1) \qquad \qquad Ec \ (1.2)$$

$$\dot{Q}_{combustor} = \dot{m}(h_3 - h_2) \qquad \qquad Ec \ (1.3)$$

$$\dot{Q}_{intercambiador} = \dot{m}(h_4 - h_1)$$
 Ec (1.4)

El análisis del ciclo de Brayton ideal proporciona conclusiones relevantes que se aplican a las turbinas de gas reales. Una de estas conclusiones es que a medida que aumenta la relación de presiones en el compresor, también se incrementa el rendimiento térmico del ciclo. Al examinar los diagramas T-s (temperatura-entropía) y p-v (presión-volumen), se puede observar que los cuatro procesos del ciclo Brayton se llevan a cabo en dispositivos de flujo estacionario, lo cual implica que deben ser analizados como tales. En situaciones en las que los cambios en las energías cinética y potencial son insignificantes, el balance de energía para un proceso de flujo estacionario puede expresarse, por unidad de masa, de la siguiente manera:

$$(q_{entrada} - q_{salida}) + (w_{entrada} - w_{salida}) = h_{salida} - h_{entrada} \qquad Ec (1.5)$$

Además, se conoce que:

$$h = c_p * T \qquad Ec (1.6)$$

Por tanto, la transferencia de calor hacia (entrada) y desde el fluido(salida) :

$$q_{entrada} = h_3 - h_2 = c_p * (T_3 - T_2) \qquad Ec (1.7)$$

$$q_{salida} = h_4 - h_1 = c_p * (T_4 - T_1) \qquad Ec (1.8)$$

El rendimiento térmico del ciclo de Brayton según las suposiciones aire-estándar descritas previamente es:

$$\eta = \frac{w_{neto}}{q_{entrada}} = 1 - \frac{q_{salida}}{q_{entrada}} \qquad Ec \ (1.9)$$

Universidad de Valladolid

2.1.1. IRREVERSIBILIDADES EN EL CICLO.

Ahora si se desea analizar un ciclo real en una turbina de gas, se puede observar que, debido a las irreversibilidades presentes en la turbina y el compresor, el aire experimenta un incremento en la entropía específica en ambos componentes. Además, se producen pérdidas de carga en los intercambiadores de calor cuando el fluido de trabajo atraviese dichos componentes.

No obstante, para simplificar el análisis, se omitirán las pérdidas debido a la transferencia de calor en los intercambiadores, y se considerará que las caídas de presión por fricción (pérdidas de carga) son insignificantes y, por lo tanto, no serán tomadas en cuenta.

Por lo tanto, los rendimientos isoentrópicos de estos componentes serán:

$$\eta_{turbina} = \frac{h_3 - h_4}{h_3 - h_{4s}} \qquad Ec \ (1.10)$$

$$\eta_{compresor} = \frac{h_{2s} - h_1}{h_2 - h_1} \qquad \qquad Ec \ (1.11)$$

El efecto de las irreversibilidades en el compresor y en la turbina en el diagrama T-s se pueden ver en la figura 3.

Figura 3. Diagrama ciclo de Brayton real [1]

2.2. MOTORES A REACCIÓN

Un motor a reacción o motor de propulsión a chorro, es un tipo de motor que genera empuje mediante la expulsión de un chorro de gases a alta velocidad hacia atrás, de acuerdo con el principio de la tercera ley de Newton.

En este tipo de motor, el aire es aspirado y comprimido por un compresor, luego se le inyecta combustible y se produce la combustión en una cámara de combustión. Los gases resultantes de la combustión son expulsados a alta velocidad a través de una tobera, generando así un empuje que impulsa el vehículo hacia adelante.

Los motores a reacción en el campo de la aviación, se utilizan en aviones de reacción, cohetes y otros vehículos que requieren un alto rendimiento y velocidad.

Hay diferentes tipos de motores de reacción usados actualmente, los turborreactores, turbofanes y turbohélices son motores de aviación que utilizan el aire como combustible.

Los cohetes llevan tanto el combustible como el comburente almacenados en el depósito, no necesitan aire exterior para que se produzca la combustión, por lo que pueden funcionar donde no haya atmósfera, en cambio los aerorreactores toman aire del exterior mediante una toma dinámica.

- Los <u>cohetes</u> son propulsores de alta velocidad que se basan en la reacción química de un combustible para generar energía, estos pueden usarse para transportar cargas pesadas a grandes distancias.
- Un <u>turborreactor</u> es un motor de combustión interna que utiliza una turbina para impulsar un compresor. Este tipo de motores producen el empuje necesario a través de la quema de combustible en una cámara de combustión, lo que genera gases a presiones y velocidades elevadas. Esta combustión hace que el aire entrante, se comprima en la compresora, posteriormente se combine con el combustible y queme en la cámara de combustión, para finalmente generar empuje.
- Los <u>turbofanes</u> son un tipo de motores que están basados en los principios de los turboreactores. El aire entra en el motor a través de una compuerta y se dirige hacia la compresora, donde se comprime y aumenta su velocidad. Esto aumenta la cantidad de oxígeno disponible para la combustión. El combustible se mezcla con el aire comprimido antes. Los turbofanes son especialmente útiles para los aviones comerciales debido a sus altos niveles de eficiencia. Esta alta eficiencia se debe a su diseño, el cual permite que parte del aire que entra en la compresora se desvíe antes de mezclarse con el combustible y se salga por una tobera externa, reduciendo así el calor, ruido

y consumo de combustible que genera el motor. Esto hace que los turbofanes sean ideales para los aviones comerciales, ya que les permite reducir los costos operativos.

- Un <u>turbohélice</u> es un motor de aviación que combina elementos de los turborreactores y de los turbofanes. Estos motores utilizan un rotor para impulsar una compresora, la cual aumentará la presión y velocidad del aire que entra en el motor. El combustible se mezcla con el aire comprimido antes de pasar a la cámara de combustión, donde quema y genera calor. Esto hace que los gases de escape salgan a velocidades muy altas, lo que genera un empuje que se aprovecha para mover el avión. Además, el sistema de paletas también ayuda a incrementar la eficiencia del motor al mezclar mejor el aire y el combustible.
- Los turborreactores utilizan una turbina para hacer girar el compresor, mientras que los turbofanes y turbohélices usan un sistema de álabes o "rotores" para impulsar el compresor. También hay diferencias entre la forma en que los distintos motores mezclan el aire con el combustible; los turborreactores utilizan inyectores para lograr esto, mientras que los turbofanes y turbohélices mezclan el aire con el combustible mediante la presión que genera el compresor. Además, los turbohélices también usan un rotor para impulsar el compresor.
- Los <u>pulsoreactores</u> son sistemas mecánicos que se utilizan para almacenar y devolver energía mecánica, generalmente en motores o alas. Es importante destacar que un pulsorreactor es más eficiente a velocidades supersónicas. Este tipo de motor se ha utilizado en aeronaves experimentales y misiles, ya que no es eficiente a velocidades más bajas. En vuelo, a medida que la aeronave acelera, el rendimiento del pulsorreactor mejora. Sin embargo, no es apto para despegues o aterrizajes, ya que no proporciona suficiente empuje a velocidades más bajas. Por esta razón, a menudo se utilizan en combinación con otros tipos de motores en aeronaves más complejas
- Los <u>estatoreactores</u> son dispositivos eléctricos que almacenan energía eléctrica y la devuelven a un circuito eléctrico cerrado. La principal diferencia entre ellos es que los pulsorreactores se utilizan para almacenar energía mecánica, mientras que los estatorreactores se utilizan para almacenar energía eléctrica.

2.3. EL TURBOFAN Y EL TURBORREACTOR

Un turbofán es un tipo de motor de turbina de gas que se utiliza en aviones de pasajeros y militares.

El diseño original del turbofán surgió con la intención de optimizar la eficiencia propulsiva del motor a reacción mediante la reducción de la velocidad media del flujo.

Como se ha explicado anteriormente los turbofanes se basan en el principio de los turborreactores, se explicará primero el turborreactor de flujo único para comprender el funcionamiento. El principio fundamental del motor de flujo único en un sistema de reacción es convertir la energía del combustible y el aire en energía cinética del chorro de gases que atraviesa el motor. Este tipo de motor de reacción utiliza la energía cinética del flujo de gases de escape para generar empuje y propulsar el avión hacia adelante.

El funcionamiento básico de un turbofán se basa en la compresión, combustión y expansión del aire y combustible. El aire ingresa al motor a través del compresor, donde se comprime y se eleva su temperatura. Luego, el aire se mezcla con el combustible en la cámara de combustión y se enciende para generar una explosión controlada a partir de los gases. Esta explosión de gases calientes se expande a través de la turbina, que a su vez impulsa el compresor para mantener el ciclo de aire y combustible.

La característica distintiva del turbofán es la presencia de una sección adicional de ventilador en la parte frontal del motor. Este ventilador toma una parte del aire comprimido y lo dirige hacia la parte externa del motor, creando un chorro de aire frío que genera un empuje adicional. Mientras tanto, otra parte del aire sigue su camino hacia la cámara de combustión para que ocurra la combustión y posteriormente la expansión.

La proporción de flujo de aire que pasa a través del núcleo del motor, que sería el grupo de componentes que constituyen el compresor, la cámara de combustión y la turbina en comparación al flujo que pasa por la sección del ventilador se conoce como relación de derivación (Bypass ratio). Los motores turbofán tienen una relación de derivación alta, lo que les permite ser más eficientes y silenciosos durante las velocidades de crucero en aviones comerciales.

Para comprender correctamente el funcionamiento del turbofán se explicará primero el funcionamiento del turborreactor

2.3.1. PRINCIPIO DE FUNCIONAMIENTO DEL TURBORREACTOR DE 1 FLUJO

Figura 4. Turboreactor flujo único [2]

El funcionamiento de un motor de reacción se puede ver en la figura 4, ocurre de la siguiente manera:

- El proceso comienza con la entrada de aire atmosférico al motor. Este aire se comprime en la entrada del motor antes de ingresar a la cámara de combustión

- El compresor, impulsado por la turbina a través de ejes internos, comprime el aire entrante y aumenta la presión y la temperatura del aire

- Después ocurre la combustión, donde el aire comprimido se mezcla con combustible y se quema en la cámara de combustión. Esta combustión genera una gran cantidad de gases calientes de alta presión.

- La siguiente etapa es la expansión de los gases, donde los gases calientes y de alta presión resultantes de la combustión se expanden a través de la tobera de la turbina.

La expansión de los gases impulsa las palas de la turbina, conectadas al mismo eje que el compresor, también extrae el trabajo necesario para hacer funcionar el compresor y los accesorios del motor y la aeronave conectados mecánicamente al motor.

- Después se genera el empuje, La energía cinética generada por la expansión de los gases a través de la turbina se traduce en movimiento rotativo.

Este movimiento se utiliza para alimentar el compresor en el frente del motor a través del eje conectado.

-Por último ocurre el escape de los gases: después de pasar por la turbina, los gases de escape se expulsan a alta velocidad a través de la tobera de escape.

Esta expulsión a alta velocidad crea un chorro de gases a reacción, proporcionando el empuje necesario para propulsar la aeronave. El incremento en la cantidad de movimiento de los gases de escape en comparación con el aire que ingresó al motor es lo que genera la fuerza de empuje que impulsa al avión.

2.3.2. TURBORREACTOR DE DOBLE FLUJO

En un turborreactor de doble flujo, se implementa un diseño de doble circuito, que consta de un circuito de alta presión y otro de baja presión, donde cada circuito tiene su propio compresor, cámara de combustión y turbina.

Al tener dos circuitos, el motor puede adaptarse mejor a diferentes fases del vuelo, lo que resulta en un menor consumo de combustible. A su vez, la configuración de doble flujo puede proporcionar un mayor empuje en comparación con un turborreactor de un solo flujo en ciertas condiciones de vuelo.

La separación de los circuitos también permite optimizar la eficiencia del motor en una gama más amplia de velocidades y condiciones de vuelo. El circuito de baja presión suele encargarse de la mayor parte del flujo de aire, proporcionando eficiencia a velocidades de crucero.

Figura 5. Turborreactores de doble flujo [2]

2.3.3. GENERALIDADES DEL TURBOFAN

Las especificaciones técnicas de un motor turbofán abarcan una eficiencia térmica elevada, una relación destacada entre empuje y peso, un consumo de combustible reducido y niveles de ruido mínimos. Además, son capaces de generar un empuje constante a lo largo de extensos lapsos temporales, lo que los convierte en una opción idónea para su implementación en aviones comerciales de gran alcance.

Existen diversas configuraciones según los ejes que tenga, esto se puede apreciar en la Figura 6.

Figura 6. Configuraciones turbofán [2]

En un turbofán de doble eje, el motor está compuesto por dos ejes principales: el eje de baja presión (LP) y el eje de alta presión (HP). Cada uno de estos ejes tiene su propio conjunto de componentes. El eje de baja presión generalmente incluye la fan y, en algunos casos, una etapa de compresor de baja presión. El eje de alta presión, por otro lado, comprende el compresor de alta presión, la cámara de combustión y la turbina de alta presión. Este diseño permite una mayor flexibilidad en el ajuste independiente de las velocidades de rotación de cada eje, brindando eficiencia en diferentes regímenes de operación.

En cambio, el turbofán de triple eje agrega un tercer eje, conocido como el eje de presión intermedia, esta sería la anteriormente explicada etapa (IP). En este caso, el eje de baja presión (LP) incluye solo el fan o ventilador, mientras que el compresor de baja presión y la turbina de baja presión se sitúan en el eje de media presión. El eje de alta presión (HP) sigue siendo responsable del compresor de alta presión, la cámara de combustión y la turbina de alta presión. Esta configuración de tres ejes brinda aún más flexibilidad en la operación del motor y permite un mejor ajuste de las velocidades de rotación en cada etapa, optimizando así el rendimiento en una variedad de condiciones de vuelo.

Algunos de los beneficios de una configuración de triple eje son:

- Eficiencia: La configuración de triple eje permite un ajuste más preciso de las velocidades de rotación, lo que se traduce en una mayor eficiencia en diferentes fases del vuelo.
- Flexibilidad Operativa: Los motores de triple eje son más adaptables a cambios en las condiciones de vuelo, lo que los hace ideales para aeronaves que experimentan una amplia gama de regímenes operativos, como despegue, ascenso, crucero y aterrizaje.
- Reducción de Ruido y Vibración: La distribución de componentes en múltiples ejes puede ayudar a reducir el ruido y la vibración, mejorando así la comodidad del vuelo.

2.3.4. COMPONENTES DE UN TURBOFAN

Un turbofán está compuesto de diferentes componentes

- <u>TOMA DINÁMICA O ADMISIÓN</u>: El conducto de admisión en un turbofán desempeña un papel crucial en la eficiencia del motor. Su función principal es canalizar y comprimir grandes cantidades de aire atmosférico, esencial para el proceso de combustión. Además, contribuye a la reducción de velocidad y mejora del rendimiento al desviar parte del flujo de aire hacia el bypass.
- <u>FAN O VENTILADOR</u>: el ventilador o fan en un motor turbofán es una componente esencial que desplaza grandes volúmenes de aire. Situado en la parte frontal del motor, el fan es responsable de generar un flujo de aire adicional, aparte del que pasa por el núcleo del motor. Este aire extra se dirige alrededor del núcleo, contribuyendo al impulso total del motor. La presión generada por el fan también facilita la compresión en las etapas posteriores del motor. En conjunto, el diseño del fan en un turbofán mejora significativamente la eficiencia y la propulsión del motor, siendo fundamental para su rendimiento.
- <u>COMPRESOR</u>: El compresor en un motor turbofán es un componente clave encargado de aumentar la presión del aire antes de ingresar al área de combustión. Se compone de múltiples etapas de palas rotativas y estacionarias que comprimen progresivamente el aire. La primera etapa, llamada compresor de baja presión (LPC), comprime el aire inicialmente, luego el compresor de alta presión (HPC) intensifica aún más esa presión. Este proceso asegura una mezcla adecuada de combustible y aire para una combustión eficiente.

La eficacia del compresor es esencial para el rendimiento general del motor. Un compresor eficiente garantiza una mayor relación de compresión, lo que resulta en una mayor eficiencia termodinámica y un mejor rendimiento del motor. Además, el diseño del compresor también influye en la capacidad del motor para manejar variaciones de carga y mantener una operación estable en diversas condiciones de vuelo.

Los compresores en los motores turbofán pueden ser de diferentes tipos, siendo los más comunes el compresor axial y el compresor centrífugo (o radial).

- Compresor Axial: Este diseño utiliza una serie de etapas de palas montadas en un eje común. Cada etapa comprime el aire de forma incremental a medida que pasa a través de las palas. Es eficiente y se utiliza comúnmente en motores de aviación de alta velocidad.
- Compresor Centrífugo o Radial: En este tipo, el aire es comprimido en una etapa centrífuga mediante un impulsor que gira. Aunque no es tan eficiente como el axial, es útil en aplicaciones donde se necesita menor velocidad y mayor presión, como en motores más pequeños.

La elección entre estos tipos depende de varios factores, como el tamaño del motor, la velocidad requerida y las condiciones operativas específicas. En motores más grandes y de alta velocidad, como los utilizados en aviones comerciales, es común encontrar compresores axiales debido a su eficiencia en condiciones de vuelo de crucero. En cambio, los compresores centrífugos son más adecuados para aplicaciones más pequeñas, como motores de aviación general o turbinas de helicópteros.

 <u>CÁMARA DE COMBUSTIÓN:</u> La cámara de combustión en un turbofán es un componente crucial donde tiene lugar la mezcla y la ignición del combustible con el aire comprimido. Aquí, el aire previamente comprimido en el compresor se mezcla con el combustible y se enciende para generar una expansión de alta presión y temperatura.

Esta expansión de gases calientes impulsa las turbinas, proporcionando la energía necesaria para mantener el ciclo del motor. La eficiencia de la cámara de combustión es esencial para el rendimiento general del motor, buscando un equilibrio entre la completa combustión del combustible y la minimización de emisiones no deseadas.

El diseño de la cámara de combustión varía según el tipo de motor y su aplicación específica, pero en general, se enfoca en maximizar la eficiencia térmica y minimizar las emisiones contaminantes. La tecnología moderna

busca constantemente mejoras en la eficiencia y la sostenibilidad ambiental de esta fase crucial en el ciclo del turbofán.

 <u>TURBINA</u>: La turbina en un turbofán es un componente fundamental que aprovecha la expansión de los gases calientes generados en la cámara de combustión. Está conectada al mismo eje que el compresor y, a medida que los gases de alta temperatura fluyen sobre sus palas, impulsa la rotación de la turbina. La energía mecánica generada por la turbina se utiliza para accionar tanto el compresor como, en muchos casos, el ventilador delantero. Este proceso convierte la energía térmica liberada durante la combustión en trabajo mecánico que impulsa el ciclo del motor.

Existen dos tipos principales de turbinas:

- o las de flujo axial
- las de flujo radial.
- <u>TOBERA Y MEZCLADOR DE FLUJOS</u>: la tobera en un turbofán es un componente crucial que desempeña un papel fundamental en la aceleración y expansión de los gases de escape generados después de la combustión. Ubicada en la parte posterior del motor, la tobera actúa como una boquilla que canaliza los gases a alta velocidad, proporcionando el impulso final para la propulsión del avión.

La forma y el diseño de la tobera son esenciales para maximizar la eficiencia del motor. Al acelerar los gases a través de la tobera a velocidades supersónicas, se logra una mayor velocidad de salida, lo que contribuye a un rendimiento más eficiente del turbofán.

Además, algunas toberas de motores modernos tienen capacidades de vectorización de empuje, lo que significa que pueden dirigir el chorro de gases de escape en diferentes direcciones. Esto proporciona una mayor maniobrabilidad a las aeronaves, especialmente en situaciones de vuelo avanzadas.

2.4. CONDICIONES DE DISEÑO

El punto de diseño, también conocido como **condiciones de diseño o funcionamiento**, es un conjunto de especificaciones y parámetros establecidos para un motor de reacción que se consideran **óptimos** para su funcionamiento. Estas condiciones son el resultado de un proceso de diseño detallado y tienen como objetivo maximizar la eficiencia, el rendimiento y la seguridad del motor.

Las condiciones de diseño típicamente incluyen la temperatura y la presión del aire que entra en el motor, la velocidad de rotación de los componentes, la relación de

compresión y el flujo de combustible y aire en la cámara de combustión. Estos parámetros se establecen en función de las necesidades específicas del motor, como la potencia requerida, la altitud de operación, la velocidad de vuelo, la duración del vuelo y el tipo de combustible utilizado.

La elección del punto de diseño implica definir la geometría de la turbina de gas y sus mapas característicos de compresor y turbina.

Aunque el punto de diseño será un punto en el que la turbina operará en condiciones óptimas, no necesariamente se encontrará en el punto de máximo rendimiento de compresor y turbina. Sin embargo, estará muy cerca de ellos. Se busca un equilibrio y se intenta **maximizar el tiempo** en que el motor opera en el punto de diseño o cerca de él. Algunos de los parámetros más importantes para definir una turbina en su punto de diseño son la potencia neta generada en el eje, la potencia específica, el consumo específico de combustible, el rendimiento térmico, la tasa de calor, la temperatura de los gases de escape o el caudal de gases de escape.

2.5. CONDICIONES FUERA DEL PUNTO DE DISEÑO

Como se ha desarrollado previamente, el diseño de un motor de reacción se basa en una serie de especificaciones y límites establecidos por el fabricante para garantizar un rendimiento eficiente y seguro en condiciones de funcionamiento típicas conocidos como el punto de diseño del motor. Sin embargo, en situaciones reales de operación, es posible que los motores se encuentren con condiciones que se desvían de este punto de diseño, situaciones en las que el funcionamiento del motor se encuentra fuera de los parámetros óptimos para los cuales fue diseñado.

Estas condiciones pueden surgir debido a diversos factores, como cambios en la altitud, la temperatura ambiente, la velocidad del aire, la presión atmosférica, entre otros. Una condición fuera del punto de diseño puede ocurrir cuando un avión está operando a una altitud más alta de lo previsto inicialmente para el diseño del motor. En altitudes elevadas, la densidad del aire disminuye, lo que afecta la cantidad de oxígeno disponible para la combustión y, por lo tanto, el rendimiento del motor. Del mismo modo, las temperaturas ambientales extremas, tanto altas como bajas, pueden afectar el rendimiento del motor y su eficiencia.

Cuando un motor opera fuera del punto de diseño, puede haber implicaciones en aspectos como la eficiencia del combustible, la potencia generada, la relación de empuje a peso y el rendimiento general de la aeronave. Los fabricantes de motores y los operadores de aeronaves deben tener en cuenta estas condiciones fuera del punto de diseño y tomar medidas adecuadas para mitigar sus efectos, como ajustar la configuración del motor, controlar la mezcla de combustible y aire, o incluso limitar la operación en ciertos rangos de condiciones desfavorables.

2.6. CURVAS CARACTERÍSTICAS DE LAS TURBOMÁQUINAS

Las curvas características de las turbomáquinas térmicas, como las turbinas y los compresores, son representaciones gráficas que describen el rendimiento de estas máquinas en relación con diferentes parámetros operativos. Estas curvas son fundamentales para comprender y analizar el comportamiento de las turbomáquinas y optimizar su funcionamiento.

Las turbomáquinas térmicas, como las turbinas y los compresores, son dispositivos que convierten la energía térmica del fluido en energía mecánica o viceversa. A continuación, se explica el significado y la importancia de las curvas características de la turbina y el compresor:

• Curva característica del compresor: La curva del compresor muestra la relación entre la relación de compresión (presión de salida dividida por la presión de entrada) y el caudal de flujo o gasto a través del compresor. Esta curva describe el rendimiento del compresor en términos de su capacidad para aumentar la presión del fluido y comprimirlo. Además, las curvas continuas de color más oscuro muestran el porcentaje de vueltas aerodinámicas: 80%, 90%, 100%...

Por otro lado, las curvas de líneas discontinuas representan los rendimientos isoentrópicos.

A medida que el caudal de flujo o gasto aumenta, la relación de compresión puede variar, y la curva del compresor muestra cómo esta relación afecta la eficiencia y la capacidad de compresión del dispositivo. La curva del compresor es importante para comprender el rendimiento del sistema de compresión en aplicaciones como la industria de la energía, la aviación y la refrigeración.

12 10 8 Pressure Ratio P_3/P_{25} NO =1,05 0,95 6,0 8,0 0,75 2 0.70 0,7 0.0 0,5 0-12 40 8 16 24 28 36 20 32 Mass Flow W_{25RSTD} [kg/s]

Figura 7. Curvas características del compresor [3]

En la figura 7 se puede apreciar una línea roja, esta constituye la línea de estabilidad operacional, que marca el límite de las condiciones óptimas de funcionamiento estable del compresor, si el compresor trabajase por encima de esta línea puede generar fenómenos inestables, que ocurren debido a la entrada en pérdida del perfil de los álabes.

Dichos álabes son diseñados siguiendo una configuración específica para asegurar el ángulo de ataque más favorable aerodinámicamente. Sin embargo, al disminuir el flujo a una velocidad constante, se aumenta el ángulo de ataque, lo cual favorece la pérdida aerodinámica y, como resultado, reduce la capacidad de compresión del aire.

• **Curva característica de la turbina**: representada en la figura 8, esta curva de la turbina muestra la relación entre el punto de entrada y salida.

Esta curva característica en el eje x representa el gasto y el eje Y representa el ratio de presiones. Además, las curvas continuas de color más oscuro muestran el porcentaje de vueltas aerodinámicas: 80%, 90%, 100%...

Por otro lado, las curvas de líneas discontinuas representan los rendimientos adiabáticos.

Se puede comprobar que a partir de un determinado valor, el gasto se mantiene invariable, esto es debido a que se produce un bloqueo sónico, al

igual que ocurre en la tobera, normalmente en la primera hilera de álabes del estator, y se alcanzan velocidades sónicas en la sección de mínimo paso, que se conoce como directriz de la turbina. Cuando esto ocurre, se dice que la turbina es crítica.

De igual manera, las curvas continuas de color más oscuro muestran el porcentaje de vueltas aerodinámicas: 80%, 90%, 100%...

Por otro lado, las curvas de líneas discontinuas representan los rendimientos adiabáticos.

Figura 8. Curvas características de la turbina [3]

3. METODOLOGÍA DE TRABAJO

En este capítulo se explica la metodología seguida para lograr una correcta simulación. En primer lugar, se explican todos los softwares utilizados en el trabajo y su alcance principal. Posteriormente se detallan sus funciones más importantes explicando sus posibilidades y como se implementan en este proyecto

3.1. AEDSYS

El software AEDsys es una herramienta desarrollada para facilitar el diseño de motores aeronáuticos. Está basado en los principios y métodos descritos en el libro "Aircraft Engine Design [4]. AEDsys utiliza algoritmos y modelos matemáticos para simular el comportamiento de los componentes del motor, incluyendo el sistema de combustión, la turbina y el compresor.

El software tiene diferentes módulos, como se puede ver en la figura 9, y permite introducir datos relativos a cualquier motor que se desee simular, posteriormente AEDsys realiza una serie de cálculos y simulaciones para generar modelos 3D del motor y su rendimiento en diferentes condiciones de operación, algunas de las características técnicas adicionales del software AEDsys son:

- Modelado detallado del sistema de combustión: el software cuenta con un modelo detallado del sistema de combustión que tiene en cuenta factores como la composición del combustible, la inyección de combustible y la mezcla aire-combustible para simular con precisión el proceso de combustión.
- Simulaciones de alto rendimiento: donde se utiliza algoritmos de simulación avanzados para realizar cálculos de alta fidelidad que pueden tomar en cuenta factores como la turbulencia, la transferencia de calor y los efectos dinámicos del motor.

ita				Constraint		E <u>x</u> it
i - Future Fig efault Engin	ghter e Data	Unit	s: BE -	Contour Plots Mission		
Inlet	Compressor	Turbine	Nozzle	Atmosphere	Gas Tables	AFprop
EQL	Combustion	Main Burner	Afterburner	Calculator	Paint	
	ata 5 - Future Fig efault Engin Inlet EQL	ta 5 - Future Fighter efault Engine Data Inlet Compressor EQL Combustion	ta 5 - Future Fighter Unit efault Engine Data Inlet Compressor Turbine EQL Combustion Main Burner	ta ta 5 - Future Fighter Units: BE efault Engine Data Inlet Compressor Turbine Nozzle EQL Combustion Main Burner Afterburner	ta ta 5 - Future Fighter efault Engine Data Inlet Compressor Turbine Nozzle Atmosphere EQL Combustion Main Burner Afterburner Calculator	ta ta 5 - Future Fighter Units: BE efault Engine Data Units: BE Inlet Compressor Turbine Nozzle Atmosphere Gas Tables EQL Combustion Main Burner Afterburner Calculator Paint

Figura 9. Menú Princial AEDsys [5]

3.2. GASTURB

El segundo software utilizado en el trabajo es el programa Gasturb, es un Software profesional para cálculos de rendimiento de turbinas de gas, que permite realizar simulaciones precisas de diferentes tipos de motores, abarcando su diseño, análisis termodinámico y diferentes optimizaciones

3.2.1.MODOS DE TRABAJO

Gasturb ofrece tres diferentes módulos de programa con diferentes grados de detalle en función de los requerimientos de la simulación, representados en la figura 10.

En primer lugar el módulo **"Termodinámica básica"**, que permite hacer estudios y simulaciones elementales sobre ciclos y sobre toda en torno a la parte termodinámica.

Figura 10. Módulo Termodinámica básica Gasturb 14 [3]

Esta opción es interesante para el análisis básico del ciclo de la turbina de gas, en este módulo los datos de entrada se limitan a propiedades realmente importantes como la relación de presión, la temperatura de entrada del quemador y la eficiencia de los componentes. Todos los detalles sofisticados y más precisos se establecen como valores predeterminados.

Por ejemplo, todas las pérdidas de presión entre conductos de componentes se establecen en cero y el sistema de aire de refrigeración de la turbina se excluye de la simulación. Por lo tanto, realizar una simulación entrada del programa para el alcance de la termodinámica básica es muy fácil de asimilar de un vistazo.

Por otro lado, Gasturb ofrece la posibilidad de realizar una simulación con el módulo **"Engine Design"**,representado en la figura 11, en el que se encuentra el modo "Performance" (Rendimiento) cuando se desee estudiar los ciclos de la turbina de gas y el comportamiento fuera de diseño con más detalle.

Engine Design
Performance
iviore

Figura 11. Módulo Diseño de motor Gasturb 14 [3]

Este modo añade a la termodinámica básica el detalle requerido para las simulaciones profesionales de rendimiento de turbinas de gas. Hay más opciones de entrada de datos, incluida la simulación del sistema de aire secundario y la refrigeración de la turbina. Además, hay opciones de cálculo adicionales como la optimización del ciclo y los estudios de Monte Carlo entre otros.

También se puede desplegar en el botón "Más", si se desea hacer un diseño preliminar del motor y agregar otros detalles a la simulación.

Por último, el tercer módulo **"Off Design"**, representado en la figura 12, que permite estudiar el motor en las condiciones fuera de diseño. Contiene los modos "Standard Maps" y "Selected Maps".

Figura 12. Módulo Fuera de diseño Gasturb 14

"Standard Maps", mostrará las curvas características o las gráficas requeridas estándar representativas del punto de diseño del ciclo, y posteriormente, si se requiere, de los puntos fuera del diseño.

"Selected Maps", permite elegir entre un catálogo preseleccionado de mapas estándar para cada componente. Esto permite un cálculo más preciso del rendimiento fuera de diseño del componente.

Hay que tener en cuenta que no se puede cambiar de modo mientras está seleccionado el módulo fuera de diseño, para cambiarlo se requiere un nuevo cálculo del punto de diseño diseño de motor.

En este estudio la simulación se realizará mediante el módulo Performance, donde se calculará el punto de diseño del motor, posteriormente, el estudio fuera del diseño y el vuelo completo se realizará desde el módulo "Off Design", ya que es el idóneo para la simulación de un vuelo completo, obteniendo información de los compresores y turbinas, ciclos termódinamicos y parámetros del motor.

3.2.2.CONFIGURACION DEL MOTOR

Antes de comenzar con los cálculos, se selecciona qué tipo de motor a reacción se desea estudiar, esto dependerá del tipo de aeronave.

Una vez fijada la configuración básica, hay opciones de configuración adicionales que se pueden seleccionar durante el diseño del motor. Como agregar un postquemador, seleccionar entre una boquilla convergente y convergente-divergente o seleccionar de intercambiadores de calor e intercoolers.

3.2.3. DEFINIR VALORES COMPUESTOS

Es posible que interese estudiar una variable o parámetro que no se muestra en la ventana del menú principal, como la relación de temperatura en el compresor, T3/T2, por ejemplo. Gracias a este apartado se puede obtener el valor deseado definiendo un valor compuesto, haga clic en el botón Fórmulas. En la definición de valores compuestos se puede utilizar cualquier propiedad de entrada o salida y también números simples, se puede definir un total de 199 valores compuestos.

3.2.4. DEFINIR ITERACIONES

Además de usar valores compuestos, se puede aumentar la precisión del resultado del cálculo agregando iteraciones al cálculo estándar de GasTurb 14. Se usará esta opción si desea que una cantidad de salida tenga un valor específico.

Hay que tener en cuenta que puede seleccionar hasta 99 variables, especificando así valores para hasta 99 cantidades de salida. Además de mantener constante la relación de presión de la turbina, se puede iterar la temperatura de salida del quemador como una segunda variable de modo que la temperatura de salida de la turbina sea igual a 1200K. Con una tercera iteración, podría mantener el empuje constante en 40 kN iterando el flujo corregido de entrada del motor, por ejemplo.

Para cada una de las variables se debe especificar un rango razonable estableciendo valores mínimos y máximos.

3.2.5. ESTUDIO PARAMÉTRICO Y OPTIMIZACIÓN

Gasturb 14 ofrece la posibilidad de realizar variaciones paramétricas de una o dos variables de manera sencilla.

Además, si se requiere otro enfoque diferente, en lugar de realizar estudios paramétricos para encontrar el mejor ciclo, se puede emplear la optimización numérica. Al abrir la ventana de entrada de optimización se encuentran las variables de la optimización seleccionada, en las cuales habrá que ingresar un valor mínimo y un límite máximo. En la posterior ejecución, se mostrarán barras horizontales que representan los rangos de las variables de optimización.

Finalmente, se debe determinar la intención de la optimización, esta pestaña permite minimizar o maximizar un parámetro en específico, de modo que usualmente se podrá minimizar el consumo o maximizar el empuje de un motor determinado.

3.2.6. EL PUNTO DE DISEÑO DEL CICLO

El punto de diseño del ciclo, como bien se ha explicado anteriormente en el marco teórico, se refiere a un estado específico en el ciclo termodinámico de un motor. Este punto se determina mediante un análisis y diseño del sistema y puede influir en su eficiencia y rendimiento.

Las condiciones ambientales para los motores de propulsión de aeronaves generalmente se definen por la altitud, el número de Mach de vuelo y la desviación de la temperatura ambiente de la temperatura en la Atmósfera Estándar Internacional.

3.2.6.1. PURGADO DE AIRE "AIR BLEEDING"

El diseño de la mayoría de las aeronaves propulsadas por turborreactores y turbofanes incorporan un sistema de purga de aire. Este sistema de purga de aire utiliza una red de conductos, válvulas y reguladores para conducir aire de media a alta presión, desde la sección del compresor del motor, a varios lugares dentro de la aeronave. Allí se utiliza para una serie de funciones que incluyen conseguir una correcta presurización, aire acondicionado, accionar un sistema de arranque, accionar sistemas antihielo de alas y motores, presurización del depósito del sistema o conseguir una correcta presurización del sistema de agua hidráulico.

El aire sangrado se extrae del compresor del motor. En algunos motores, el aire puede tomarse de más de un lugar para diferentes usos, ya que la temperatura y la presión del aire varían según la etapa del compresor en la que se extrae.

En el caso del aire sangrado se dirige a los paquetes de aire acondicionado donde se filtra y luego se enfría mediante un proceso de expansión. La temperatura del aire se regula utilizando aire sangrado sin enfriar y la humedad de la mezcla se ajusta antes de introducir el aire en la cabina del avión. Los controladores de temperatura en la cabina y la cabina de vuelo permiten el ajuste de la temperatura objetivo y los termostatos brindan retroalimentación a los paquetes para exigir un aumento o una disminución en la temperatura de salida.

El aire de purga, extraído de la Unidad de potencia auxiliar (APU) o de otro motor en funcionamiento, se usa para accionar un motor de arranque de turbina de aire para arrancar el motor. La principal ventaja de un arrancador de turbina de aire es que una unidad más pequeña y liviana puede producir una cantidad determinada de par de torsión de lo que sería el caso si fuera accionada eléctrica o hidráulicamente.

A menudo el aire purgado se utiliza también para presurizar el tanque de retención de agua potable, lo que elimina la necesidad de una bomba para alimentar el agua

a las cocinas y los baños. De manera similar, el aire de purga se utiliza para presurizar los depósitos del sistema hidráulico de muchas aeronaves, lo que reduce la probabilidad de cavitación de la bomba y la consiguiente pérdida de presión del sistema.

Por último, cabe destacar el uso del sangrado del motor para la ventilación del aire de la cabina en un avión, por ejemplo En los motores industriales, la cantidad necesaria de purga al agua suele ser inferior al 1 %, mientras que en los motores marinos se utiliza hasta el 10 % del caudal másico del motor.

3.2.6.2. TRANSFERENCIA DE CALOR EN TURBOFANES

En los motores con derivación, se transfiere algo de calor desde el núcleo hasta la derivación. Este fenómeno se puede simular como un intercambiador de calor. La temperatura de entrada del lado caliente a este intercambiador de calor es la temperatura de salida del compresor de alta "HPC Exit temperature", la temperatura de entrada del lado frío es la temperatura de salida del fan exterior "Outer Fan".

La cantidad de calor transferido es una función de la Eficacia de Transferencia de Calor de Derivación del Núcleo.

El aire sangrado se puede enfriar en el bypass, la eficiencia de enfriamiento del aire sangrado determina el tamaño del enfriador. En simulaciones fuera de diseño, la eficiencia del enfriamiento del aire de purga será una función del flujo másico de purga. Esto se debe a que para cada enfriador, cuando el flujo másico de aire sangrado es cero, la Efectividad del enfriamiento del aire sangrado debe ser 1.0.

La figura 13 muestra cómo podría verse un dispositivo de este tipo:

Figura 13. Enfriamiento del aire purgado [3]

3.2.7. OFF DESIGN PERFORMANCE

Como bien se ha desarrollado previamente en el marco teórico, los estudios fuera de diseño se ocupan del comportamiento de una turbina de gas con una geometría determinada. Este módulo funciona bien si se desea estudiar principalmente en el comportamiento básico fuera de diseño de un tipo de motor.

Se puede seleccionar recalentar durante fuera de diseño siempre y cuando se haya configurado su punto de diseño de ciclo con postcombustión previamente. Se aplican restricciones similares para el uso de recuperadores, hélices y toberas.

Para realizar una simulación fuera de diseño, previamente los puntos de diseño del componente deben estar correlacionados con los mapas de componentes. Esto se puede hacer automáticamente los modos mencionados previamente "Standard Maps" y "Selected Maps".

Los mapas se escalarán antes de que comience el cálculo fuera del diseño de tal manera, que sean consistentes con el punto de diseño del ciclo.

3.2.7.1. MISSION

En caso de tener que analizar en detalle muchas condiciones fuera de diseño diferentes se puede utilizar el módulo "Mission". Este modo permite estudiar hasta 49 condiciones de funcionamiento diferentes en una lista de puntos de misión, de modo que el software nos permitirá estudiar todas los parámetros de los diferentes puntos simultáneamente y lo presentará en una tabla de diseño. De este modo, se podrá representar gráficamente todos los puntos del vuelo.

3.3. FLIGHTAWARE

FlightAware y ADS-B son tecnologías complementarias utilizadas para recopilar datos de forma automática a través de las señales de radio transmitidas por las naves con el fin de realizar un seguimiento de vuelos en tiempo real.

 FlightAware utiliza una red de receptores de datos ubicados en diferentes ubicaciones geográficas en todo el mundo. Estos receptores se conectan a Internet y reciben datos de vuelo en tiempo real de aeronaves que transmiten información a través de la tecnología ADS-B.

 ADS-B o "Automatic Dependent Surveillance Broadcast", es un sistema de vigilancia de aeronaves que utiliza transpondedores en las aeronaves para transmitir datos en tiempo real sobre su posición, velocidad, altitud y otra información de vuelo. Estos datos son transmitidos en forma de señales de radio y son recibidos por los receptores ADS-B, como los receptores FlightAware, que están ubicados en el suelo o en otras aeronaves cercanas.

Figura 14. Tecnología ADS-B [6]

Los receptores FlightAware recopilan las señales ADS-B que son transmitidas por las aeronaves cercanas y las envían a los servidores de FlightAware a través de Internet. Los datos ADS-B son decodificados y procesados por los servidores de FlightAware, que luego los utilizan para proporcionar información en tiempo real sobre la ubicación, ruta, velocidad y otra información de vuelo de las aeronaves.

4. SIMULACIÓN INICIAL

Este capítulo engloba la parte más importante del Trabajo de Fin de Grado, constituye las bases teóricas y técnicas para la posterior simulación y optimización y es fundamental para comprender este estudio. En esta sección se eligen todas las características relativas al vuelo, tanto la aeronave,el motor escogido, las fases del vuelo, etc...

También se realiza un estudio de los requerimientos del vuelo, contrastando valores teóricos con los experimentales aportados por AEDsys.

Posteriormente se desarrola la simulación completa con el software Gasturb 14, primero se estudia el punto de diseño, donde se fijan las condiciones operativas de diseño, después se simula el punto de diseño tomando como hipótesis que es el más restrictivo de todo el vuelo, y finalmente se simulan todos los puntos en conjunto para constituir el vuelo completo

4.1. DETALLES DEL VUELO

Para comenzar se ha seleccionado un vuelo comercial bastante usual, con el fin de simular un vuelo real con la mayor precisión posible.

El trayecto seleccionado será Madrid Adolfo-Suarez Barajas T4 (MAD)- México City Benito Juarez Internacional T1 (MEX). Este vuelo recorre una distancia de 9060 kilómetros, con un recorrido observable en la figura 15.

Figura 15. Trayecto vuelo [6]

En este caso la simulación será llevada a cabo sin tener en cuenta el procedimiento de aterrizaje en un aeropuerto alternativo, de modo que se simulan los datos y requerimientos para la distancia entre los dos aeropuertos, esta suposición será tomada igualmente para el volumen de combustible requerido

El estudio utiliza los datos aportados por Flightaware [6],en específico los del vuelo IBE6409 con salida el día 13-04-2023 a las 12.19 AM. Se adjuntan en el Anexo A los datos completos.

Respecto a la figura 16, la linea azul representra la velocidad en cada punto del vuelo, y la línea amarilla representa la altura

Gracias a los datos aportados por Flightaware se identifican las etapas que constituyen el vuelo, las etapas generales de un vuelo comercial son:

- Fase de Rodaje: Esta fase ocurre en tierra, antes de que la aeronave despegue. Incluye el movimiento de la aeronave desde su posición de estacionamiento hasta la pista de despegue, y generalmente se realiza a velocidades de rodaje que varían de 10 a 40 km/h.
- Fase de Despegue: Una vez que la aeronave está en la pista de despegue, inicia la fase de despegue. Durante esta fase, la aeronave acelera para ganar velocidad y levantarse del suelo. La velocidad de despegue varía dependiendo del tipo de aeronave, su carga y condiciones ambientales, pero suele oscilar entre 180 y 375 km/h. A medida que la aeronave gana velocidad, la altitud aumenta gradualmente, hasta que finalmente se alcanza la altitud de despegue y finaliza esta etapa, como podemos comprobar en Flightaware, esta altura para el Airbus 350-900 y el vuelo escogido, será de 698m.
- Fase de Ascenso: Una vez que la aeronave ha despegado, entra en la fase de ascenso. Durante esta fase, la aeronave continúa ganando altitud a medida que se aleja del aeropuerto de salida y se dirige a su altitud de crucero planificada.

- Fase de Crucero: Una vez que la aeronave alcanza su altitud de crucero, entra en la fase de crucero. Durante esta fase, la aeronave vuela a altitudes de crucero, donde su velocidad y altura se mantienen prácticamente constantes
- Fase de Descenso: A medida que la aeronave se acerca a su destino, inicia la fase de descenso. La aeronave comienza a descender desde su altitud de crucero hasta la altitud de aproximación para el aeropuerto de destino. A medida que la aeronave desciende, la velocidad puede variar y ajustarse para mantener una trayectoria de aproximación estable.
- Fase de Aproximación y Aterrizaje: Una vez que la aeronave se encuentra cerca del aeropuerto de destino, entra en la fase de aproximación final y aterrizaje.

Para tener una precisión más alta en la simulación, se estudiará por separado cada cambio sustancial en la velocidad y la altura que ocurre a lo largo del vuelo, por lo que según los datos medidos por Flightaware dividiremos nuestro estudio en las diferentes etapas a estudiar, el ascenso desde los 0 hasta los 9144 metros se dividirá en 4 tramos para aumentan la precisión, al igual que el descenso desde los 12190m hasta el aterrizaje, que también se dividirá en otras 4 etapas.

Además, la fase de crucero se dividirá en 4 etapas de velocidad a diferentes alturas, y fases de ascenso entre las diferentes etapas de crucero.

Los datos de las velocidades en cada punto en relación a su altura son los aportados por Flightaware, pasados de (km/h) a (m/s) para facilitar su posterior análisis en el software AEDsys:

#	Etapa	Altura Inicial	Altura Final
1	Despegue	0m	678m
2	Ascenso 1	678m	1631m
3	Ascenso 2	1631m	4488m
4	Ascenso 3	4488m	7216m
5	Ascenso 4	7216m	9144m
6	Crucero 1	9144m	N/A
7	Ascenso hasta altura de crucero 2	9144m	10973m
8	Crucero 2	10973m	N/A
9	Ascenso hasta altura de crucero 3	10973m	11582m
10	Crucero 3	11582m	N/A
11	Ascenso hasta altura de crucero 4	11582m	12192m
12	Crucero 4	12192m	N/A
13	Descenso 1	12192m	6561m
14	Descenso 2	6561m	3589m
15	Descenso 3	3589m	2400m
16	Aproximación	2400m	678m
17	Aterrizaje	678m	Om

Tabla 1. Etapas del vuelo

Hay otras etapas que se despreciarán del cálculo, como es el Warm-Up, ya que no hay disponible suficiente información, ya que según los documentos de ficha técnica de AIRBUS el Warm-Up es una maniobra en la cual se calientan componentes esenciales del motor, como el aceite del motor, de unos minutos con una potencia media-baja. En cambio, según el Aircraft Engine Design [4]es un periodo muy corto donde se calienta el motor a base de generar un aumento de la temperatura rápido y una generación alta de potencia, al no tener datos que lo especifiquen se desprecia.

4.2. ELECCIÓN DE LA AERONAVE

La aeronave se seleccionará en función de los disponibles en la realidad para el vuelo escogido, se elegirá un vuelo directo operado por la aerolínea Iberia, con la aeronave Airbus 350-900.

Figura 17. Airbus A350-900 [7]

Universidad de Valladolid

Motores	2
Longitud total	66 m
Fabricante Motores	Rolls-Royce
Envergadura	64 m
Alcance	12300 km
Butacas	348
Fabricante Aeronave	Airbus Industries
Ruta	Largo radio

Tabla 2. Parámetros del A350-900 aportados por Iberia [7]

Longitud de cabina máxima	51.04 m
Ancho del fuselaje	5.96 m
Máximo ancho de la cabina	5.61 m
Envergadura alar (geométrica)	64.75 m
Altura	17.05 m
Pista	10.60 m
Base de ruedas	28.66 m
Table 2 Dimensiones denorated as A2E0 000 [8]	

Tabla 3. Dimensiones generales del A350-900 [8]

	Altura	máxima	operativa
--	--------	--------	-----------

13136m (43100ft) Tabla 4. Datos A350-900 [9]

También se especifican las fases del vuelo gracias a los datos aportados por Eurocontrol, como se comprueba en la figura 18

Figura 18. Fases vuelo A350-900 EuroControl [10]

4.3. ESPECIFICACIONES DEL MOTOR ELEGIDO EN LA SIMULACIÓN

Al simular un vuelo real, para realizar este primer estudio se elegirá el motor montado originalmente en el avión descrito anteriormente, este modelo de avión lleva dos motores Rolls Royce Trent XWB-84

El Rolls-Royce Trent XWB es un motor de avión de tren de doble flujo desarrollado por el fabricante de motores británico Rolls-Royce para su uso en la familia Airbus A350. Está diseñado para proporcionar mayor empuje con menos combustible y para seguir los códigos ambientales más estrictos. El Trent XWB cuenta con un cabezal de turbina de doble flujo, un tren de rodillos de 4 etapas y un sistema de alimentación de combustible que mejora la eficiencia y reduce las emisiones.

Figura 19. Motor Rolls Royce Trent XWB-84 [11]

Respecto a la composición del Rolls Royce Trent XWB-84, consta de un turboventilador de tres ejes, alta relación de derivación, flujo axial, con compresores de baja presión (LP), presión intermedia (IP) y de alta Presión (HP) accionados por turbinas separadas a través de ejes coaxiales

El compresor LP de una sola etapa (ventilador), compresor IP de 8 etapas o escalonamientos (IPC) y compresor HP de 6 etapas (HPC)

También consta de un combustor anular con 20 boquillas de rociado de combustible

Respecto a las turbinas, consta de una turbina HP de una etapa (HPT), turbina IP de 2 etapas (IPT) y por último turbina LP de 6 etapas (LPT)

4.3.1. Dimensiones Trent XWB-84

A continuación, en la tabla 5, se especifican las características del motor más relevantes a la hora de realizar su estudio:

Rolls Royce	Frent XWB-84
Empuje máximo en el despegue	374.5 kN
Relación de derivación (Bypass ratio)	9,6 a 1
Relación de compresión máximo	50 a 1
Diámetro del compresor LP (Ventilador)	3m
Longitud total	4483 mm
Radio máximo	2001 mm
Peso mäximo sin fluidos	7277kg
Take-Off Thrust (net) (5 minutes)	374.5 kN
Equivalent Bare Engine Take-Off Thrust	379 kN
Maximum continuous thrust (net)	317.6 kN
Maximum continuous	321.4kN
Longitud total	4483 mm

Tabla 5. Especificaciones Trent XWB-84 EASA Certificate Data Sheet [9]

4.4. REQUERIMIENTOS DE PESO EN EL VUELO

El siguiente paso es el estudio de los requerimientos de peso de la aeronave, uno de los parámetros con mayor importancia a la hora de simular el vuelo, es la estimación de su Peso al Despegue (W_{TO}), ya que será necesario para el posterior estudio en el software AEDsys.

Se puede calcular el peso de despegue como:

$$W_{TO} = W_E + W_F + W_{PL}$$
 Ec (4.1)

- W_E = Peso en vacío operativo (OEW Overall Empty Weight)
- W_F = Peso del combustible (Fuel Weight)
- W_P = Peso de la carga de pago (Payload Weight)

Primero se definirán las restricciones de peso máximas, del certificado aportado por EASA se toman los pesos máximos certificados junto a la capacidad total del depósito, ver Tabla 6.

MTOW (t)	268	MTOW = Máximo peso permitido en el despegue
MLW (t)	205	MLW = Máximo peso permitido en el aterrizaje
MZFW (t)	192	MZFW = Máximo peso permitido sin combustible
MFC (litros)	166488	MFC = Máxima capacidad de combustible

Tabla	6. Pesos	máximos	certificados	EASA	Certificate	[12]
abia	0.1 0000	maximoo	001011000000	L/ 10/ 1	oontinouto	[]

Tras el cálculo detallado de todos los requerimientos de peso, se comprobará que ningún valor excede los límites permitidos por el fabricante.

4.4.1.PESO EN VACÍO DE LA AERONAVE

Se puede conocer el peso en vacio de la aeronave gracias al certificado emitido por la EASA [4]. En este caso se utilizarán los datos del modelo A350-900, en específico la variante 001.

$$W_E = W_{personal} + OEW \qquad Ec (4.2)$$

Donde $W_{personal}$ representa el peso del personal que trabaja en el avión y OEW=Peso de la aeronave en Vacío (Overall Empty Weight)

Para hallar el peso de la aeronave en vacío sumando los dos motores, se recurre a las especificaciones de Airbus respecto a los pesos de las aeronaves [8], estas cuantifican este peso como OEW= 308700 lbs, esto es equivalente a 139.000kg

En segundo lugar, para hallar la tripulación mínima de vuelo está especificado en el documento de EASA A350-900 [12], debe haber 2, un piloto y un copiloto.

Respecto a la tripulación de cabina mínima, para el A350-900, para el modelo escogido en este caso, debe haber 2 miembros de cabina por salida, es decir, un total de 8 personas, además, ya que se ha escogido una configuración tipo A+, debe haber otra persona por cada par instalado de salidas de emergencia, por lo que finalmente se requerirá de 10 personas.

Se supondrá un peso para los hombres de 90kg, y para mujeres de 67kg, es decir, uno valores por encima de la media para aumentar el factor de seguridad, se tomará como hipótesis también que habrá un 50% de hombres y un 50% de mujeres en el personal.

$$W_E = 785kg + 139700kg = 140485kg$$

4.4.2.CARGA DE PAGO

En este caso, la carga de pago consiste en el peso de los equipajes más el peso de los pasajeros y el peso de la bodega.

Se diferenciará entre el equipaje de cabina, y el equipaje depositado en la bodega, además, en la bodega se llevará mercancía.

En la tabla a continuación, sacada de un documento aportado por EASA, en un estudio realizado por la empresa Lufthansa Consulting [13], se especifica el peso medio de los pasajeros, diferenciando según si es verano o invierno, sumando el peso del equipaje de cabina permitido por las aerolíneas.

A su vez especifica el porcentaje de hombres y de mujeres que vuelo, de modo que permite hallar el peso medio por pasajero+equipaje de cabina.

Se tomará la hipótesis de que el viaje programado es en invierno, ya que es el periodo más restrictivo en cuanto a peso se refiere.

2022 – Only summer	Gender ratio	Passenger weight (kg)	Carry-on luggage (kg)	Passenger incl. carry-on luggage (kg)
Male	58.2%	79.6	7.6	87.2
Female	36.7%	66.6	7.0	73.5
Child	1.5%	32.3	2.8	35.1
Male w. infant	2.3%	82.7	7.1	90.3
Female w. infant	1.4%	70.9	10.0	80.8
Total	100%	74.1	7.3	81.4

2022 – Only winter	Gender ratio	Passenger weight (kg)	Carry-on luggage (kg)	Passenger incl. carry-on luggage (kg)
Male	54.7%	84.4	8.1	92.6
Female	39.5%	68.2	7.9	76.2
Child	1.5%	31.8	1.7	31.3
Male w. infant	2.2%	81.6	7.0	88.7
Female w. infant	2.1%	69.8	8.0	78.6
Total	100%	77.2	7.9	84.8

Figura 20. Peso de los pasajeros EASA Lufthansa Consulting [13]

Como se puede comprobar en la figura 20, el valor medio de peso de los pasajeros + el equipaje de mano en verano fue de 81,4 kg, y en invierno de 84,8 kg, en este estudio se ha dado valores por tanto al peso por pasajero sumado a su equipaje de 100kg, de modo que se estará sobredimensionando con un amplio margen el peso, y multiplicado por el número de pasajeros, para hallar la capacidad máxima operativa de asientos para pasajeros se recurre también al documento del EASA [12]

El número máximo de pasajeros aprobado para evacuación de emergencia es de 440 con la configuración en su variante con capacidad máxima, en cambio, es poco usual encontrar estas configuraciones ya que son demasiado incómodas para los pasajeros, En una configuración típica de tres clases, que incluye clase ejecutiva, clase económica premium y clase económica, la capacidad promedio de pasajeros suele ser de aproximadamente 300 a 350 personas. En este avión en específico hay 348 butacas, según los datos aportados por lberia.

 $W_{pasajeros+equipaje} = 84,8kg * 348butacas = 29510.4 kg$

- El factor de Llenado de la Bodega, es un parámetro que representa el número de pasajeros a bordo dividido entre el número máximo de pasajeros, como se sobredimensionará por requisitos de seguridad se asumirá por tanto una ocupación del 100 %. Por lo tanto este factor será 1
- V_{bodega} : Volumen Total de la Bodega, que se conoce de las especificaciones del A350-900 y cuyo valor es 163 m^3
- $\rho_{equipaje}$: Densidad del Equipaje, es calculado mediante los datos aportados por la empresa Lufthansa Consulting, conociendo el peso medio de los equipajes facturados y sus medidas típicas, se puede calcular la densidad del equipaje.

All adults	Weight in kg	Winter	Summer	Total
2009	Passenger	79.5	75.1	77.4
	Carry-on luggage	7.0	5.7	6.4
	Checked luggage	16.6	17.0	16.8
2022	Passengers	77.6	74.7	76.3
	Carry-on luggage	8.0	7.4	7.7
	Checked luggage	15.9	16.0	16.0

Figura 22. Datos de pesos de equipajes facturados EASA Lufthansa Consulting [13]

En la figura 22 se aportan los valores de peso de el equipaje facturado o "Checked lugagge", se toma el valor correspondiente a invierno que es 15,9 kg.

Para las medidas del equipaje facturado el alto + ancho + largo no debe sobrepasar los 158cm, se supondrán unas medidas de 48cm+40cm+70cm

$$\frac{15.9kg}{(0.48m * 0.4m * 0.7m)} = 118.3\frac{kg}{m^3}$$

- $\rho_{mercancía}$: se tomará como hipótesis que la densidad de la mercancía será igual que la del equipaje, y por razones de seguridad se supondrá una ocupación de la bodega del 100%, añadiendo mercancía al equipaje de la bodega
- *W*_{pasajeros+equipaje} = Se refiere al peso de los pasjeros más el "carry-on luggage" o equipaje de cabina

$$W_P = W_{pasajeros+equipaje} + W_{bodega} = 48793.88kg$$

• W_{bodega} = Se refiere al peso por el equipaje facturado o la mercancía

$$W_{bodega} = 19283.4kg$$

4.4.3.CARGA DE COMBUSTIBLE

En este apartado se realiza un estudio de la carga del combustible comúnmente llamado Fuel Planning, donde se estudian todas las etapas del vuelo y sus requerimientos de combustible.

Como se ha explicado anteriormente, se sigue utilizando la hipótesis que no será necesario volver a despegar tras un aterrizaje fallido o llegar a un aeropuerto alternativo, por lo que se debe tener en cuenta el combustible suficiente para llegar al destino y realizar un aterrizaje satisfactorio.

Universidad de Valladolid

Figura 23. Etapas para un hacer un estudio Fuel Planning [14]

Hay etapas diferenciadas en cuanto al consumo de combustible que se describirán a continuación

Taxi Fuel: es el combustible correspondiente necesario para llevar el avión desde la puerta de embarque hasta la pista de despegue. En el caso del A350-900, el avión estudiado, no hay datos públicos respecto a esta maniobra, pero si se han encontrado valores de modelos similares representados en la figura 24. Ya que la maniobra de de Taxi Fuel del A500-900 tendrá que ser mayor que la del A340-500, que sería e modelo más cercano al A350-900, se toma como hipótesis un valor para la maniobra de Taxi Fuel de 12 de 600kg.

Aircraft types	12 minutes taxi (all engines)	12 minutes taxi (8 with engine out)
A300-600	300kg	200kg
A310	240kg	160kg
A318	120kg	80kg
A319	120kg	80kg
A320	138kg	92kg
A321	162kg	108kg
A330	300kg	200kg
A340-200/300	300kg	250kg
A340-500/600	420kg	350kg

Figura 24. Taxi Fuel en distintas aeronaves [15]

• **Combustible de vuelo o Trip Fuel:** es también llamado Burn Fuel o Fuel to Destination, es la cantidad de combustible requerida desde la liberación del freno en el despegue en el aeródromo de salida hasta el aterrizaje en el aeródromo de destino teniendo en cuenta las condiciones climáticas. Esta cantidad incluye el combustible necesario para:

- Despegar.
- Alcanzar la altura de crucero.
- Incluye las etapas de crucero incluyendo cualquier ascenso o descenso de escalón planificado.
- Todas las etapas de vuelo desde el inicio del descenso hasta el inicio de la aproximación,
- Etapa de aproximación.
- Aterrizar en el destino.

• **Combustible de contingencia:** también es llamado reserva de ruta y se tiene en cuenta para el consumo adicional de combustible en ruta causado por cambios de viento, tormentas eléctricas que podría tener que afrontar, cambios de ruta por ATC o restricciones como volar a un nivel de vuelo más bajo que el solicitado para el vuelo.

De acuerdo con las regulaciones de la OACI, el combustible de contingencia mínimo recomendado debe ser igual o superior al 5% del combustible del viaje o 5 minutos de consumo de espera a 1.500 pies sobre la elevación del aeródromo de destino calculado en base al peso de llegada calculado. Sin embargo, algunos reguladores han eliminado el requisito de tiempo mínimo y algunos han aumentado el intervalo de tiempo recomendado en sus reglamentaciones nacionales. Además, algunos reguladores permiten la reducción de combustible de contingencia al 3% del combustible del viaje, o a incrementos de tiempo específicos, con el uso de alternativas en ruta y condicionado a criterios de rendimiento demostrados por el Operador. Al menos una autoridad permite, bajo circunstancias muy específicas, que el combustible de contingencia se reduzca a 0. En este caso, se supondrá un Combustible de contingencia del orden del 5% del combustible de vuelo.

 Alternative Fuel: Se refiere al combustible adicional que se reserva en caso de que el avión no pueda aterrizar en su destino original y deba desviarse hacia un aeropuerto alternativo. Este combustible extra permite al avión volar hasta el aeropuerto alternativo y tener suficiente reserva para realizar aproximaciones y maniobras de espera antes del aterrizaje. En este estudio se despreciará ya que ya no se contempla alternativas de ruta ni aterrizajes alternativos.

• **Combustible extra:** combustible añadido por decisión del capitán de la aeronave. En este caso, se supone nulo ya que no se tiene información adicional.

 Final Reserve Fuel: Es la cantidad mínima de combustible que se reserva para ser utilizado en caso de que todas las opciones alternativas se agoten. Es un margen de seguridad adicional para asegurar que el avión pueda mantenerse en vuelo durante un tiempo determinado después de completar su aproximación y aterrizaje en el aeropuerto de destino. Este combustible final reserve es utilizado únicamente en situaciones de emergencia o condiciones excepcionales. Su cantidad está regulada por las autoridades aeronáuticas y varía según el tipo de aeronave y la normativa aplicable.

Según normativa varía entre el 5% y el 10% del combustible de vuelo.

Las etapas nombradas anteriores serían las más importantes a tener en cuenta a la hora de realizar un correcto estudio de combustible, hay otras etapas más específicas y no importantes en este específico caso de estudio, ya sea porque no son aplicables a este modelo de aeronave o porque se desprecian en el cálculo, pero se nombran ya que son importantes en algunos casos en el sector de la aviación, algunos son:

Block fuel: este es el combustible que tendrá la aeronave a bordo en la posición de estacionamiento antes de que se retiren los bloques y esté listo para arrancar el motor. En otras palabras, es la suma de: Taxi fuel + Trip Fuel + Combustible de Contingencia + Combustible Alternativo + Combustible Extra + Combustible de Reserva Final.

Combustible de lastre o Ballast Fuel: en algunos aviones, cierta cantidad de combustible debe estar en el tanque de combustible para mantener el centro de gravedad de la aeronave dentro de los límites. Otro caso es cuando el peso de combustible cero está por encima de un umbral definido. Requiere que se transporte una cantidad mínima de combustible en las alas durante todas las fases del vuelo para evitar que las alas se doblen excesivamente. En ambos casos, este combustible se considera lastre.

Combustible mínimo de liberación de frenos o Minimum Brake Release Fuel: el combustible mínimo para liberar los frenos es la cantidad de combustible que, al comienzo de la carrera de despegue, cumple con todos los requisitos reglamentarios para el vuelo en cuestión. Este es el combustible mínimo legal requerido para la salida.

Combustible de reserva o Reserve fuel: también llamado combustible de reserva de combustible de desvío mínimo, es la suma del ombustible alternativo + combustible de reserva final.

Según los datos aportados por EASA junto a Lufthansa Consulting [13] estima un consumo para el certificado del A350-900, este consumo sería en condiciones desfavorables, con un factor de seguridad alto, por lo que se tomará como un consumo de combustible máximo, se seguirá el estudio con estos datos:

Consumo de Combustible	2,9 I/100paxkm
Tabla 7. Consumo de combustible EASA Lufthansa [13]	

Lo primero se estima en litros, se sabe que el trayecto dura 9060km y en el vuelo habrá 348 pasajeros +12 personas contando pilotos y trabajadores.

$$2.9 \ litros * \frac{360 \ personas}{100 \ personas} * 9060 km = 94586.4 \ litros$$

Según los datos del A350-900 en el certificado aportado por EASA:

Tanques de combustible	Cantidad de combustible máximo (litros)	
Alas	29924	
Centro	80947	
Total	140795	

Tabla 8. Capacidad de tanques de combustible EASA [12]

Se comprueba que está dentro de los límites permitidos en cuanto a capacidad, y se supondrá una distribución estándar del combustible en los diferentes tanques.

En el certificado se especifica también la densidad del combustible, con un valor de $0.785 \frac{kg}{litros}$

94586.2 *litros* * 0.785
$$\frac{kg}{litros}$$
 = 74250 kg

Tras hallar el valor del peso de combustible, ya se puede saber el peso al despegue:

$$W_{TO} = 263528 \ kg = 581828 \ lbfs$$

Las unidades utilizadas en el estudio son kg, pero se realiza el cambio de unidades a lbfs ya que este valor se compara posteriormente con el valor aportado por la ecuación general (3.1) del Aircraft design [4]

$$W_{TO} = \frac{W_{PL}}{1 - \frac{W_F}{W_{TO}} - \frac{W_E}{W_{TO}}} = 255319 \, kg \qquad Ec \, (4.3)$$

Se verifica que es un valor muy cercano al hallado en el estudio, por lo que se toma como un valor viable y correcto.

$$\frac{W_E}{W_{TO}} = 0.52 \qquad \qquad Ec \ (4.4)$$

Además, se hace una segunda comprobación y se compara el valor hallado en la *Ec* (4.4) con la gráfica existente en el Jack Mattingly que representa la relación del $\frac{W_E}{W_{TO}}$ y del W_{TO} en la figura 25

Figura 25. Gráfica representativa del peso en el despegue [4]

Cabe destacar la cercanía del punto de funcionamiento obtenido mediante los cálculos, si se compara con el punto de funcionamiento predeterminado representado en la figura 25 para el Airbus A340, esta es la aeronave más cercana al Airbus 350-500 en cuanto a familia, pesos y requerimientos, por lo que esta proximidad en los puntos se usa como forma de comprobar la viabilidad de los cálculos.

4.5. ESTUDIO TEÓRICO DE LOS REQUERIMIENTOS DE LA AERONAVE

En este capítulo se presentan y se estudian las las fuerzas de sustentación y arrastre que afectan a la aeronave durante el vuelo, además, se estudian parámetros importantes que afectan a la hora de simular los efectos de estas fuerzas en la aeronave.

4.5.1.ÁREA DE LAS ALAS

Si se desea estudiar la fuerza de sustentación, el área de las alas de la aeronave es de suma importancia. El área determina la cantidad de sustentación producida por unidad cuadrada de la superficie del ala. El ala del A350 está diseñada para generar el coeficiente máximo de sustentación de despegue requerido.

El área del ala del A350, según lo determinado por Airbus, no es solo el área de la superficie aislada del ala, sino también el área del fuselaje entre las alas. El coeficiente de sustentación esperado se basa en el área de superficie, incluidas el ala y parte del fuselaje. Por eso se observa en el fuselaje entre las alas una zona de baja presión, similar a la que se encuentra en la parte superior de las alas.

Figura 26. Ala del Airbus A350-900 [8]

Área de las alas	$443 m^2$
Número de Mach Máximo	0.89
Envergadura (Wing Span)	64.7m

Tabla 9. Cáracteristicas de las alas del Airbus A350-900 [8]

4.5.2.ASPECT RATIO - RELACIÓN DE ASPECTO

La relación de aspecto de un ala de avión se define como la relación entre la envergadura (distancia desde un extremo del ala hasta el otro) y área de la superficie alar

Una relación de aspecto alta indica un ala más alargada, mientras que una relación de aspecto baja indica un ala más corta y ancha. La relación de aspecto tiene un impacto significativo en las características de vuelo de un avión.

Alas con una relación de aspecto alta tienden a generar menos resistencia inducida (la resistencia generada por la creación de vórtices en los extremos del ala), lo que resulta en una mayor eficiencia aerodinámica. Estas alas son comunes en aviones diseñados para vuelos de larga distancia y alta velocidad, como los aviones comerciales.

Por otro lado, alas con una relación de aspecto baja generan más resistencia inducida, pero ofrecen una mejor maniobrabilidad y rendimiento a baja velocidad. Estas alas se encuentran a menudo en aviones de maniobras acrobáticas o de combate.

La elección de la relación de aspecto del ala depende de varios factores, como el tipo de vuelo, la eficiencia aerodinámica deseada y las características de rendimiento específicas del avión.

Las alas del A350 están inclinadas con diferentes cuerdas de ala a lo largo de la envergadura.

El diseño proporciona una distribución de sustentación optimizada sobre la envergadura al mismo tiempo que mantiene una resistencia inducida por la sustentación permitida. Mientras que las extensiones de ala (flaps) ayudan a bajas velocidades aumentando el área de superficie y la sustentación, el área mojada del ala proporciona un rendimiento óptimo en condiciones de crucero.

La figura 27 junto a la Ec (4.5) representa como se calcula la relación de aspecto, la envergadura alar (b) al cuadrado dividido entre el área de las alas (A)

4.5.3.ÁNGULO DE BARRIDO (SWEEP ANGLE)

El "sweep angle" o ángulo de barrido se refiere a la inclinación hacia atrás de las alas en relación con la línea de la raíz del ala. Este ángulo de barrido es una característica de diseño aerodinámico que afecta el rendimiento y la estabilidad de la aeronave.

En el caso del A350-900, las alas tienen un barrido moderado **hacia atrás**, lo que significa que la línea que une la punta del ala con la raíz del ala forma un ángulo en relación con la dirección del vuelo. Este ángulo de barrido se elige cuidadosamente durante el diseño para optimizar las características de vuelo de la aeronave.

El ángulo de barrido tiene varios efectos en el **rendimiento de la aeronave**. En primer lugar, ayuda a reducir la resistencia aerodinámica a altas velocidades. El barrido hacia atrás distribuye el flujo de aire de manera más eficiente alrededor del ala, reduciendo así la resistencia inducida y permitiendo una mayor eficiencia en el vuelo de crucero.

Además, el barrido hacia atrás también ayuda a mejorar la **estabilidad direccional y longitudinal** de la aeronave. Al proporcionar un barrido adecuado, se puede lograr

una distribución de sustentación más uniforme a lo largo del ala, lo que contribuye a una mejor estabilidad y control durante el vuelo.

Es importante tener en cuenta que el ángulo de barrido puede variar en diferentes secciones del ala, con una mayor inclinación hacia la punta del ala para mejorar el rendimiento en maniobras y reducir las puntas afiladas.

Figura 28. Ángulo de barrido [16]

La figura 28 representa parámetros que influyen a la hora de calcular el ángulo de barrido:

Root Chord (Cuerda en la Raíz): Se refiere a la longitud de la sección de la raíz del ala de un avión. La "cuerda" de un ala es la distancia entre el borde de ataque y el borde de fuga de la sección del ala. La raíz del ala es la parte que se conecta al fuselaje del avión.

Tip Chord (Cuerda en la Punta): Es la longitud de la sección de la punta del ala. La "punta" del ala es la sección más alejada de la raíz y, por lo general, es más estrecha.

Estas medidas son esenciales para describir la forma y propiedades aerodinámicas de las alas, y el ángulo de barrido se relaciona con la orientación de estas cuerdas a medida que avanzan desde la raíz hacia la punta del ala.

Se fija el valor del sweep angle o ángulo de barrido en un valor de 31,9°, según su certificado de EASA [11]

Sweep angle = 31.9°

Universidad deValladolid

4.5.4. COEFICIENTE DE SUSTENTACIÓN

En este apartado se calcula el coeficiente máximo y mínimo ya que son los valores más importantes a la hora de simular el vuelo.

El coeficiente máximo de sustentación (CL max) entra en el análisis de restricciones durante las fases de despegue y aterrizaje. Rangos típicos para CL max se presentan en la Figura 29.

Este parámetro estará determinado por el borde de salida o borde de fuga (trailing Edge), es la parte posterior del ala de un avión. Esta parte del ala que se encuentra detrás del borde de ataque (leading edge).

El borde de salida puede tener una forma curva o recta, también puede incluir diferentes componentes, como flaps, slats, alerones y superficies de control, que son utilizados para controlar la sustentación y el movimiento del avión durante el vuelo. Estos dispositivos se encuentran en el trailing edge y se utilizan para modificar la forma del ala y ajustar las características aerodinámicas del avión en diferentes fases del vuelo, como despegue, aterrizaje o maniobras en el aire.

El máximo de despegue el coeficiente de sustentación suele ser el 80% del valor de aterrizaje.

La tabla presentada en la Figura 29 tomada del Aircraft Engine Design [4]proporciona el CL máx. típico para carga y pasajeros, se distingue la diferencia entre alas sin slat, y en el ala con un slat en el borde de ataque tendrá CL max mayor.

En el caso específico de estudio, se elige un Trailing Edge doble, con un slat. De modo que se tomará como valor de aterrizaje 2.8, por lo tanto, C_{Lmax} será 2.3.

High lift device			1
Trailing edge	Leading edge	Takeoff	Landing
Plain		$1.4 \rightarrow 1.6$	$1.7 \rightarrow 2.0$
Single slot		$1.5 \rightarrow 1.7$	$1.8 \rightarrow 2.2$
Fowler		$2.0 \rightarrow 2.2$	$2.5 \rightarrow 2.9$
Double sltd.		$1.7 \rightarrow 2.0$	$2.3 \rightarrow 2.7$
Double sltd.	Slat	$2.3 \rightarrow 2.6$	$2.8 \rightarrow 3.2$
Triple sltd.	Slat	2.4 ightarrow 2.7	$3.2 \rightarrow 3.5$

Figura 29. CLmax para aviones de pasajeros [4]

4.5.5.COEFICIENTE DE RESITENCIA AERODINÁMICA (C_D) Y COEFICIENTE DE RESITENCIA AERODINÁMICA ADICIONAL (C_{DR})

En este apartado se procede a calcular diferentes coeficientes esenciales de cara a simular correctamente las fases del vuelo en AEDsys.

Para la posterior simulación se debe calcular el C_{DR} , que se refiere a la resistencia aerodinámica adicional, causada por situaciones externas, como por ejemplo resistencia debido a las solapas de las alas (flaps), frenadas de emergencia con paracaídas u otra resistencia por materiales externos

Para hallar sus valores se acude al Aircraft Engine Design [4], en el cual se representan diferentes gráficas.

En la figura 30 se representa el coeficiente de resistencia aerodinámica mínimo (C_{Dmin}) en aviones de pasajeros.

Esta imagen representa los valores más usuales según crece el número de mach, o lo que es lo mismo, según avanzan las fases del vuelo,

Se toma el valor en el punto de despegue, ya que es el punto que interesa en el estudio, porque es el punto más restrictivo.

Figura 30. Coeficiente de resistencia aerodinámica mínimo en aviones de pasajeros [4]

La figura 31 representa el coeficiente de resistencia aerodinámico (C_{D0}), en esta imagen se representa el coeficiente de resistencia aerodinámico en función del número de Mach, al igual que en la figura 30.

Figura 31. Coeficiente de resistencia aerodinámica [4]

Se toma como se ha explicado anteriormente, el valor C_{D0} de en el punto de despegue $C_{D0} = 0.016$ que es el punto que interesa de cara a realizar la simulación.

Según el Aircraft Engine Design [4]en caso de los vuelos comerciales se supondrá el coeficiente de resistencia aerodinámico adicional constante durante la totalidad del vuelo, y se especifica que este parámetro tiene valor nulo, por lo que se asume que $C_{DR} = 0$

Esto se debe a que el valor hallado de las variables $C_{D0} \ y \ C_D$ son muy pequeños, por lo que el coeficiente de resistencia aerodinámico adicional no afectará en los cálculos.

Estas propiedades se necesitarán para calcular los requerimientos de empuje mediante el programa AEDsys posteriormente.

4.5.6. Grado de carga (THROTTLE RATIO)

El throttle ratio (grado de carga) es una medida de la relación entre la potencia máxima y la potencia mínima de un motor de turbina de gas. Se define como la relación entre la velocidad del aire en la tobera de escape del motor en su máxima potencia y la velocidad del aire en la tobera de escape del motor en su mínima potencia.

El throttle ratio es una medida importante para el diseño y la selección de motores de turbina de gas, ya que afecta la eficiencia y el rendimiento del motor. Un throttle ratio alto indica que el motor es capaz de producir mucha potencia en relación con su potencia mínima, lo que puede ser útil para aplicaciones que requieren una gran cantidad de energía, como los aviones de combate. Un throttle ratio bajo indica que el motor es más eficiente a potencias más bajas, lo que puede ser más adecuado para aplicaciones como aviones comerciales.

$$TR = \text{throttle ratio} = \theta_{0break} = \frac{T_{4tmax}}{T_{4tSL}} = \frac{273.15 + 38.05}{288.15} = 1,08$$
 Ec (4.6)

Figura 32. Theta break en función de la relación de compresión [4]

En la figura 32 se muestra una representación gráfica del comportamiento de πc (relación de compresión) en relación con θ_{0break} para diferentes curvas de T_{4tmax}

Esta gráfica proporciona información sobre el rendimiento y las condiciones de operación de un motor a reacción en diferentes puntos de su ciclo termodinámico.

- πc es la relación de compresión, que indica cuánto se comprime el aire en la etapa de compresión del motor.
- θ_{0break}se refiere a la variable termodinámica que marca una transición en el proceso termodinámico del motor.
- T_{4tmax} se refiere a la temperatura máxima en la turbina (T_{4t}) en un motor a reacción.representa la temperatura después de la expansión en la turbina

La temperatura máxima en la turbina es un parámetro crítico porque determina la cantidad de energía disponible para impulsar la turbina y, finalmente, el compresor. Un T_{4tmax} más alto indica una mayor cantidad de energía disponible, lo que puede traducirse en un mejor rendimiento del motor es un indicador clave del rendimiento térmico de un motor a reacción.

La línea horizontal superior en la figura representa el límite máximo de la relación de compresión (π c). Este valor es controlado por el sistema de gestión del motor para evitar operaciones fuera de los límites seguros. Si π c supera este límite, el sistema ajusta la temperatura máxima para mantener el motor dentro de condiciones seguras. Esta línea refleja la restricción impuesta por el control del motor para prevenir situaciones de riesgo, como una relación de compresión excesiva o un sobrecalentamiento de la turbina.

El punto de transición donde se cambia de limitar πc a limitar T4t se conoce como θ_{0break} . Por lo tanto, en cualquier condición de vuelo en la que θ_0 sea distinto a θ_{0break} , el motor no podrá operar simultáneamente con su máximo valor de πc y su máxima temperatura

En consecuencia, cuando θ_0 es menor a θ_{0break} , el motor puede operar en su relación de compresión máxima, pero con una T_{4t} menor a la máxima, lo que resulta en un empuje específico menor al nominal. Por otro lado, cuando θ_0 es mayor a θ_{0break} , el motor opera a T_{4tmax} , pero con un valor de π c menor al máximo.

Es por esta razón que es importante que el motor opere lo más cercano posible al valor de θ_{0break} . Por lo tanto, la elección de θ_0 durante la fase de diseño es crucial. Es importante destacar que un diseño con θ_{0break} = 1 implica el máximo empuje al nivel del mar (TSL)

4.6. CÁLCULO DE LOS REQUERIMIENTOS DEL VUELO MEDIANTE AEDsys

En este capítulo se calculan los requerimientos necesarios a cumplir para que el vuelo suceda satisfactoriamente, serán de especial relevancia los datos del empuje necesario en cada etapa estudiada

Figura 33. Panel principal Software AEDsys [5]

En primer lugar, desde el panel principal, representado en la figura 33, se selecciona el modelo específico de avión entre sus posibilidaes (Aircraft drag model), el tipo de motor (engine model) en el caso de estudio, un turbofán de alto grado de derivación (High Bypass turbofán) especificando su:

Bypass ratio (BPR) = 9.6

Theta break (Throttle Ratio) = 1.08

y en unidades del Sistema Internacional.

	×
9.6	Done
1,08	
	9.6 1,08

Figura 34. Datos de entrada motor Aedsys

Respecto a las condiciones ambientales, el estudio se realizará en unas condiciones de día estándar

Ahora se presentan las relaciones $\frac{W_{TO}}{s}$ y $\frac{T_{SL}}{W_{TO}}$, que definen el punto de diseño del motor, se puede hallar de dos formas, en este estudio, primero se usará el módulo "Constraint" del programa AEDsys.

Se configura el punto de diseño, como bien se ha explicado previamente, en el tiempo operativo mayoritario, para esto se calculará el punto medio de los tramos a velocidad de crucero, donde mayor tiempo operará el motor.

Se estudiarán los 4 tramos de crucero presentados en el apartado 4.1 "Detalles del vuelo", gracias a los datos de Flightaware visibles en el Anexo A, se puede saber la velocidad de la aeronave y el tiempo en el que empieza y acaba esa fase de crucero, de modo que se podrá hallar la distancia de cada tramo de crucero:

- El primer tramo de crucero opera a una altura de 9144m, empieza a las 00:40 y acaba a las 04:40, esta etapa a altura constante tiene un tramo del 80% a 720 km/h, y un tramo del 20% aproximadamente a 814km/h, para simplificar, se tomará velocidad de crucero a 720km/h de modo que transcurre 2880km en esta etapa.
- El segundo tramo opera a una altura de 10973m, empieza las 05:12 y acaba a las 06:27 a una velocidad media aproximada de 910km/h, de modo que transcurre 1088km en esta etapa.
- El tercer tramo opera a una altura de 11582m, empieza las 06:30 y acaba a las 08:26 a una velocidad media aproximada de 890km/h, de modo que transcurre 1823km en esta etapa.
- El cuarto tramo opera a una altura de 12192m, empieza las 08:29 y acaba a las 11:24 a una velocidad media aproximada de 871km/h, de modo que transcurre 2600km en esta etapa.

El punto de diseño será por lo tanto a 10855m, con una velocidad de 856.8 km/h

En este se halla el número de mach, igual a 0,7

Tras el diseño preliminar de restricciones se han obtenido los valores de empuje específico TT O/WT O y carga alar WT O/S, con ellos

En primer lugar se introducen los datos de las dos etapas a estudiar en el Software AEDsys, como se puede ver en la figura 35, esta aporta una gráfica que representan las relaciones explicadas previamente: $\frac{W_{TO}}{s}$ y $\frac{T_{SL}}{W_{TO}}$,

Se representan en la figura 36 dos curvas de diferentes etapas del vuelo, la otra etapa elegida será el despegue, ya que teóricamente es la etapa más restrictiva en cuanto a empuje

Figura 36. Representación del punto de diseño escogido

En la figura 36 se selecciona como punto de diseño el punto de corte entre ambas curvas, de modo que se definen los valores:

$$\frac{W_{TO}}{S} = 6300Pa = 131.5 \frac{lbf}{ft^2}$$
$$\frac{T_{SL}}{W_{TO}} = 0.28$$

La segunda forma que se usará para hallar el punto de diseño es mediante la gráfica aportada por el libro Aircraft Engine Design, Figura 37, [4], no está representado el A350-900, pero sí dos aeronaves de familias similares, del A330-200 o A340-300, se elegirá el punto del A330-200 ya que los valores tienen un porcentaje de coincidencia muy alto.

$$\frac{W_{TO}}{S} = 132 \frac{lbf}{ft^2} = 6320Pa$$

$$\frac{T_{SL}}{W_{TO}} = 0.27$$

Se continua el cálculo con los datos hallados experimentalmente con AEDsys y posteriormente se introducen todos los datos y el software calcula automáticamente el definido como empuje a altura de nivel del mar T_{SL} =713440N

Wing Loading W/S	6300	Pa
Thrust Loading T/W	0,28	
Weight Fraction at Start (Beta)	1	
Gross Takeoff Weight - W	2548000	N
Thrust @ SL Static - T	713440	N
Wing Area - S	443	m^2

Figura 38. Datos de entrada aeronave AEDsys

AEDsys aproxima el peso en vacío de la aeronave mediante los datos introducidos y utiliza la fomula visible en la figura 39:

El software Aedsys [5] calcula automáticamente esta relación de pesos seleccionando el tipo de aeronave a estudiar, en este caso se selecciona un avión comercial de pasajeros como es el Airbus A350.

De modo que el cálculo se realiza con valores de A=1,05 y B=0,045

Figura 39. Modelo de peso en vacío aeronave

Posteriormente se presenta los valores de salida aportados por Aedsys realizado con los datos de las figuras 38 y 39, establece el valor de un parámetro de vital importancia a la hora de calcular el empuje necesario, como es el peso en vacío de la aeronave, en el Anexo B se puede comprobar el resultado de salida del peso en vacío de la aeronave

 $Peso \ en \ vacio = \ 1377558N = \ 140567kg$

Se comprueba que el valor hallado experimentalmente prácticamente coincide con el valor del peso en vacío teórico hallado anteriormente en el apartado "4.4.1 Peso de la aeronave en vacío", cuyo valor es 140488 kg, en este caso experimentalmente

el valor estimado es de 140567kg, tomando como referencia el valor teórico, hay una diferencia del 0.0562%, prácticamente nula, por lo que se acepta el valor hallado experimentalmente y se continua el estudio.

Posteriormente, en la figura 40, se representan con el módulo "Mission" del software AEDsys todas las etapas que constituyen el vuelo exceptuando el aterrizaje, ya que se considera que no es un punto restrictivo en cuanto a requerimientos de empuje.

#	Туре	Name
1	D	Despeque
2	С	Ascenso 1
3	С	Ascenso 2
4	С	Ascenso 3
5	С	Ascenso 4
6	E	Crucero 1
7	С	Ascenso hasta crucero 2
8	E	Crucero 2
9	С	Ascenso hasta crucero 3
10	E	Crucero 3
11	С	Ascenso hasta crucero 4
12	E	Crucero 4
13	M	Descenso 1
14	M	Descenso 2
15	M	Descenso 3
16	M	Aproximación

Mission # 1 - Combat 1

Figura 40. Etapas del vuelo estudiadas con el Software AEDsys

La temperatura se selecciona automáticamente al configurar el estudio en condiciones ambientales estándar, comenzando el despegue en una temperatura de 288k

El número de mach ha sido calculado gracias a los datos aportados por Flightaware en cada punto, sabiendo la velocidad el software AEDsys calcula automáticamente el número de mach

$$M = \frac{v(m/s)}{c(m/s)} \qquad \qquad Ec (4.7)$$

Donde v representa la velocidad en ese punto y c representa la velocidad del sonido en cada punto.

Además se fija el valor de otros parámetros necesarios en el estudio posterior

El CLmax se mantendrá constante en un valor de 2,3 como se ha explicado anteriormente

El CDR es 0 durante todo el vuelo, según el Aircraft Engine Design [4]

kTO (velocity ratio at takeoff) representa la proporción de velocidad entre el punto a estudiar y el despegue

4.6.1.ESTUDIO DE LAS FASES DEL VUELO

DESPEGUE

Para calcular la fase del despegue, que será la más restrictiva en cuanto a empuje, se simulará desde los 0 metros ya que es el punto inicial donde comienza esta etapa.En la figura 41 se presentan los datos necesarios por AEDsys para realizar el cálculo, a continuación se especifica los valores introducidos:

$$M = 0.023$$

El CLmax se mantendrá el valor de 2,3 en el despegue, como bien se ha mantenido el que aparece en el Aircraft Engine Design

El CDR será 0, y se mantendrá constante durante todo el estudio

kTO (velocity ratio at takeoff) representa la proporción de velocidad entre el punto a estudiar y el despegue, en este caso ya que se calcula ese punto justamente, el valor de kTO será 1

Figura 41. Datos de entrada en la fase de despegue

A partir de esta etapa las imágenes sacadas del Software AEDsys se se pueden ver en Anexo B, de modo que se presentan los datos en tablas

FASES DE ASCENSOS

Hasta llegar al primer régimen de crucero la fase de ascenso se divide en 4 etapas.

Las etapas de ascenso suele ser etapas restrictivas para el motor debido a que sigue habiendo un gran peso de combustible y los requisitos de velocidad ascensional son exigentes, por lo que estas 4 etapas de ascenso conllevarán un gran requisito propulsivo.

(# of increments) se refiere al número de incrementos o pasos en los que se divide un análisis de una etapa determinada. Será 1 ya que no será necesario dividirlo en más etapas, ya que previamente ya se dividió el ascenso en 4 etapas.

	ASCENSO 1	ASCENSO 2	ASCENSO 3	ASCENSO 4
Altura inicial (m)	678	1631	4488	7216
Temperatura (K)	283.743	277.551	258.998	241.299
Velocidad inicial (m/sec)	97.9226	105.748	155.972	164.317
Numero de Mach Inicial	0.2	0.31665	0.483479	0.527697
Altura final (m)	1631	4488	7216	9144
Velocidad final (m/sec)	110.208	1654.519	164.321	175
Numero de Mach final	0.33	0.509972	0.527697	0.577149
CDR	0	0	0	0
# de incrementos	1	1	1	1

Tabla 10.

Fases de ascenso desde los Om hasta la primera etapa de crucero

ETAPAS DE CRUCERO

Estas etapas representan las fases en las que la aeronave vuela a altura y velocidad prácticamente constante, según los datos y las gráficas de los datos aportados por Flightaware [6]se distinguen cuatro fases diferentes de crucero a distintas alturas.

	CRUCERO 1	CRUCERO 2	CRUCERO 3	CRUCERO 4
Altura (m)	9144	10973	11582	12192
Temperatura (K)	228.7994	216.95	216.65	216.65
Velocidad inicial (m/sec)	176.774	217.13	212.12	208.01
Numero de Mach Inicial	0.583	0.737	0.72	0.705
CDR	0	0	0	0
Distancia (km)	2880	1088	1823	2600

Tabla 11. Etapas de crucero a 9144m, 1973m, 11582m y 12192m

ASCENSOS ENTRE ETAPAS DE CRUCERO

Estas son pequeños ascensos que se realizan entre diferentes alturas de crucero, son pequeños reajustes de velocidad que se hacen en función de cada vuelo

	ASCENSO		
	HASTA	ASCENSO HASTA	ASCENSO HASTA
	CRUCERO 2	CRUCERO 3	CRUCERO 4
Altura inicial (m)	9144	10973	11582
Temperatura (K)	228.8	216.95	216.65
Velocidad inicial (m/sec)	176.77	217.13	212.12
Numero de Mach Inicial	0.583	0.737	0.72
Altura final (m)	10973	11582	12192
Velocidad final (m/sec)	222.6	212.44	208.02
Numero de Mach final	0.737	0.72	0.705
CDR	0	0	0
# de incrementos	1	1	0

Tabla 12. Fases de ascenso, desde 9144-10973m, 10973-11582m y 11582-12192m

FASE DE DESCENSO

La fase de descenso, desde la última etapa de crucero, hasta la aproximación, se dividirá en 3 etapas de descenso.

El ángulo de descenso se fija en 3º según los datos aportados por Airbus

	DESCENSO 1	DESCENSO 2	DESCENSO 3
Altura inicial (m)	12192	6561	3589
Temperatura (K)	216.65	245.5475	264
Velocidad inicial (m/sec)	208.01	194.123	114.7456
Numero de Mach Inicial	0.705	0.618	0.3523
Altura final (m)	6561	3589	2400
Velocidad final (m/sec)	194.35	114.9241	91.39765
Numero de Mach final	0.6187	0.352284	0.27617
CDR	0	0	0
Ángulo de descenso	3	3	3
# de incrementos	1	1	1

Tabla 13. Fases de descenso , desde los 12192-6561m, 6561-3589m y 3589-2400m

APROXIMACIÓN

La fase de aproximación va desde los 2400 hasta los 678m, donde empieza la etapa de aterrizaje

	APROXIMACIÓN
Altura inicial (m)	2400
Temperatura (K)	272.55
Velocidad inicial (m/sec)	91.4
Numero de Mach Inicial	0.2762
Altura final (m)	678
Velocidad final (m/sec)	74.28
Numero de Mach final	0.22
CDR	0
Ángulo de descenso	3
# de incrementos	1

Tabla 14.	Fase de aproximación desde los 2400m hasta los 678m
-----------	---

Se genera el fichero correspondiente a la figura 42 donde se puede analizar cada variable por separado:

	Namo	Rota	Dra	Thrust
neg	Name	initial	DIA	y infust
		Inicial	(N) (N)
1	Despeg	1,00000	25278	3 610676
2	Ascens	0,99650	16185	6 424445
3	Ascens	0,99194	13420	6 327046
4	Ascens	0,97955	13012	0 224994
5	Ascens	0,96831	13633	8 162446
6	Crucer	0,94847	13439	9 134399
7	Ascens	0,75421	9638	7 124125
8	Crucer	0,74259	9353	3 93533
9	Ascens	0,69532	8641	9 104943
10	Crucer	0,69044	8559	9 85599
11	Ascens	0,62373	7736	9 95517
12	Crucer	0,62255	7818	6 78186
13	Descen	0,53330	8148	3 6682
14	Descen	0,53294	8143	3 6682
15	Descen	0,53270	8139	9 6682
16	Aproxi	0,53255	8137	6682

4.6.2. VARIACIÓN DE LA FRACCIÓN DEL PESO DURANTE EL VUELO

En un vuelo, la fracción del peso (β) se refiere a la proporción del peso total de la aeronave en relación con su peso máximo al despegue. Esta fracción se expresa generalmente como un porcentaje o una fracción decimal.

La fracción del peso es importante en la planificación y el control del vuelo, ya que está relacionada con la carga útil, la cantidad de combustible y otros factores que afectan el rendimiento de la aeronave. La fracción del peso también influye en otros aspectos del vuelo, como los límites de carga estructural de la aeronave.

En la etapa inicial del vuelo, la fracción del peso será cercana al 100% ya que la aeronave está en su peso máximo al despegue. A medida que se consume combustible, la fracción del peso disminuye gradualmente. Esto puede afectar el rendimiento de la aeronave, incluyendo la velocidad, la altitud máxima alcanzada, la capacidad de ascenso y el alcance.

$$W = \beta * W_{TO} \qquad Ec (4.8)$$

Mediante los cálculos de AEDsys se obtienen los valores de *Beta initial* (β) y *Beta final* (β) en cada etapa representados en la figura 43

Figura 43. Gráfica análisis de β en el vuelo completo

4.6.3. VARIACIÓN DEL DRAG DURANTE EL VUELO

El "drag" o arrastre en un avión se refiere a la resistencia aerodinámica que se opone al avance de la aeronave. El arrastre es causado por varios factores, como la resistencia al rozamiento de las superficies del avión, la resistencia inducida por la producción de sustentación y otros efectos aerodinámicos.

Durante un vuelo, el drag experimentado por un avión puede variar en diferentes etapas. En la fase de despegue, el avión debe vencer una gran resistencia al rozamiento en la pista, conocida como arrastre de rodadura. A medida que el avión se eleva, se encuentra con el arrastre inducido, que es causado por la producción de sustentación para mantener el vuelo. Este arrastre inducido está relacionado con el ángulo de ataque, la velocidad y el diseño de las alas.

Durante las etapas vuelo en crucero, el avión se esfuerza por mantener una velocidad y altitud constantes. Aquí, el arrastre principal proviene del conocido como "parasite drag" referido a la porción del arrastre total de un avión que no está relacionada con la producción de sustentación, incluye el arrastre de forma (debido a la resistencia del cuerpo y las superficies exteriores del avión), el arrastre de fricción (debido al rozamiento de las superficies con el aire) y el arrastre de interferencia (causado por las interacciones entre las diferentes partes del avión).

El arrastre también puede verse afectado por condiciones atmosféricas, como la densidad del aire, la temperatura y la humedad. Por ejemplo, en altitudes elevadas donde la densidad del aire es menor, el avión puede experimentar un arrastre reducido debido a una menor resistencia del aire.

Reducir el arrastre tiene una gran importancia, ya que un menor arrastre permite al avión volar más eficientemente, lo que resulta en un menor consumo de combustible y una mayor autonomía. Hay diferentes formas de minimizar el arrastre y reducir la resistencia al avance, esto se puede hacer mediante el uso de técnicas aerodinámicas avanzadas, perfiles aerodinámicos eficientes, mejoras en la estructura y otros dispositivos, como winglets o alerones ajustables.

En la figura 44 se muestra los valores obtenidos que representan el drag en cada etapa, se puede comprobar que el despegue y las fases de ascenso son las etapas más restrictivas

Figura 44. Gráfica análisis de β en el vuelo completo

4.6.4. EMPUJE REQUERIDO

El análisis de restricciones se basa en el empuje efectivo, mientras que el análisis del ciclo produce empuje no efectivo, el empuje no efectivo es ligeramente superior al empuje efectivo, en un 3 a 10% dependiendo de la situación y la distancia desde el punto de diseño final.

Es por esto, que a modo de simplificación se tomará el valor del empuje no instalado o empuje no efectivo como un 5% mayor que el empuje efectivo

Por lo que se calcula el empuje requerido y se presenta en la tabla 15:

#	Etapa	Empuje Efectivo	Empuje no efectivo
		(N)	(N)
1	Despegue	610676	641209.8
2	Ascenso 1	424445	445667.25
3	Ascenso 2	327046	343398.3
4	Ascenso 3	224994	236243.7
5	Ascenso 4	162446	170568.3
6	Crucero 1	134399	141118.95
7	Ascenso hasta	124125	130331.25
	altura de crucero 2		
8	Crucero 2	93533	98209.65

9	Ascenso hasta	104943	110190.15
	altura de crucero 3		
10	Crucero 3	85599	89878.95
11	Ascenso hasta	95517	100292.85
	altura de crucero 4		
12	Crucero 4	78186	82095.3
13	Descenso 1	6682	7016.1
14	Descenso 2	6682	7016.1
15	Descenso 3	6682	7016.1
16	Aproximación	6682	7016.1
	Tabla 15. E	mpuje requerido	

Ahora teniendo en cuenta que el avión tiene dos motores, el empuje requerido por cada motor será:

#	Etapa	Empuje Efectivo (N)	Empuje no efectivo (N)
1	Despegue	305338	320604.9
2	Ascenso 1	212222.5	222833.625
3	Ascenso 2	163523	171699.15
4	Ascenso 3	112497	118121.85
5	Ascenso 4	81223	85284.15
6	Crucero 1	67199.5	70559.475
7	Ascenso hasta altura de crucero 2	62062.5	65165.625
8	Crucero 2	46766.5	49104.825
9	Ascenso hasta altura de crucero 3	52471.5	55095.075
10	Crucero 3	42799.5	44939.475
11	Ascenso hasta altura de crucero 4	47758.5	50146.425
12	Crucero 4	39093	41047.65
13	Descenso 1	3341	3508.05
14	Descenso 2	3341	3508.05
15	Descenso 3	3341	3508.05
16	Aproximación	3341	3508.05

Tabla 16.Empuje requerido por motor

4.7. SIMULACIÓN GASTURB 14

En este capítulo se realiza la simulación del motor con el Software Gasturb 14, como bien se explica en los objetivos del estudio, se intenta simular el motor Rolls Royce Trent XWB-84 con e mayor grado de precisión posible, esto se complementa con los datos hallados en el capítulo 4.6 con el sofware AEDsys, que especifican los requerimientos de empuje que tiene que aportar la aeronave para el correcto desempeño del vuelo elegido, se tiene en cuenta que cada avión cuenta con dos motores.

Para comenzar la simulación se seleccionará la interfaz principal del programa Gasturb 14 mostrada en la figura 45, el módulo para el modelo específico "3 Spool TurboFan", donde se generan por defecto unos datos predeterminados, que posteriormente se particularizarán y se introducirán los datos obtenidos de la ficha técnica del Rolls Royce Trent XWB-84 en el análisis anterior

Se selecciona este modelo predeterminado ya que el motor Rolls-Royce Trent XWB-84 es un turbofan de tres etapas (three-spool turbofan). El término "three-spool" se refiere a la presencia de tres conjuntos de álabes de compresor y turbinas en el motor.

En el caso del Trent XWB-84, los tres conjuntos de álabes corresponden al compresor de baja presión (LP), al compresor intermedio (IP) y al compresor de alta presión (HP). Cada compresor está conectado a una turbina correspondiente que extrae energía de los gases de escape.

El compresor de baja presión (LP) es el primer conjunto de álabes después del ventilador y es responsable de comprimir el aire entrante. Luego, el aire comprimido pasa al compresor intermedio (IP), que lo comprime aún más antes de dirigirlo al compresor de alta presión (HP). El compresor de alta presión (HP) es el último conjunto de álabes antes de que el aire comprimido se mezcle con el combustible y se queme en la cámara de combustión.

Esta configuración permite un diseño más eficiente y un mejor control de los flujos de aire y de la potencia generada por el motor ya que cada conjunto de álabes de compresor y turbina puede girar a velocidades óptimas para optimizar el rendimiento y la eficiencia del motor.

Figura 45. Interfaz principal de Gasturb y turbofán escogido [3]

4.7.1.PUNTO DE DISEÑO

En primer lugar, para un correcto estudio en Gasturb, hay que definir el punto de diseño, en este trabajo se utiliza el módulo "Performance" ya que se estudios parámetros que el módulo básico no aportaría.

Como se ha demostrado anteriormente en el capítulo 4.6, se elegirá el punto de diseño a 10855m, con una velocidad de 856.8 km/h. En este punto se halla el número de mach con la Ec (4.19), con un valor resultante de 0,7 y se introduce en el apartado de condiciones ambientales.

Figura 46. Módulo de configuración de punto de diseño [3]

Las imágenes con valores de entrada y resultados aportadas por Gasturb 14, como los presentados en la tabla 17, se encuentran en el Anexo E

Propiedad	Valor
Altura (m)	10855
Delta T ISA (K)	0
Humedad relativa	
(%)	0
Número de Mach	0.7

Tabla 17.

Condiciones ambientales en el punto de diseño [3]

Tras fijar los valores de las condiciones ambientales, en el sistema principal se introducen los datos del motor hallados en el certificado aportado por EASA.[9]

Las relaciones de compresión se han dividido entre las etapas de HPC, IPC y LPC de modo que se obtenga un punto cercano a la relación de compresión máxima de 50 a 1.

La T_{4tmax} se sabe que es 1850 K, tomando como suposición que el punto de despegue será el más restrictivo y tendrá la mayor T_{4t} del vuelo, es por esto que se supondrá una temperatura en el punto de diseño de 1600K, luego se comprobará si hay algún punto por encima de la T_{4tmax} , si eso ocurre, habría que repetir el proceso con otra temperatura de diseño.

El Overboard Bleed o sangrado de cabina, El aire sangrado se refiere al aire tomado de los motores de la aeronave para diversos sistemas a bordo, como la presurización y la ventilación de la cabina. Sin embargo, la cantidad de aire sangrado y su distribución se determina en gran medida por el diseño y las especificaciones del fabricante de cada aeronave en particular.

es complicado encontrar el valor ya que no son datos públicos, por lo que se tomará como referencia de los requisitos de la European Aviation Safety Agency (EASA), que establece que debe aportarse un mínimo de 8 g/(s·pax), de modo que se calcula el sangrado total.

$$Overbleed = (348 \ personas + 12 \ trabajadores) * 0,008 \frac{kg}{s * persona} = 2.848 \frac{kg}{s} \qquad Ec \ (4.9)$$

Este sería el mínimo requerido, se sobredimensionará de manera que se tomará el valor de $3.5 \frac{kg}{s}$ en la aeronave, pero como Gasturb 14 estudia un motor por separado, el dato introducido será $1.75 \frac{kg}{s}$

Los demás parámetros visibles en la figura 49 se han mantenido por defecto los propuestos por el programa Gasturb 14

Property	Unit	Value
Intake Pressure Ratio		1
No (0) or Average (1) Core dP/P		1
Inner Fan Pressure Ratio		1,5
Outer Fan Pressure Ratio		1,5
Core Inlet Duct Press. Ratio		1
IP Compressor Pressure Ratio		3,5
Compr. Interduct Press. Ratio		1
HP Compressor Pressure Ratio		9,5
Bypass Duct Pressure Ratio		1
Inlet Corr. Flow W2Rstd	kg/s	1500
Design Bypass Ratio		9,6
Burner Exit Temperature	К	1600
Burner Design Efficiency		0,9995
Burner Partload Constant		1,6
Fuel Heating Value	MJ/kg	43,124
Overboard Bleed	kg/s	1,75
Power Offtake	kW	50
HP Spool Mechanical Efficiency		1
IP Spool Mechanical Efficiency		1
LP Spool Mechanical Efficiency		1
Burner Pressure Ratio		0,95
IPT Interd. Ref. Press. Ratio		0,992
LPT Interd. Ref. Press. Ratio		1
Turbine Exit Duct Press Ratio		0,99

Figura 47. Datos introducidos en el sistema principal [3]

Respecto a los datos en el sistema secundario de aire, se introducirán los datos de las diferentes etapas de las turbinas, en este caso una etapas de turbina HP, dos etapas de turbina IP y seis etapas de turbina LP.

Los demás datos se mantienen sus valores por defecto aportados por Gasturb.

Simulando se obtiene como output los resultados del punto de diseño representado en la figura 48:

	W		Т				P		WE	Rstd				
Station	kg/s		Κ			k	Pa		ko	g/s	FN	=	68,66	kN
amb	2		217,	, 59		23	,154	1	-		TSFC	=	13,9385	g/(kN*s)
2	522,227		238,	,96		32	,125	5 1	500,	000	WF	=	0,95698	kg/s
13	472,961		272,	,44		48	,187	7	967,	021	s NOx	=	0,86824	-
21	49,267		272,	,75		48	,187	7	100,	788	BPR	=	9,6000	
22	49,267		272,	,75		48	,187	7	100,	788	Core Eff	=	0,5478	
24	49,267		411,	, 97		168	,656	5	35,	,391	Prop Eff	=	0,7583	
25	49,267		411,	, 97		168	,656	5	35,	,391	P3/P2	=	49,875	
3	47,517		823,	,66		1602	,228	3	5,	080	P2/P1	=	1,00000	
31	41,260		823,	,66		1602	,228	3			P22/P21	=	1,00000	
4	42,217	1	.600,	,00		1522	,110	5	6,	622	P25/P24	=	1,00000	
41	45,518	1	.547,	,91		1522	,110	5	7,	023	P4/P3	=	0,95000	
42	45,518	1	.176,	,83		392	,588	3			P44/P43	=	0,99200	
43	48,474	1	.156,	,50		392	,588	3			P48/P47	=	1,00000	
44	48,474	1	.156,	,50		389	,447	7			P6/P5	=	0,99000	
45	48,474	1	.156,	,50		389	,447	7	25,	266	P16/P13	=	1,00000	
46	48,474	1	.037,	,20		236	,264	1			P16/P6	=	1,06828	
47	48,474	1	.037,	,20		236	,264	1			P5/P2	=	1,41831	
48	48,474	1	.037,	,20		236	,264	1	39,	,441	V18/V8,i	d=	0,63829	
49	48,474		722,	,10		45	,563	3			A8	=	0,74035	m 2
5	48,474		722,	,10		45	,563	3	170,	646	A18	=	4,13186	m 2
8	48,474		722,	,10		45	,108	3	172,	369	XM8	=	1,00000	
18	472,961		272,	, 44		48	,187	7	967,	.021	XM18	=	1,00000	
Bleed	1,750		539,	,09		387	,790)			WBld/W2	=	0,00335	
	·										ab 0		0.07504	
Efficie	ncies:	15	senti		po	Lytr		RNI		P/P	CD8	=	0,97584	
Outer	LPC	Ο,	8780)	0,	8848	0,	395	1,	,500	CD18	=	0,97000	
Inner	LPC	0,	8700)	0,	8772	0,	395	1,	,500	PWX	_	50,00	kW
IP Com	pressor	0,	8400)	0,	8652	0,	508	3,	,500	WIKLP/W2	5=	0,00000	
HP Com	pressor	Ο,	8500	-	Ο,	8811	⊥,	087	9,	,500	WBId/W25	=	0,03552	
Burner		Ο,	9995	2	~	0 - 0 - 1	0	1	0,	950	Loading	=	100,00	×
HP Tur	bine	0,	8900)	0,	8731	2,	108	3,	877	e442 th	=	0,86111	
IP Tur	bine	Ο,	9126	0	0,	9076	0,	/53	,	,648	WCHN/W25	=	0,06700	
LP Tur	bine	Ο,	9000	J	Ο,	8/90	Ο,	518	5,	,182	WCHR/W25	=	0,06000	
			1 00						1		WCIN/W25	=	0,00000	
HP Spoo	I mech E	II	1,00	100		NOM	Spa	11	153	rpm	WCIR/W25	=	0,00000	
IP Spoo	I mech E	II	1,00	100		NOM	spa	15	000	rpm	WCLR/W25	=	0,00000	
LP Spoo	I mech E	ΪΪ	1,00	000		Nom	Spd	12	800	rpm				
				 F										
	war	0	13	2 1	11V 21		r ue Conc	≠⊥ vric						
0,0	0,0000	0	40	, T	24		Gene	et T C						

Figura 48. Resultados aportados por Gasturb en el punto de diseño [3]

Analizando los valores de los parámetros más importantes y objeto de estudio, se resaltan los valores de:

$$FN = Empuje no instalado = 68,66kN$$

$$TSFC = Consumo = 13,9385 \frac{g}{(kN * s)}$$

$$WF = Fuel Flow = 0,95698 \frac{kg}{s}$$

$$BPR = Bypass ratio = 9,6$$

$$\frac{P3}{P2} = Pressure Overall Ratio = 49,875$$

Según las especificaciones del Rolls Royce Trent XWB-84 aportadas por EASA [9], este motor tiene un "*Pressure Overall Ratio*" límite máximo de 50 a 1, por lo que comprobamos que sigue dentro del correcto intervalo de funcionamiento.

A continuación el las figuras 49 y 50 se presentan los diagramas H-S y P-V, se presenta también el diagrama T-S del punto de diseño en el Anexo F.

En el diagrama H-S la posición de un punto representa las propiedades termodinámicas del fluido en un sistema, grafica la entalpía frente a la entropía.

La entalpía es una medida de la energía total del fluido, incluyendo su energía interna y la energía asociada con la presión y el volumen.

En el ciclo H-S, a medida que te desplazas hacia arriba en la gráfica, la entalpía aumenta. Las líneas diagonales hacia arriba en el diagrama representan procesos de compresión o calentamiento isentrópicos.

Una mayor entalpía indicar un aumento en la temperatura o en la energía del fluido, como en el caso de la combustión.

La entropía es una medida de la distribución de la energía en el sistema. Un aumento en la entropía indica un aumento en la aleatoriedad o desorden del sistema.

En el ciclo h-s, a medida que te desplazas hacia la derecha en la gráfica, la entropía aumenta. Las líneas horizontales en el diagrama representan procesos isentropicos, donde la entropía se mantiene constante.

Una mayor entropía puede deberse a procesos que aumentan la dispersión de la energía, como la expansión adiabática.

Se analizarán estos diagramas buscando posibles errores o fallos operativos en el motor, para esto se valorarán diferentes conceptos:

- Caídas Bruscas o Saltos en la Entropía: un cambio brusco en la entropía podría indicar un problema en el proceso que podría deberse a fugas de fluido, cambios inesperados en la temperatura o problemas en las etapas del motor.
- Cambios No Previstos en la Entalpía: variaciones inesperadas en la entalpía podrían señalar problemas en la transferencia de calor, eficiencia del combustible o en la compresión/descompresión. Esto podría deberse a fallos en componentes clave o ajustes incorrectos.
- Curvas Fuera de las Líneas Esperadas: un comportamiento que se desvíe de las líneas típicas del ciclo puede indicar ineficiencias o fallos en el rendimiento. Esto podría incluir problemas con las etapas de compresión, calentamiento, enfriamiento o expansión.
- Inconsistencias con Modelos Teóricos: si el diagrama H-S difiere significativamente de los modelos teóricos esperados para un motor en

particular, podría indicar que la simulación o el motor real no están operando según lo previsto.

En este caso el diagrama es totalmente normal, con unos valores dentro de los límites operativos por lo que se toma como correcto

Figura 49. Diagrama H-S punto de diseño

El diagrama P-V las variaciones en el volumen y la presión representan diferentes etapas del ciclo termodinámico del motor

Un aumento en el volumen durante la expansión indica una mayor capacidad del motor para realizar trabajo. En un ciclo de motor ideal, esto ocurriría durante la expansión isotérmica o adiabática, dependiendo del tipo de motor. Un mayor volumen al final de la expansión generalmente sugiere una mayor eficiencia en la conversión de energía térmica a trabajo mecánico.

Un aumento en la presión durante la compresión indica una mayor capacidad del motor para comprimir el fluido de trabajo. Este aumento de presión suele estar asociado con la adición de calor al sistema. Un aumento en la presión al final de la compresión puede indicar un rendimiento más eficiente del compresor.

Al igual que se ha realizado con el diagrama P-V, se analizará el diagrama buscando posibles fallos:

- Fugas o Pérdidas de Presión: si hay fugas en el motor, se podría observar una disminución anormal de la presión durante la compresión o una disminución rápida de la presión durante la expansión. Esto podría indicar que el motor no está sellando adecuadamente, resultando en una bajada de la eficiencia.
- Problemas en las Válvulas o Segmentos del Ciclo: fallos o problemas en las válvulas o en las etapas de admisión y escape pueden manifestarse como irregularidades en el diagrama. Por ejemplo, un cierre prematuro de una válvula de escape podría causar una rápida caída de presión durante la expansión.
- **Combustión Irregular:** problemas en la combustión, como la detonación, pueden causar picos de presión inesperados. Estos picos pueden manifestarse como anomalías en la sección de compresión del diagrama.
- Problemas en el Compresor o la Turbina: anomalías en el rendimiento del compresor o la turbina pueden reflejarse en el diagrama. Por ejemplo, una disminución significativa en la presión durante la compresión podría indicar un problema en el compresor.

De igual manera que con el diagrama anterior, el diagrama de la figura 52 es totalmente normal, por lo que se toma la hipótesis de que los cálculos son correctos.

Figura 50. Diagrama P-V punto de diseño

Figura 51. Esquema de las estaciones del turbofán

Como se puede comprobar en la Figura 51, el sangrado solamente ocurre en el compresor de alta presión, esto es debido a que el aire extraído del HPC ya ha sido comprimido a una presión relativamente alta, lo que lo hace adecuado para muchas de las aplicaciones en las que se utiliza, como la presurización de la cabina, y aunque el aire extraído del HPC puede estar a una temperatura elevada, aún no ha pasado por las etapas de alta temperatura del motor, como la cámara de combustión y la turbina. Esto significa que su temperatura es moderada en comparación con otras secciones del motor.

Además el HPC permite aprovechar la energía mecánica del compresor de alta presión. Extraer el aire aquí minimiza la pérdida de energía que ocurriría si se extrajera en etapas posteriores, donde la energía del aire ya ha sido utilizada en un mayor grado y el aire extraído del HPC suele ser más limpio y contiene menos partículas en comparación con otras secciones del motor, lo que es importante para sistemas sensibles que utilizan el aire sangrado, como sistemas electrónicos y de control

4.7.2.ESTUDIO DESPEGUE COMO PUNTO FUERA DEL DISEÑO

Para el estudio del motor en el punto fuera del diseño, se estudiará el punto más restrictivo en cuanto al empuje requerido, teóricamente, según como se explica en el Aircraft Engine Design este punto es el despegue, es por esto que se toma como suposición, y se realizan los cálculos con el módulo OD Point visible en la figura 52, introduciendo los datos del punto de despegue, más tarde se comprueba si este punto es realmente el más restrictivo y se comparan los resultados teóricos y experimentales

Figura 52. Módulo utilizado en Gasturb para el cálculo en el punto de despegue

En este caso , en el apartado de condiciones ambientales representado en la tabla 18, se particulariza el estudio a Om de altitud y un número de Mach de 0,023, ya que según el programa no es recomendable realizar el estudio con velocidad nula.

Propiedad	Valor
Altura (m)	0
Delta T ISA (K)	0
Humedad relativa	
(%)	0
Número de Mach	0.023

Tabla 18.

Condiciones ambientales en el punto de despegue

Como se puede comprobar en la figura 53, los valores del motor se mantienen, ya que se ha diseñado previamente el punto de diseño, ahora solo interesa variar el punto donde opera y sus condiciones ambientales.

Todos los demás valores se mantienen por defecto.

Property	Unit	Value
Intake Pressure Ratio		1
No (0) or Average (1) Core dP/P		1
Fuel Heating Value	MJ/kg	43,124
Overboard Bleed	kg/s	1,75
Rel. Overboard Bleed W_Bld/W25		0
Recirculating Bleed W_reci/W25		0
Power Offtake	kW	50
HPC Spool Speed ZXNH		1
Compressor Delta VG Setting[deg		0
d_HPT Efficiency / d_XN_HP		0
d_IPT Efficiency / d_XN_IP		0
d_LPT Efficiency / d_XN_LP		0

Figura 53. Datos introducidos en el sistema principal en el punto de despegue

	W		т		Р			WR	std				
Statio	on kg/s		K		kP	a		kg	/s	FN	=	326,99	kN
amb		2	288,1	5	101,	325				TSFC	=	7 , 5282	g/(kN*s)
2	1299,489) 2	288,1	8	101,	363	129	99,	077	WF	=	2,46163	kg/s
13	1175,532	2	322,1	1	143,	944	87	74,	878	s NOx	=	1,84949	
21	123,958	3 3	322,4	2	143,	944	9	92,	299	BPR	=	9,4833	
22	123,958	3	322,4	2	143,	944	9	92,	299	Core Ef	f =	0,4910	
24	123,958	3 4	470,0	8	500,	649	3	32,	043	Prop Ef	f =	0,0586	
25	123,958	3 4	470,0	8	500,	649	3	32,	043	P5/P2	=	1,36348	EPR
3	122,208	8 8	395,4	8 4	213,	105		5,	181	P2/P1	=	1,00000	
31	106,465	6 8	395,4	8 4	213,	105				P22/P21	=	1,00000	
4	108,927	16	658,1	2 3	992,	566		6,	631	P25/P24	=	1,00000	
41	117,232	2 16	608,1	2 3	992,	566		7,	028	P4/P3	=	0,94765	
42	117,232	2 12	225,4	9 1	027,	995				P44/P43	=	0,99195	
43	124,669) 12	206,9	7 1	027,	995				P48/P47	=	1,00000	
44	124,669) 12	206,9	71	019,	715				P6/P5	=	0,99227	
45	124,669) 12	206,9	7 1	019,	715	2	25,	353	P16/P13	=	1,00000	
46	124,669) 10	083,3	1	620,	907				P16/P6	=	1,04963	
47	124,669) 10	083,3	1	620,	907				P5/P2	=	1,36348	
48	124,669) 1(083,3	1	620,	907	3	39,	447	V18/V8,	id=	0,68994	
49	124,669)	776,3	0	138,	206				A8	=	0,74035	m²
5	124,669)	776,3	0	138,	206	15	50,	022	A18	=	4,13186	m²
8	124,669)	776,3	0	137,	138	15	51,	190	XM8	=	0,68299	
18	1175,532	2 3	322,1	1	143,	944	87	74,	879	XM18	=	0,72643	
Bleed	1,750) (601,9	9 1	089,	070				WBld/W2	=	0,00135	
Effic	iencies:	ise	entr	log	vtr	R	NT		P/P	CD8	=	0,95092	
Outer	r LPC	0.8	3937	0.8	989	1.0	00	1.	420	CD18	=	0,94482	
Inner	r LPC	0,8	3856	0,8	911	1.0	00	1.	420	PWX	=	50,00	kW
IP Co	ompressor	0.9	9245	0,9	363	1,2	43	3.	478	WlkLP/W	25=	0,00000	
HP Co	ompressor	0,8	3572	0,8	905	2.7	57	8,	415	WBld/W2	5 =	0,01412	
Burne	er	0,9	9999			,		0,	948	Loading	=	35,64	00
HP TI	urbine	0.8	3866	0,8	694	5,2	93	3.	884	e442 th	=	0,85684	
IP Tu	urbine	0,9	9188	0,9	142	1,8	78	1.	642	WCHN/W2	5 =	0,06700	
LP TI	urbine	0,9	9119	0,8	952	1,2	95	4.	493	WCHR/W2	5 =	0,06000	
										WCIN/W2	5 =	0,00000	
HP Spo	ool mech	Eff 1	1,000	0 S	peed		1115	53	rpm	WCIR/W2	5 =	0,00000	
IP Spo	ool mech	Eff 1	1,000	0 S	peed		1511	LO	rpm	WCLR/W2	5 =	0,00000	
LP Spo	ool mech	Eff 1	1,000	0 S	peed		1243	33	rpm				
hum [8	*j wa	1r0	43	F'HV 124	C	Fuel	ic						
0,0	0,000			124	G	ener	T C						

Figura 54. Resultados aportados por Gasturb en el punto de despegue

De estos resultados aportados por Gasturb en la figura 54 se estudian principalmente los parámetros:

$$FN = Empuje \text{ no efectivo} = 326,99kN$$
$$TSFC = Consumo = 7,5282 \frac{g}{(kN * s)}$$
$$WF = Fuel \text{ flow} = 2,46163 \frac{kg}{s}$$
$$BPR = Bypass \text{ ratio} = 9,6$$

Al igual que en el punto de diseño, hay que comprobar que el valor de compresión máximo no supera el límite del motor, para comprobar este ratio de presiones se ha utilizado el módulo Addittional, en el apartado de fórmulas, donde permite evaluar el valor de cualquier parámetro deseado.

$$\frac{P3}{P2}$$
 = Pressure Overall Ratio = 41,5647 < 50

El punto de despegue sigue también dentro del correcto intervalo de funcionamiento.

Ahora se representan las curvas características tanto de los compresores como de las turbinas, y se comprueba que el punto de despegue está cerca del punto de diseño, y que la línea de estabilidad operacional se mantiene dentro de los puntos óptimos de funcionamiento.

- El punto blanco redondo representa el punto de diseño.
- El cuadrado amarillo representa el punto de despegue

Ahora se presentan las gráficas de las curvas características, tanto de los compresores como de las turbinas, y de las 3 etapas distintas, se explica las curvas del compresor y turbina de alta presión, las de presión intermedia y baja presión se encuentran completas en el Anexo G

En la figura 55 se muestra la curva característica de compresor de alta, como se explica en el capítulo 2 Marco teórico, específicamente en el 2.6 Curvas características de las turbomáquinas, la curva del compresor muestra la relación entre la relación de compresión (presión de salida dividida por la presión de entrada) y el caudal de flujo o gasto a través del compresor.

Se puede ver ambos puntos, tanto el de diseño como el de despegue, están lejos de la línea de estabilidad operacional, por lo tanto operan en límites correctos.

Por otro lado, en la figura 56 se representa las curvas características de la turbina, donde se puede comprobar que ambos puntos operan muy cerca de la curva de rendimiento óptimo y también en los límites correctos.

Figura 56. Curvas características del HPT en el despegue

Tanto de las gráficas de alta como de las etapas intermedia y baja presentes en el Anexo G se comprueba que en ningún caso se superan los límites de funcionamiento.

También se puede comprobar que en los compresores y turbinas intermedias los puntos están muy cerca, en cambio las etapas de Alta presión y de Baja tienen unos puntos más distanciados.

4.7.3.VUELO COMPLETO

Tras haber caracterizado el punto de diseño y el punto de despegue, y haber tomado la hipótesis de que el punto de despegue sería el más restrictivo en cuanto a empuje. Se procede a simular el vuelo completo de modo que se pueda comprobar esta hipótesis y se puedan analizar las variables estudiadas de todos los putos en conjunto. Para esto se sigue utilizando el módulo Off-Design, en este caso el modo "Mission", se representa en la figura 57.

El programa estudia diferentes puntos, es por esto que se introducen los puntos de cambio de etapa, hasta estudiar el último punto a 12190m

En esta parte del estudio no se incluirán las etapas de descenso, ya que no son etapas restrictivas en cuanto a requerimientos de empuje. Se introducen valores de altura, numero de mach y temperatura de salida T4.

La temperatura se supondrá máxima en el punto de despegue, es decir, 1850K y con una disminución lineal hasta 1600K en el punto de diseño, después del punto de diseño se supone que la temperatura baja de una manera más lenta, ya que disminuye mucho el requerimiento de empuje.

Por eso los últimos tres puntos de crucero tendrán una temperatura de 1600K.

		Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9
Show Result		yes	yes	yes	yes	yes	yes	yes	yes
Description		subida 678m	subida 1631n	rsubida 4488n	rsubida 7216r	crucero 9144	crucero 1097	crucero 1158	crucero 121
Altitude	m	678	1631	4488	7216	9144	10973	11582	12192
Delta T from ISA	к	0	0	0	0	0	0	0	0
Relative Humidity [%]		0	0	0	0	0	0	0	0
Mach Number		0,29	0,31665	0,4834	0,5276	0,583	0,737	0,72	0,705
Intake Pressure Ratio		1	1	1	1	1	1	1	1
No (0) or Average (1) Core dP/P		1	1	1	1	1	1	1	1
Fuel Heating Value	MJ/kg	43,124	43,124	43,124	43,124	43,124	43,124	43,124	43,124
Overboard Bleed	kg/s	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75
Rel. Overboard Bleed W_Bld/W25		0	0	0	0	0	0	0	0
Recirculating Bleed W_reci/W25		0	0	0	0	0	0	0	0
Power Offtake	kW	50	50	50	50	50	50	50	50
XN/T4/Windmill/Crank (1/2/3/4)		1	1	1	1	1	1	1	1
HPC Spool Speed ZXNH		1	1	1	1	1	1	1	1
Burner Temperature ZT4	IterVariable	1850	1800	1750	1700	1650	1600	1600	1600
Betavalue in HPC Map	IterVariable	0,527747	0,527747	0,527747	0,527747	0,527747	0,527747	0,527747	0,527747
Betavalue in HPC Dist. Sector		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
IPC Spool Speed ZXNI	IterVariable	1,00731	1,00731	1,00731	1,00731	1,00731	1,00731	1,00731	1,00731
Betavalue in IPC Map	IterVariable	0,582564	0,582564	0,582564	0,582564	0,582564	0,582564	0,582564	0,582564
Betavalue in IPC Dist. Sector		0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
LPC Spool Speed ZXNL	IterVariable	0,971325	0,971325	0,971325	0,971325	0,971325	0,971325	0,971325	0,971325
Betavalue in LPC Map	IterVariable	0,609479	0,609479	0,609479	0,609479	0,609479	0,609479	0,609479	0,609479
Betavalue in LPC Dist. Sector		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Betavalue in HPT Map	IterVariable	0,506248	0,506248	0,506248	0,506248	0,506248	0,506248	0,506248	0,506248
Betavalue in IPT Map	IterVariable	0,501951	0,501951	0,501951	0,501951	0,501951	0,501951	0,501951	0,501951
Betavalue in LPT Map	IterVariable	0,383466	0,383466	0,383466	0,383466	0,383466	0,383466	0,383466	0,383466
Estimated Bypass Ratio	IterVariable	9,48334	9,48334	9,48334	9,48334	9,48334	9,48334	9,48334	9,48334
delta T Recirculating Bleed	IterVariable	-0,00031076	-0,00031076	-0,00031076	-0,00031076	-0,00031076	-0,00031076	-0,00031076	-0,00031076
Pressure Distortion Index		0	0	0	0	0	0	0	0
Temperature Distortion Index		0	0	0	0	0	0	0	0
Sector Angle of Distortion		inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive
Coupling Factor		inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive
Delta LPC Capacity [%]		0	0	0	0	0	0	0	0

Figura 57.

Datos introducidos para el cálculo del vuelo completo

		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9
Description		despegue	subida 678	subida 163	subida 44{	subida 72 ⁻	crucero 91	crucero 10	crucero 11	crucero 12
Number of Iteration Loops		38.1	38.1	36.1	37.1	37.1	36.1	23.1	23.1	23.1
Altitude	m	0	678	1631	4488	7216	9144	10973	11582	12192
Delta T from ISA	K	0	0	0	0	0	0	0	0	0
Relative Humidity [%]		0	0	0	0	0	0	0	0	0
Mach Number		0,023	0,29	0,31665	0,4834	0,5276	0,583	0,737	0,72	0,705
Overboard Bleed	kg/s	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75
Power Offtake	kW	50	50	50	50	50	50	50	50	50
Net Thrust	kN	326,992	234,941	214,462	150,829	110,407	86,1262	67,7494	60,8606	54,7607
Core Nozzle Gross Thrust	kN	44,9153	45,7334	43,7858	39,0766	31,1389	26,4426	25,1437	22,0678	19,4378
Bypass Nozzle Gross Thrust	kN	292,248	317,75	299,475	267,272	201,997	166,943	157,468	139,268	123,567
Sp. Fuel Consumption	g/(kN*s)	7,52813	10,2374	10,4442	12,0151	12,3839	12,9159	14,2451	14,1457	14,0859
Specific Thrust	m/s	251,627	178,994	176,102	151,271	147,821	141,97	128,369	128,735	129,141
Handling Bleed WB_hdl/W22		0	0	0	0	0	0	0	0	0
Total Rel. Overb. Bld W_bld/W25		0,0141177	0,0144354	0,0154836	0,0190497	0,0250351	0,0306274	0,0352148	0,0394048	0,044041
Fuel Flow	kg/s	2,46164	2,40519	2,23989	1,81222	1,36726	1,1124	0,965095	0,860914	0,771354
Overall Pressure Ratio P3/P2		41,5649	41,574	42,9196	45,473	48,0829	49,4226	49,5883	49,2947	48,997
HPT Pressure Ratio		3,88386	3,88486	3,88465	3,88609	3,88687	3,88257	3,87745	3,87315	3,86837
IPT Pressure Ratio		1,6423	1,64413	1,64607	1,65024	1,64841	1,64823	1,64836	1,64798	1,64744
LPT Pressure Ratio		4,49298	4,61704	4,70455	4,96389	5,08393	5,15025	5,18523	5,18708	5,1873
Isentr. Inner LPC Efficiency		0,885571	0,898508	0,899947	0,901023	0,88662	0,874532	0,871712	0,872858	0,873912
Polytr. Inner LPC Efficiency		0,891105	0,903398	0,904937	0,9062	0,892758	0,881458	0,878825	0,879891	0,880871
Isentr. Outer LPC Efficiency		0,893714	0,90677	0,908223	0,909308	0,894773	0,882574	0,879728	0,880885	0,881948
Polytr. Outer LPC Efficiency		0,898856	0,911263	0,912804	0,914053	0,90047	0,889057	0,886397	0,887474	0,888465
Isentr. IPC Efficiency		0,924452	0,924275	0,920829	0,905252	0,874279	0,851885	0,842942	0,839527	0,837258
Polytr. IPC Efficiency		0,936259	0,936127	0,933307	0,920321	0,894236	0,875298	0,867661	0,864671	0,862677
Isentr. HPC Efficiency		0,857185	0,857183	0,857024	0,856258	0,855042	0,852625	0,850673	0,849075	0,845983
Polytr. HPC Efficiency		0,890525	0,890521	0,890586	0,890445	0,890231	0,888867	0,887557	0,886399	0,884076
Isentropic HPT Efficiency		0,886579	0,886603	0,886959	0,8878	0,889005	0,88968	0,889941	0,89005	0,890005
Polytropic HPT Efficiency		0,869407	0,869428	0,869811	0,870704	0,871999	0,872751	0,873059	0,873196	0,873172
Thermodyn. HPT Efficiency		0,856835	0,856843	0,857288	0,858307	0,859797	0,860681	0,861011	0,861125	0,861107
Isentropic IPT Efficiency		0,918783	0,918684	0,918535	0,918355	0,918682	0,915884	0,912779	0,910607	0,908391
Polytropic IPT Efficiency		0,914226	0,914111	0,91394	0,913716	0,914053	0,911104	0,907837	0,905557	0,903236
Isentropic LPT Efficiency		0,911916	0,912699	0,913176	0,912409	0,906729	0,90308	0,900184	0,898239	0,896196
Polytropic LPT Efficiency		0,895156	0,895716	0,896018	0,894389	0,887315	0,88279	0,879265	0,876966	0,874574
Ambient Pressure Pamb	kPa	101,325	93,4408	83,2055	57,8198	39,8273	30,0896	22,7286	20,6475	18,7539
Ram Pressure P1	kPa	101,363	99,0591	89,1946	67,8469	48,1477	37,8832	32,6168	29,1692	26,1365
Inlet Temperature T2	К	288,181	288 523	283.123	271,103	254,703	244,294	240.432	239 162	238 233

Figura 58. Resultados del vuelo completo

En la figura 58 se muestran los resultados obtenidos tras la simulación del vuelo completo en Gasturb, hay diferentes datos que interesar a la hora de continuar con el estudio, algunos de los más importantes son los resaltados en rojo, el empuje, la relación de compresión o el consumo.

A continuación, en la tabla 19 se estudia el empuje obtenido y se compara con el requerido previamente mediante la simulación en AEDsys

Etapas	1	2	3	4	5	6	7	8	9
Empuje Requerido (kN)	320.6049	222.8336	171.699	118.1218	85.2842	70.559475	49.104825	44.93947	41.04765
Empuje Aportado (kN)	326.992	234.941	214.462	150.829	110.407	86.1262	67.7494	60.8606	54.7607
Empuje no necesario	2%	5%	25%	28%	29%	22%	38%	35%	33%

Tabla 19. Comparación empuje requerido y aportado en el vuelo completo inicial

Tras comprobar que el empuje aportado es suficiente para cumplir con los requerimientos, se comprueba que la relación $\frac{P3}{P2} = Pressure \, Overall \, Ratio \,$ esté dentro del límite máximo en todos los puntos estudiados.

La línea roja representa el valor límite de la relación de compresión, en este caso 50, se observa que cumple satisfactoriamente y ningún punto está por encima de la línea roja, por lo que no se supera el valor de 50.

Figura 59. Gráfica relación de compresión total en el vuelo completo

Al igual que con el punto de despegue, se estudiarán las curvas características de los compresores y las turbinas, pero con la diferencia es que ahora se representan todos los puntos estudiados.

Se presentan las curvas características de las etapas de alta presión en las figuras 60-63, y en el Anexo H se adjuntan las correspondientes a las de baja presión y presión intermedia.

Se comprueba que ningún punto del vuelo está fuera del rango óptimo de funcionamiento y que no supere la línea de estabilidad operacional, a su vez, se observa que todos los puntos están relativamente próximos y alrededor de su curva de máximo rendimiento, algo muy deseable, por lo que se toman las gráficas como válidas y se continua el estudio

Figura 60. Curvas características del HPC de todos los puntos estudiados del vuelo

Figura 61. Zoom de las Curvas características del HPC de todos los puntos estudiados del vuelo

Figura 63. Zoom Curvas características del HPT de todos los puntos estudiados del vuelo

En la figura 64 se detalla una gráfica que representa el empuje de cada etapa con el consumo de combustible asociado a esos mismos puntos, esto permite visualizar conjuntamente todos los puntos y determinar los puntos más restrictivo en cuanto a empuje y consumo de combustible

Figura 64. Gráfica que representa el empuje frente al consumo en el vuelo completo

En las figuras 65 y 66 se grafican diferentes variables que ayudan a entender mejor los puntos más restrictivos, y los valores que toman parámetros como el número de mach el empuje, el consumo de combustible

Figura 65. Gráfica que representa el consumo frente al número de mach en el vuelo completo

Figura 66. Gráfica que representa el empuje frente a la altura en el vuelo completo

5. OPTIMIZACIÓN DEL MOTOR

En este capítulo se estudian diferentes estrategias de optimización o formas de conseguir una mejora del rendimiento, en este caso específico de estudio se busca reducir el consumo de combustible del vuelo a la vez que se cumplen todos los requerimientos tanto de empuje, como los límites operativos del motor

5.1. PRIMERA OPTIMIZACIÓN DEL TURBOFAN

La primera estrategia de optimización a seguir es reducir el empuje proporcionado en los puntos más restrictivos del vuelo, de este modo se logra una reducción del consumo de combustible

5.1.1.OPTIMIZACIÓN DEL PUNTO DE DISEÑO

Tras realizar satisfactoriamente el primer estudio, se realizará una optimización con el objetivo de minimizar el consumo de combustible variando alguno de los parámetros más característicos del motor.

En este estudio se seleccionan variables y sus respectivos rangos, se especifican en la figura 67, en este caso se seleccionan ratios de presiones y se introducen unos rangos operativos aportados por EASA [9] donde el motor funciona correctamente.

En la figura 68, se fija en "Constraints" un valor límite para el empuje en el punto de diseño, se fija un valor mínimo de 51 kN ya que es el mínimo empuje requerido según los valores obtenidos en la simulación realizada con el software AEDsys

Variables	Min Value	Max Value	Constraints	Min Value	Start Value	Max Value
HP Compressor Pressure Ratio	5	15	Net Thrust	51	51.0168	75
Outer Fan Pressure Ratio	1	5		01	0.,0.00	10
Inner Fan Pressure Ratio	1	5				
Design Bypass Ratio	7	15				

Figura 68. Límites de las variables a estudiar

Por último, en la figura 69 se especifica el objetivo de la optimización, en este caso, al haber fijado un valor mínimo de Empuje requerido, y unos rangos opertaivos correctos de Ratios de presiones, se decide minimizar el consumo de combustible instantáneo

Figure of Merit		
	○Maximize	O Minimize
Sp. Fuel Cons	umption	

Figura 69. Especificación del objetivo de la optimización

Tras elegir estas variables Gasturb 14 realiza miles de iteraciones hasta encontrar más favorable, posteriormente se obtienen los nuevos valores de las variables estudiadas, de modo que se obtienen los valores de entrada del punto de diseño, como se puede comprobar en la figura 70 solo ha cambiado de valor los escogidos como variables en la figura 67

Property	Unit	Value
Intake Pressure Ratio		1
No (0) or Average (1) Core dP/P		1
Inner Fan Pressure Ratio		1,61437
Outer Fan Pressure Ratio		1,34414
Core Inlet Duct Press. Ratio		1
IP Compressor Pressure Ratio		3,5
Compr. Interduct Press. Ratio		1
HP Compressor Pressure Ratio		12,485
Bypass Duct Pressure Ratio		1
Inlet Corr. Flow W2Rstd	kg/s	1600
Design Bypass Ratio		13,2978
Burner Exit Temperature	К	1600
Burner Design Efficiency		0,9995
Burner Partload Constant		1,6
Fuel Heating Value	MJ/kg	43,124
Overboard Bleed	kg/s	1,75
Power Offtake	kW	50
HP Spool Mechanical Efficiency		1
IP Spool Mechanical Efficiency		1
LP Spool Mechanical Efficiency		1
Burner Pressure Ratio		0,95
IPT Interd. Ref. Press. Ratio		0,992
LPT Interd. Ref. Press. Ratio		1
Turbine Exit Duct Press Ratio		0,99

Figura 70. Datos del sistema principal resultantes de la optimización

	W	Т	P	WRstd				
Station	kg/s	K	kPa	kg/s	FN	=	51,02	kN
amb	-	217,59	23,154		TSFC	=	13,1488	g/(kN*s)
2 5	557,042	238,96	32,125	1600,000	WF	=	0,67081	kg/s
13 5	518,083	263,00	43,180	1161,432	s NOx	=	1,54502	53
21	38,960	279,30	51,861	74,941	BPR	=	13,2978	
22	38,960	279,30	51,861	74,941	Core Eff	=	0,5437	
24	38,960	421,70	181,515	26,310	Prop Eff	=	0,8180	
25	38,960	421,70	181,515	26,310	P3/P2	=	70,544	
3	37,210	908,73	2266,217	2,954	P2/P1	=	1,00000	
31	32,262	908,73	2266,217		P22/P21	=	1,00000	
4	32,933	1600,00	2152,906	3,652	P25/P24	=	1,00000	
41	35,543	1552,54	2152,906	3,883	P4/P3	=	0,95000	
42	35,543	1103,06	399,164		P44/P43	=	0,99200	
43	37,881	1091,56	399,164		P48/P47	=	1,00000	
44	37,881	1091,56	395,971		P6/P5	=	0,99000	
45	37,881	1091,56	395,971	18,866	P16/P13	=	1,00000	
46	37,881	966,01	227,889		P16/P6	=	1,23743	
47	37,881	966,01	227,889		P5/P2	.=	1,09/21	
48	37,881	966,01	227,889	30,838	V18/V8,1	d=	0,77893	-
49	37,881	636,38	35,248		A8	=	0,73933	m ²
5	37,881	636,38	35,248	161,826	AI8	=	4,9/025	m²
8	3/,881	636,38	34,895	163,461	XM8	=	0,79625	
18 1	18,083	263,00	43,180	1161,432	XM18	=	0,98683	
Bleed	1,750	5/3,08	4/1,535		WBId/W2	=	0,00314	
Efficion	cioc.	icontr n	alutr D		CD8	-	0 06142	
Outer	PC	0.8780 0	8820 0 2	NI P/P	CD18	-	0,90142	
Inner	PC	0,8700 0	8785 0.3	1,544	DWY	-	50 00	LIN
TP Com	ressor	0,8/00 0	8651 0.5	21 2 500	WILLD/WZ	5-	0 00000	K W
LP Com	ressor	0,8500 0	8903 1 1	38 12 485	WRId/W25	-	0,04492	
Burner	1 63301	0 9995	,0505 1,1	0,950	Loading	-	100 00	%
UP Turk	nine	0,8900 0	8684 2 0	73 5 394	e442 th	-	0 85777	70
TP Turk	nine	0 9126 0	9070 0 8	18 1 738	WCHN /W25	2	0,06700	
IP Turk	nine	0,9000 0	8753 0 5	42 6 465	WCHR/W25	-	0,06000	
		0,5000 0	,0,35 0,5	12 0,105	WCTN/W25	-	0,00000	
HP Shoo	mech E	ff 1 0000	Nom Snd	12933 rpm	WCTR/W25	-	0,00000	
TP Spool	mech E	ff 1 0000	Nom Spd	15000 rpm	WCLR/W25	-	0,00000	
LP Spool	mech E	ff 1,0000	Nom Spd	12800 rpm	neerty nes		0,00000	
hum [%]	war	O FH	V Fuel					
0,0	0,0000	43,124	4 Gener	ic				

Figura 71. Resultados aportados por Gasturb en el punto de diseño

De estos resultados aportados por Gasturb en la figura 71 se estudian principalmente los parámetros:

$$FN = Empuje \text{ no efectivo} = 51,02kN$$
$$TSFC = Consumo = 13,14 \frac{g}{(kN * s)}$$
$$WF = Fuel \text{ flow } = 0,67 \frac{kg}{s}$$
$$BPR = Bypass \text{ ratio} = 13,29$$

De igual manera que se ha realizado anteriormente en el punto de diseño sin optimizar, se estudian los diagramas H-S y P-V con el objetivo de encontrar algún problema operativo, ambos diagramas son normales por lo que se prosigue el estudio. Estos diagramas junto con el T-S se pueden comprobar en el Anexo I

5.1.2.VUELO COMPLETO OPTIMIZACIÓN DEL MOTOR 1

Ahora se sigue el mismo procedimiento que anteriormente y con el módulo Mission se estudian los mismos puntos especificados en la simulación de vuelo completo, de modo que se puedan comparan los resultados en cada punto.

		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9
Description		despegue	subida 678	subida 163	subida 44{	subida 72	crucero 91	crucero 10	crucero 11	crucero 12
Number of Iteration Loops		22.1	23.1	21.1	23.1	23.1	22.1	23.1	22.1	23.1
Altitude	m	0	678	1631	4488	7216	9144	10973	11582	12192
Delta T from ISA	К	0	0	0	0	0	0	0	0	0
Relative Humidity [%]		0	0	0	0	0	0	0	0	0
Mach Number		0,023	0,29	0,31665	0,4834	0,5276	0,583	0,737	0,72	0,705
Overboard Bleed	kg/s	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75
Power Offtake	kW	50	50	50	50	50	50	50	50	50
Net Thrust	kN	265,015	182,899	166,977	117,487	85,9636	66,1045	50,1439	44,8065	40,1734
Core Nozzle Gross Thrust	kN	26,422	27,1703	26,0649	23,5129	18,6982	15,6975	14,7076	12,7958	11,173
Bypass Nozzle Gross Thrust	kN	248,597	285,739	271,763	256,614	196,539	163,957	158,16	139,185	122,977
Sp. Fuel Consumption	g/(kN*s)	6,60093	9,39584	9,58079	11,0517	11,3501	11,9042	13,4996	13,4082	13,3386
Specific Thrust	m/s	207,333	137,771	134,96	112,672	109,269	102,93	88,9246	88,8528	88,9597
Handling Bleed WB_hdl/W22		0	0	0	0	0	0	0	0	0
Total Rel. Overb. Bld W_bld/W25		0,0180017	0,0182993	0,0195923	0,0239163	0,0313667	0,0384924	0,0445111	0,0499588	0,055991
Fuel Flow	ka/s	1,74935	1,71849	1,59977	1,29843	0.975692	0,786924	0.676922	0.600775	0.535858
Overall Pressure Ratio P3/P2		59,0088	59,3555	61,3401	65,3662	69,0381	70,5128	70,1894	69,412	68,6479
HPT Pressure Ratio		5,38492	5,38787	5,38909	5,39418	5,39873	5,39921	5,3943	5,38803	5,38108
IPT Pressure Ratio		1,7194	1,72386	1,7272	1,73466	1,73523	1,73532	1,73829	1,7371	1,73585
LPT Pressure Ratio		4,95959	5,16332	5,30322	5,78532	6,04095	6,21922	6,52647	6,47454	6,42648
Isentr. Inner LPC Efficiency		0,849355	0,876821	0,881759	0,901059	0,894432	0,883118	0,869686	0,872634	0,875557
Polytr. Inner LPC Efficiency		0,857942	0,883835	0,888705	0,90722	0,90127	0,890781	0,878169	0,880866	0,883552
Isentr. Outer LPC Efficiency		0,857165	0,884884	0,889867	0,909345	0,902656	0,891239	0,877683	0,880659	0,883608
Polytr. Outer LPC Efficiency		0,862253	0,888981	0,893928	0,912863	0,906618	0,895725	0,88269	0,885505	0,888303
Isentr. IPC Efficiency		0,923738	0,923159	0,919858	0,905067	0,874369	0,851869	0,842961	0,839387	0,837021
Polytr. IPC Efficiency		0,935696	0,935256	0,932556	0,920238	0,894351	0,875274	0,867643	0,864473	0,86235
Isentr. HPC Efficiency		0,857134	0,857136	0,85705	0,856358	0,855156	0,852739	0,850784	0,849155	0,845979
Polytr. HPC Efficiency		0,893728	0,893743	0,893856	0,893775	0,893502	0,892114	0,890796	0,889646	0,887324
Isentropic HPT Efficiency		0,885314	0,885385	0,885889	0,887067	0,888666	0,889578	0,889914	0,890121	0,890154
Polytropic HPT Efficiency		0,863136	0,863206	0,863773	0,865092	0,866884	0,867906	0,868296	0,868549	0,868612
Thermodyn. HPT Efficiency		0,852717	0,852775	0,853328	0,854603	0,85634	0,857329	0,857646	0,857813	0,857822
Isentropic IPT Efficiency		0,917602	0,917408	0,917234	0,916766	0,917052	0,916085	0,912741	0,91055	0,90829
Polytropic IPT Efficiency		0,912476	0,912244	0,912036	0,911507	0,911778	0,91073	0,90717	0,904859	0,90248
Isentropic LPT Efficiency		0,907648	0,908931	0,909777	0,911752	0,907294	0,90334	0,900509	0,898117	0,896017
Polytropic LPT Efficiency		0,88859	0,889542	0,89014	0,891225	0,885159	0,879904	0,875732	0,872955	0,870545
Ambient Pressure Pamb	kPa	101,325	93,4408	83,2055	57,8198	39,8273	30,0896	22,7286	20,6475	18,7539
Ram Pressure P1	kPa	101,363	99,0591	89,1946	67,8469	48,1477	37,8832	32,6168	29,1692	26,1365
Inlet Temperature T2	К	288,181	288,523	283,123	271,103	254,703	244,294	240,432	239,162	238,233

Figura 72. Resultados del vuelo completo

A simple vista en la figura 72 se puede observar que realizar una configuración del punto de diseño disminuyendo hasta los 51kN el empuje, puede tener beneficios como la reducción del consumo, pero al estudiar los datos en conjunto de todos los puntos más restrictivos del vuelo, se descubre que o se cumplen los requerimientos necesarios para que el vuelo se desarrolle satisfactorimente por diversas razones:

- En primer lugar el motor no genera el empuje necesario (Net thrust) para realizar correctamente el vuelo como se muestra también en la tabla 20
- En segundo lugar se puede comprobar que el motor aumenta su relación de compresión total por encima de 50, el límite al que puede operar el motor sin riesgo, por lo que esta optimización no sería viable.

En la tabla 20 se compara el empuje obtenido con los requerimientos de empuje previos realizados con AEDsys, y se comprueba que, pese a que en puntos cercanos al punto de diseño aporta el suficiente empuje, en cuanto se aleja de ellos no genera suficiente empuje para la correcta realización del vuelo

	1	2	3	4	5	6	7	8	9
Empuje Requerido	320.6	222.83	171.67	118.12	85.29	70.56	49.10	44.94	41.05
Empuje Aportado	265.01	182.90	166.98	117.45	85.96	66.10	50.14	44.8	40.18
Empuje no necesario	-17%	-18%	-3%	-1%	1%	-6%	2%	-0.3%	-2%

 Tabla 20.
 Comparación empuje requerido y aportado en el vuelo completo optimización 1

Como se puede comprobar, con esta optimización del punto de diseño no se llega al empuje requerido en la mayoría de puntos escogidos para estudiar, por lo que no sería válida esta optimización y se procede a calcular de nuevo otra optimización

5.2. SEGUNDA OPTIMIZACIÓN DEL TURBOFAN

Se vuelve a realizar el procedimiento de la optimización, pero esta vez tomando una estrategia de optimización diferente, asegurando que el empuje aportado sea suficiente para que el vuelo se desarrolle satisfactoriamente.

5.2.1.OPTIMIZACIÓN PUNTO DISEÑO

En esta optimización se cambia de metodología, y se estudia la optimización de las variables de forma idéntica a la figura 67, pero en esta ocasión, se busca una nueva forma de fijar el módulo "Constraints" de modo que esta vez en la figura 73 se fija el valor límite del empuje en todos los puntos más restrictivos a la vez, de esta forma se asegura el obligado cumplimiento de los requerimientos de empuje.

Constraints	Min Value	Start Value	Max Value	Oper.Point
Net Thrust	320	326,992	400	despegue
Net Thrust	223	234,941	300	subida 678
Net Thrust	172	214,462	300	subida 163
Net Thrust	119	150,829	200	subida 448
Net Thrust	86	110,407	150	subida 721
Net Thrust	71	86,245	150	crucero 91
Net Thrust	50	67,621	100	crucero 10
Net Thrust	45	61,056	100	crucero 11
Net Thrust	42	54,7754	100	crucero 12

Figura 73. Limites de empuje en varios puntos simultáneamente Optimización

Figura 74. Resultado de la optimización

Tras la optimización resultante de la figura 74, donde se especifica los rangos de las variables y el resultado de la optimización, se obtiene los datos de entrada del nuevo punto de diseño, mostrado en la figura 75.

Property	Unit	Value	Comment
Intake Pressure Ratio		1	
No (0) or Average (1) Core dP/P		1	
Inner Fan Pressure Ratio		1,47693	
Outer Fan Pressure Ratio		1,54496	
Core Inlet Duct Press. Ratio		1	
IP Compressor Pressure Ratio		3,5	
Compr. Interduct Press. Ratio		1	
HP Compressor Pressure Ratio		10,0511	
Bypass Duct Pressure Ratio		1	
Inlet Corr. Flow W2Rstd	kg/s	1500	
Design Bypass Ratio		9,88744	
Burner Exit Temperature	K	1600	
Burner Design Efficiency		0,9995	
Burner Partload Constant		1,6	used for off design only
Fuel Heating Value	MJ/kg	43,124	
Overboard Bleed	kg/s	1,75	
Power Offtake	kW	50	
HP Spool Mechanical Efficiency		1	
IP Spool Mechanical Efficiency		1	
LP Spool Mechanical Efficiency		1	
Burner Pressure Ratio		0,95	
IPT Interd. Ref. Press. Ratio		0,992	
LPT Interd. Ref. Press. Ratio		1	
Turbine Exit Duct Press Ratio		0,99	

Figura 75. Datos en el sistema principal en el punto de diseño optimizados

		W		Т			P		In	Rstd					
Sta	tion	ka/s		K			Pa		k	0/5		EN	=	67 00	kN
am	h	Ng/ S		217	59	2	2 15	4		9/5		TSEC	_	13 7312	a/(kN*s)
2	5	22 227		238	96	2	2 17	5	1500	000	15	WE	2	0 92005	kals
12	1	74 261		275	03	1	6,12	2	015	021	 	S NOY	-	0.92632	NY/S
21	4	17 066		271	20	4	7 11	6	00	, 351		PDD	-	0,92032	
21		47,900		271	, 20	4	7 44	6	99	,410		DPR	=	9,00/4	
22		47,900		2/1,	, 30	10	,44	0	99	,410		Core Er	=	0,5482	
24		47,900		409,	,94	10	0,00	2	34	,908		Prop ETT	=	0,/62/	
25		47,966		409,	,94	10	6,06	2	34	,908		P3/P2	=	51,957	
3		46,216		833,	,06	166	9,10	3	4	,//0		P2/P1	=	1,00000	
31		40,124		833,	,06	166	9,10	3				P22/P21	=	1,00000	
4		41,044		1600,	,00	158	5,64	8	6	,180		P25/P24	=	1,00000	
41		44,258		1548,	,42	158	5,64	8	6	,556		P4/P3	=	0,95000	
42		44,258		1166,	,00	39	0,31	4				P44/P43	=	0,99200	
43		47.136		1146	.81	39	0.31	4				P48/P47	=	1,00000	
44		47.136		1146.	.81	38	7.19	1				P6/P5	=	0.99000	
45		47,136	-	1146	81	38	7.19	1	24	.608		P16/P13	=	1,00000	
46		47 136		027	77	23	4 30	6		,		P16/P6	_	1 39087	
47		47 136	-	027	77	23	4 30	6				P5/P2	_	1 12201	
48		47 136	-	027	77	23	1 30	6	28	497		V18/V8 -	id-	0 82302	
10		47 136	1.25	680	12	23	5 04	4	50	,457		10/00,	u-	0 02134	m2
49		47,130		680	12	2	5 04	4	202	570		110	_	4 04174	m2
0		47,130		600,	12	2	5,04	4	205	, 5/0		ALO	=	4,041/4	
10		4/,130		275	13	5	, 00	4	205	,020		AMO XM10	=	1,00000	
10	4	74,201		210,	,03	4	9,03	2	945	,931		XM18	=	1,00000	
вте	ea	1,750		540,	,/1	39	1,50	8				WB10/WZ	=	0,00335	
						. 1						600		0 00007	
ETT	icien	cies:	15	sentr	p	olyt	r	KN.	1	P/P		CD8	=	0,96337	
Ou	ter L	PC	0	,8/80	0 0	,885	3 0	, 39	5 1	,545		CD18	=	0,97000	1.00
In	ner L	PC	0	,8/00) ()	,8//	0 0	, 39	5 1	,4//		PWX	=	50,00	kW
IP	Comp	ressor	0	,8400) ()	,865.	2 0	,50	3 3	,500		WIKLP/W	25=	0,00000	
HP	Comp	ressor	0	,8500	0 (,887	8 1	,07	7 10	,051		WBId/W2	5 =	0,03648	
Bu	rner		0	,9995	5				0	,950		Loading	=	100,00	%
HP	Turb	ine	0	,8900	0 (,872	5 2	,19	6 4	,062		e442 th	=	0,86077	
IP	Turb	ine	0	,9126	5 0	,907	6 0	.75	6 1	,653		WCHN/W25	5 =	0,06700	
LP	Turb	ine	0	9000	0 (.875	5 0	.51	9 6	.500		WCHR/W2	5 =	0.06000	
												WCIN/W25	5 =	0.00000	
HP	Spool	mech H	ff	1.00	000	Nom	Spd	1	1230	rpm		WCTR/W2	5 =	0.00000	
TP	Spool	mech I	ff	1.00	000	Nom	Spo	1	5000	rom		WCLR/W2	5 =	0,00000	
I P	Spool	mech l	ff	1 00	000	Nom	Sno	1	2800	rom		HELIN HE.		0,00000	
				1,00			Spe								
hum	F%1	wai	0		FH	V	FU	el							
aiii	0 0	0 0000	00	47	3 12	4	Gen	eri	C C						
	.,.	5,000			,		Gen		-						

Figura 76. Resultados en el punto de diseño optimizado

Como se puede comprobar en la figura 76, que representa los resultados de la optimización del punto de diseño, con esta optimización se consigue una disminución del consumo de combustible instantáneo (*TSFC*), desde $13,9385 \frac{g}{(kN*s)} a 13,7312 \frac{g}{(kN*s)}$

De la misma forma se disminuye el empuje aportado en el punto de diseño , específicamente se reduce desde 68,66kN a 67kN

De igual manera que se ha realizado anteriormente en el punto de diseño sin optimizar, se estudian los diagramas H-S y P-V del punto de diseño optimizado con el objetivo de encontrar algún problema operativo, ambos diagramas son normales por lo que se prosigue el estudio. Estos diagramas junto con el T-S se pueden comprobar en el Anexo J

5.2.2.OPTIMIZACIÓN VUELO COMPLETO

Teniendo los datos del punto de diseño, se sigue el mismo procedimiento que previamente, se introducen en el módulo "Mission" todos los puntos anteriores, manteniendo los mismos valores, de modo que se puedan comparar con los datos de empuje requerido aportados por AEDsys y verificar si el empuje requerido es suficiente

		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9
Description		despegue	subida 678	subida 163	subida 448	subida 72 ⁴	crucero 91	crucero 10	crucero 11	crucero 12
Number of Iteration Loops		36.1	36.1	23.1	36.1	37.1	37.1	23.1	23.1	23.1
Altitude	m	0	678	1631	4488	7216	9144	10973	11582	12192
Delta T from ISA	К	0	0	0	0	0	0	0	0	0
Relative Humidity [%]		0	0	0	0	0	0	0	0	0
Mach Number		0,023	0,29	0,31665	0,4834	0,5276	0,583	0,737	0,72	0,705
Overboard Bleed	kg/s	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75
Power Offtake	kW	50	50	50	50	50	50	50	50	50
Net Thrust	kN	319,79	228,193	208,216	146,314	107,462	83,966	66,1354	59,3859	53,4058
Core Nozzle Gross Thrust	kN	33,9795	34,6893	33,2065	29,7557	23,7993	20,2844	19,4285	17,0389	14,9861
Bypass Nozzle Gross Thrust	kN	295,911	321,022	302,834	271,123	205,928	170,638	161,664	142,834	126,618
Sp. Fuel Consumption	g/(kN*s)	7,38342	10,1143	10,313	11.8699	12,1953	12,709	14,0424	13,9449	13,8834
Specific Thrust	m/s	247,815	175,246	172,275	147,648	144,424	138,802	125,207	125,601	126,01
Handling Bleed WB_hdl/W22		0	0	0	0	0	0	0	0	0
Total Rel. Overb. Bld W_bld/W25		0,0146455	0,0149615	0,0160489	0,0197192	0,0258585	0,031568	0,0361332	0,0404605	0,0452529
Fuel Flow	kg/s	2,36115	2,30801	2,14733	1,73673	1,31053	1,06713	0,928703	0,828128	0,741452
Overall Pressure Ratio P3/P2		42,9268	42,978	44,3583	46,0157	47,3648	49,5012	49,8732	49.654	49.3594
HPT Pressure Ratio		4,06141	4,06358	4,06421	4,06715	4,06937	4,06618	4,06324	4,0584	4,05311
IPT Pressure Ratio		1,63555	1,63905	1,64185	1,64788	1,64788	1,64948	1,65322	1,65237	1,65139
LPT Pressure Ratio		4,99994	5,18746	5,32426	5,78955	6,05272	6,24575	6,55299	6,51147	6,47526
Isentr. Inner LPC Efficiency		0,89075	0,901264	0,902552	0,902987	0,890264	0,877687	0,870819	0,872741	0,874502
Polytr. Inner LPC Efficiency		0,895648	0,905685	0,907056	0,907757	0,895893	0,884128	0,877735	0,879524	0,881166
Isentr. Outer LPC Efficiency		0,898941	0,909551	0,910851	0,91129	0,89845	0,885758	0,878827	0,880766	0,882544
Polytr. Outer LPC Efficiency		0,903977	0,914051	0,915448	0,916137	0,904241	0,892443	0,886033	0,887826	0,889473
Isentr. IPC Efficiency		0,924329	0,924175	0,92041	0,904477	0,873554	0,851465	0,843046	0,839584	0,837284
Polytr. IPC Efficiency		0,936115	0,936013	0,932926	0,919633	0,893587	0,874923	0,867768	0,864734	0,862704
Isentr. HPC Efficiency		0,857122	0,857134	0,856943	0,856183	0,854902	0,852377	0,850776	0,848941	0,845746
Polytr. HPC Efficiency		0,891304	0,891291	0,89132	0,891163	0,890874	0,889416	0,888333	0,88701	0,884629
Isentropic HPT Efficiency		0,886468	0,886469	0,886852	0,887734	0,889006	0,889695	0,889929	0,890035	0,889999
Polytropic HPT Efficiency		0,868636	0,868626	0,869035	0,869969	0,871353	0,872121	0,872389	0,872526	0,872512
Thermodyn. HPT Efficiency		0,856567	0,856533	0,856988	0,858021	0,859533	0,860396	0,860646	0,860761	0,860752
Isentropic IPT Efficiency		0,919272	0,919091	0,918912	0,91841	0,918612	0,915814	0,912755	0,910598	0,908392
Polytropic IPT Efficiency		0,914776	0,914565	0,914355	0,913776	0,913976	0,911013	0,907772	0,90551	0,903201
Isentropic LPT Efficiency		0,908631	0,909789	0,91055	0,911369	0,906485	0,902673	0,90039	0,898201	0,896112
Polytropic LPT Efficiency		0,889871	0,89074	0,891279	0,891076	0,884492	0,879389	0,875882	0,873338	0,870926
Ambient Pressure Pamb	kPa	101,325	93,4408	83,2055	57,8198	39,8273	30,0896	22,7286	20,6475	18,7539
Ram Pressure P1	kPa	101,363	99,0591	89,1946	67,8469	48,1477	37,8832	32,6168	29,1692	26,1365
Inlet Temperature T2	К	288,181	288,523	283,123	271,103	254,703	244,294	240,432	239,162	238,233

Figura 77. Resultados del vuelo completo tras la segunda optimización

Tras obtener los resultados, y no detectar ningún valor no deseado a simple vista, se procede a estudiar cada parámetro por separado. En primer lugar se compara el empuje aportado con el empuje requerido que se ha hallado previamente mediante la simulación con AEDsys

	1	2	3	4	5	6	7	8	9
Empuje Requerido (KN)	320.60	222.83	171.69	118.12	85.28	70.55	49.10	44.93	41.04
Empuje Aportado (N)	320.78	228.19	208.21	146.31	107.46	83.96	66.13	59.38	53.40
Empuje no necesario	0.056%	2%	21%	24%	26%	19%	35%	32%	30%

 Tabla 21.
 Comparación empuje requerido y aportado en el vuelo completo optimización 2

Como se puede comprobar en la Tabla 21, tras esta optimización no hay ningún punto en el que el empuje aportado sea menor que el requerido, por lo que todo el vuelo se desarrollaría satisfactoriamente.

Tras comprobar que el empuje aportado es suficiente para cumplir con los requerimientos, se comprueba que la relación $\frac{P3}{P2} = Pressure \, Overall \, Ratio$ en todos los puntos estudiados esté dentro del límite máximo, en la figura 80 se observa que cumple satisfactoriamente y no supera el valor de 50

Figura 78. Relación de compresión total en los puntos estudiados

Al igual que con la optimización anterior, se estudian las curvas características de los compresores y las turbinas, pero con la diferencia es que ahora se representan todos

los puntos estudiados. Se comprueba que ningún punto esté fuera del rango óptimos de funcionamiento y que no supere la línea de estabilidad operacional.

Se presentan las curvas características de las etapas de alta presión en las figuras 79-82, en El Anexo K se adjuntan las correspondientes a las de baja presión y presión intermedia.

Figura 79. Curvas características del HPC de todos los puntos estudiados del vuelo

Figura 80. Zoom Curvas características del HPC de todos los puntos estudiados del vuelo

Figura 81. Curvas características del HPT de todos los puntos estudiados del vuelo

Figura 82. Zoom Curvas características del HPT de todos los puntos estudiados del vuelo

De forma análoga a lo realizado en la simulación inicial, como se muestra en las figuras 83-85, se grafican diferentes variables que ayudan a entender mejor los puntos más restrictivos, y los valores que toman parámetros como el número de mach, el empuje, el consumo de combustible.

Figura 83. Gráfica que representa el empuje frente al consumo en el vuelo completo

Figura 84. Gráfica que representa el consumo frente al número de mach en el vuelo completo

Figura 85. Gráfica que representa el empuje frente a la altura en el vuelo completo

Tras comprobar que en ninguna de las gráficas se supera la línea operacional, comprobar que el empuje aportado es suficiente y verificar que la relación de compresión no supera el límite máximo se toma el estudio como válido y se analizan los resultados obtenidos.

OPTIMIZACION 2											
Net Thrust	kN	320.784	228.193	208.216	146.314	107.462	83.966	66.1354	59.3859	53.4058	AHORRO
Sp. Fuel											
Consumption	g/(kN*s)	7.38342	10.1143	10.313	11.8699	12.1953	12.709	14.0424	13.9449	13.8834	TOTAL
AHORRO DE CONSUN	10										
INSTANTÁNEO		1.922%	1.202%	1.256%	1.208%	1.523%	1.602%	1.423%	1.420%	1.438%	1.444%
				A 1-	a survey of a TC		· · · · · · · · · · · · · · · · · ·				

Tabla 22.Ahorro de TSFC optimización 2

La tabla 22 muestra los valores hallados de empuje equivalentes a las puntos más restrictivos de cada del vuelo, se presentan con los datos de consumo de combustible instantáneo asociado a cada etapa.

Estos datos se comparan con los datos de consumo instantáneo en cada punto del vuelo estudiados en la simulación inicial, se modo que se puede cuantificar el ahorro porcentual de consumo instantáneo en cada uno de los puntos.

Tras analizar los resultados correspondientes a la segunda optimización se observa que se consigue una disminución del **consumo de combustible por unidad de tiempo y empuje** (*TSFC*) de un 1,44%

5.3. TERCERA OPTIMIZACIÓN DEL TURBOFAN

Tras esta segunda optimización, los valores de consumo instantáneo se han conseguido reducir, pero como se ha explicado anteriormente, el punto más restrictivo es el despegue, de modo que en los anteriores estudios este punto ha limitado mucho el descenso del consumo, es por esto que esta tercera optimización se enfocará en reducir los requerimientos del punto de despegue, de modo que se pueda reducir el consumo en el vuelo completo aún más.

Actualmente hay diferentes métodos para aumentar la potencia en el despegue de un avión o para mejorar su rendimiento. Algunas de las estrategias más comunes que se pueden seguir son:

- Uso de la máxima longitud de pista disponible: cuanto más larga sea la pista de despegue, más superficie puede recorrer la aeronave antes de despegar, lo que permite al avión alcanzar una mayor velocidad. Cuanto mayor sea la velocidad de despegue, más rápido el avión podrá generar sustentación y elevarse.
- Uso de sistemas de asistencia al despegue: Algunos aviones están equipados con sistemas de asistencia al despegue, como el uso de un postquemador (afterburner) en aviones de reacción, cuya función es aumentar la velocidad de los gases de escape mediante la inyección de combustible adicional y la ignición. O el sistema de potencia adicional en aviones de despegue corto y aterrizaje vertical (STOVL). Estos sistemas proporcionan un impulso adicional de potencia durante el despegue, permitiendo una mayor aceleración y un ascenso más rápido.
- Cálculo y ajuste de la carga útil: El ajuste adecuado de la carga útil, incluyendo el combustible, el equipaje y los pasajeros, puede influir en el rendimiento del avión durante el despegue. Optimizar la distribución de la carga y mantenerla dentro de los límites establecidos ayuda a asegurar que el avión alcance la velocidad y altitud necesarias para despegar de manera segura.

Teniendo en cuenta las posibles estrategias a seguir para tratar de disminuir aún más el consumo y realizar una tercera optimización, este estudio se centrará en utilizar una mayor longitud de pista para el despegue, ya que se desconoce información específica sobre datos del uso de sistemas de asistencia al despegue, y respecto al cálculo y ajuste preciso de la carga útil, se explicó previamente en el cálculo de pesos, que se sobredimensionaría por razones de seguridad, por lo que tampoco sería interesante ya que no permitiría comparar correctamente entre las diferentes optimizaciones.

Debido a que en el estudio inicial se toman los datos aportados por EuroControl, donde la longitud de pista de despegue es 880m, una distancia poco realista ya que las pistas en las que opera un A350-900 siempre son mucho más largas, es por esto que ahora se estudiará de nuevo con una pista de despegue de 2500m, ya que es un valor mucho más común para una pista de despegue, y el propio Eurocontrol para el modelo A350-1000, es decir, el modelo siguiente de la familia A350, con muchas similitudes, fija esa distancia en 2600m.

Figura 86. Fases del vuelo A350-1000 [10]

Ahora se comprobarán los datos aportados en el caso real en específico para el Aeropuerto de Barajas, servirá para reafirmar que el valor de 2500m de la pista de despegue es un valor viable

Figura 87. Mapa pistas Adolfo Suarez Barajas (Adaptada de [17])

Pista	Longitud (m)
18R/36L	4350
18L/36R	3500
14L/32R	3500
14R/32L	4100

Tabla 23. Longitud de las pistas del Aeropuerto Madrid-Barajas

Las pistas 18L/36R y 18R/36L son las principales utilizadas en la Terminal 4 para los despegues y aterrizajes de aeronaves

Se comprobará también el caso de despegue desde el aeropuerto de destino, El Aeropuerto Internacional de la Ciudad de México, también conocido como Aeropuerto Benito Juárez (AICM o MEX), cuenta con dos pistas principales descritas en la tabla 24 para despegue y aterrizaje, cuyas longitudes son:

Pista	Longitud (m)
05R/23L	3600
05L/23R	3900

Tabla 24.

Longitud de las pistas del Aeropuerto Aeropuerto Ciudad de México

En este caso, es la pista 05R/23L la que generalmente se utiliza para los vuelos que operan en la Terminal 1 (T1)

Como se puede comprobar todas las pistas tienen una longitud mayor de 2500m, además, un avión como el Airbus 350-900 suele utilizar las pistas más grandes.

Sin embargo, es importante tener en cuenta que durante el despegue de una aeronave, no siempre se utiliza toda la longitud de la pista. La cantidad de pista utilizada durante el despegue puede variar dependiendo de varios factores,

Las aeronaves más grandes y pesadas, como los aviones de largo alcance como el A350, generalmente necesitarán una mayor longitud de pista para el despegue que las aeronaves pequeñas, ya que requieren más distancia para alcanzar la velocidad y la sustentación necesarias. Además, las condiciones ambientales, como la temperatura y la altitud del aeropuerto, también pueden influir en la cantidad de pista utilizada durante el despegue.

Aun así, hay un margen suficientemente grande para realizar el despegue con seguridad, por lo que se estudiará un nuevo punto de diseño con el módulo "Constraint" de AEDsys.

En la figura 90 se representa los valores de entrada ánalogos a los del capítulo 4. Simulación Inicial, pero esta vez con un nuevo punto de despegue.

Name: Despegue 2500m Type: F · Takeoff (No obstacle)		Name: PUNTO DISEÑO 10855 Tupe: A - Constant Altitude/Speed Cruise				
Beta (weight fraction) Altitude (m) Temperature (K) Mach number during TO roll CDR CL max kTO TO friction coeff Rotation time - tR (s) Total TO distance - sTO (m)	1 4 288 0,202 0 3 1,2 0,07 3 2500	Beta (weight fraction) Altitude (m) Temperature (K) Velocity (m/sec) Mach number CDR Fraction of maximum thrust	1 10855 217 206,7047 0,7 0 1			

Name: DESPEGUE 880m Type: F - Takeoff (No obstacle)

Beta (weight fraction) Altitude (m) Temperature (K)	1
Mach number during TO roll	288,15
	0.023
CL max	23
kTO	12
TO friction coeff	0.07
Rotation time - tR (s)	3
Total TO distance - sTO (m)	380

Figura 88. Fases del vuelo a estudiar

Figura 89. Determinación del nuevo punto de diseño

En la figura 89 se selecciona el punto de diseño en el punto de corte de las curvas de la nueva fase de despegue y la fase de crucero, y se anotan los datos:

$$\frac{W_{TO}}{S} = 7700Pa = 160.8 \frac{lbf}{ft^2}$$
$$\frac{T_{SL}}{W_{TO}} = 0.23$$

Además, se realiza la misma comparación que se realizó en el capitulo 4. Simulación Inicial, donde se analizan los valores obtenidos con los aportados por el libro Aircraft Engine Deisgn en la figura 90

Figura 90. Representación de diferentes puntos de diseño de varias aeronaves [4]

$$\frac{W_{TO}}{S} = 158 \frac{lbf}{ft^2} = 7600Pa$$
$$\frac{T_{SL}}{W_{TO}} = 0.225$$

Como se puede comprobar, después de haber cambiado la longitud de despegue, y optimizando el punto de diseño, se puede ver que el punto de diseño está muy cerca del punto de diseño del A340, como se puede ver en la Figura 90, estos datos son muy parecidos a los hallados experimentalmente, por lo que valorar como correctos.

Ahora, con el nuevo Thrust loading y el nuevo wing loading se calcula con el módulo "Mission" en AEDsys el nuevo requerimiento de empuje, esto sucede ya que se sabe que el empuje requerido en el punto de despegue será menor, ya que al aumentar la longitud de pista, la aeronave no tendrá que ascender tan deprisa.

Además, como se ha demostrado que el despegue es el punto más restrictivo en cuanto a empuje, será el más influyente en el estudio.

En la figura 91 se muestran los valores de entrada a aportar para el cálculo respecto a las condiciones ambientales.

Todos los valores se mantienen idénticos a la simulación inicial, para poder comparar con exactitud la variación al cambiar la longitud de pista.

El TO friction coefficient, es el coeficiente de fricción en el despegue, indica la resistencia a la rodadura experimentada por una aeronave durante el despegue. Se refiere a la fricción entre las ruedas del avión y la superficie de la pista de despegue. En este estudio se despreciará ya que no se tiene información suficiente para determinarlo. Es por esto que en AEDsys se introduce el valor O

 Name: Despegue Type: D - Takeoff Acceleration 	
Altitude (m)	0
Temperature (K)	288,15
Mach Number	0.023
CDR	0
CL max	2,3
kTO	1
TO Friction Coeff	þ

Figura 91. Datos de entrada en el punto de despegue

Leg Name	e PI	Beta	Beta	Wt Chg	Drag	Thrust	Time
		initial	final	(N)	(N)	(N)	(sec)
1 Despe	g 0,98583	1,00000	0,98583	37973	473317	552359	89,3
						\mathbf{X}	

Para comprobar que los cálculos son viables, en la figura 92 se observa que el empuje requerido es menor que en el estudio inicial de 610676N a 552359N, por el contrario, el tiempo que tarda la aeronave en completar el despegue aumenta de 44.5 segundos a 89,3 segundos, prácticamente el doble.

	EMPUJE	EMPUJE	EMPUJE	EMPUJE						
ETAPA	INSTALADO (N)	NO INSTALADO (N)	INSTALADO/2 (N)	NO INSTALADO/2 (N)						
1	552359	579976.95	276179.5	289988.475						
	Table 25 Empuie requeride en el punte de despersus									

Tabla 25.Empuje requerido en el punto de despegue

De manera idéntica a anteriormente, se resumen en las tablas 25, 26 y 27 todos los puntos que componen el estudio para posteriormente obtener los requerimientos de empuje. En la tabla 26 se presentan los resultados del estudio del vuelo completo en AEDsys, imagen original en el Anexo L

ETAPA		
	NOMBRE	EMPUJE (N)
1	Despegue	552359
2	Ascenso 1	387395
3	Ascenso 2	299321
4	Ascenso 3	206408
5	Ascenso 4	149275
6	crucero 1	129975
7	ascenso	114318
8	crucero 2	100791
9	ascenso	96925
10	crucero 3	93306
11	ascenso	88235
12	crucero 4	83491

Tabla 26.Resultados del estudio de AEDsys en el vuelo completo

Ahora ya se sabe el empuje necesario para el vuelo completo tras la nueva optimización, se fija el empuje no efectivo para las etapas que componen el vuelo

#	Etapa	Empuje Efectivo	Empuje no efectivo			
1	Despegue	Despegue 552359				
2	Ascenso 1	387395	406764.75			
3	Ascenso 2	299321	314287.05			
4	Ascenso 3	206408	216728.4			
5	Ascenso 4	149275	156738.75			
6	Crucero 1	129975	136473.75			
7	Ascenso hasta altura de crucero	114318	120033.9			
	2					
8	Crucero 2	100791	105830.55			
9	Ascenso hasta altura de crucero	96925	101771.25			
	3					
10	Crucero 3	93306	97971.3			
11	Ascenso hasta altura de crucero	88235	92646.75			
	4					
12	Crucero 4	83491	87665.55			

Tabla 27.Cálculo empuje no efectivo total

Ahora teniendo en cuenta que el avión tiene dos motores, el empuje requerido por cada motor será:

#	Etapa	Empuje Efectivo	Empuje no efectivo		
1	Despegue	276179.5	289988.475		
2	Ascenso 1	193697.5	203382.375		
3	Ascenso 2	149660.5	157143.525		
4	Ascenso 3	103204	108364.2		
5	Ascenso 4	74637.5	78369.375		
6	Crucero 1	64987.5	68236.875		
7	Ascenso hasta altura de crucero				
	2	57159	60016.95		
8	Crucero 2	50395.5	52915.275		
9	Ascenso hasta altura de crucero				
	3	48462.5	50885.625		
10	Crucero 3	46653	48985.65		
11	Ascenso hasta altura de crucero				
	4	44117.5	46323.375		
12	Crucero 4	41745.5	43832.775		

Tabla 28.Cálculo empuje no efectivo total por cada motor

5.3.1. OPTIMIZACIÓN DEL PUNTO DE DISEÑO

A partir del punto de despegue, se busca conseguir una disminución del consumo de combustible a la vez que se mantiene el empuje requerido, para lograrlo se optimizará el punto de diseño, pero se restringirá el empuje máximo en el punto de despegue, ya que se ha demostrado en los estudios anteriores que es el punto más restrictivo

En el apartado "Variables" se seleccionan los mismos parámetros que en optimizaciones previas con idénticos rangos.

Respecto a las "Constraint", se toma como suposición que el punto de despegue seguirá siendo el más restrictivo, por lo que se introducirá el valor mínimo en el despegue, y teóricamente sería suficiente para aportar el empuje necesario en las demás etapas.

Adicionalmente, se introducirá el valor máximo de 50 a 1 para la relación de compresión total ya que es un parámetro importante a controlar.

Sp. Fuel Consumption							- 0	\times
Close Help								
	9	Design Bypass Ratio = 11,8484		13	290	Net Thrust = 290,041		330
Run Stop Reset Cycle No. 2265 Figure of Marit: 12.55	1,3	Outer Fan Pressure Ratio = 1,45045		1,6	10	p3/p2 = 47,6775		50
Best Value: 13,55	1,3 max FOM	Inner Fan Pressure Ratio = 1,43391		1,6				
Search Strategy Random	14,21		1.1					
 Endless Random Systematic 			4.2			33	10	
O Random, New Start			3 <u>(</u>			1. A.	144	
Optimum Sensitivity	min FOM 13.67	e e				25	÷.	

Figura 93. Resultados de la tercera optimización

Tras la optimización mostrada en la figura 95 se configura automáticamente los valores de entrada del punto de diseño mostrado en la figura 94

Property	Unit	Value	Comment
Intake Pressure Ratio		1	
No (0) or Average (1) Core dP/P		1	
Inner Fan Pressure Ratio		1,50349	
Outer Fan Pressure Ratio		1,45525	
Core Inlet Duct Press. Ratio		1	
IP Compressor Pressure Ratio		3,5	
Compr. Interduct Press. Ratio		1	
HP Compressor Pressure Ratio		9,5	
Bypass Duct Pressure Ratio		1	
Inlet Corr. Flow W2Rstd	kg/s	1500	
Design Bypass Ratio		11,6091	
Burner Exit Temperature	K	1600	
Burner Design Efficiency		0,9995	
Burner Partload Constant		1,6	used for off design only
Fuel Heating Value	MJ/kg	43,124	
Overboard Bleed	kg/s	1,75	
Power Offtake	kW	50	
HP Spool Mechanical Efficiency		1	
IP Spool Mechanical Efficiency		1	
LP Spool Mechanical Efficiency		1	
Burner Pressure Ratio		0,95	
IPT Interd. Ref. Press. Ratio		0,992	
LPT Interd. Ref. Press. Ratio		1	
Turbine Exit Duct Press Ratio		0,99	

Figura 94. Punto de diseño optimizado

W Station kg/s amb 2 522,227 13 480,811 21 41,417 22 41,417 24 41,417 25 41,417 3 39,667 31 34,407 4 35,204 41 37,979 42 37,979 43 40,464 44 40,464 45 40,464 45 40,464 47 40,464 49 40,464	T K 217,59 238,96 269,80 272,95 412,27 412,27 412,27 824,22 824,22 1600,00 1547,55 1174,97 1154,64 1154,64 1154,64 1154,64 1154,64 1154,64 1154,37 1034,37 1034,37 1034,37	P kPa 23,154 32,125 46,750 48,299 169,048 169,048 1605,956 1525,659 1525,659 1525,659 1525,659 390,940 387,813 234,093 234,093 234,093 35,441	WRstd kg/s 1500,000 1008,387 84,564 29,694 29,694 4,233 5,509 5,845 21,163 33,184	FN = TSFC = WF = BPR = Core Eff = Prop Eff = P2/P1 = P2/P2 = P25/P24 = P44/P3 = P44/P43 = P48/P47 = P6/P5 = P16/P13 = P16/P6 = P5/P2 = V18/V8,id= A8 =	58,92 13,5360 0,79748 0,87157 11,6091 0,5446 0,7850 49,991 1,00000 1,00000 0,99200 1,00000 0,99200 1,00000 1,00000 1,00000 1,33243 1,10321 0,79929 0,81223	kN g/(kN*s) kg/s
8 40,464 18 480,811 Bleed 1,750	682,51 269,80 539,48	35,086 46,750 388,687	179,844 1008,387	XM8 = XM18 = WBld/W2 =	0,80314 1,00000 0,00335	
Efficiencies: Outer LPC Inner LPC IP Compressor HP Compressor Burner HP Turbine IP Turbine LP Turbine	isentr po 0,8780 0 0,8700 0 0,8400 0 0,8500 0 0,9995 0,8900 0 0,9126 0 0,9000 0	olytr R ,8843 0,3 ,8773 0,3 ,8652 0,5 ,8871 1,0 ,8730 2,1 ,9076 0,7 ,8753 0,5	NI P/P 95 1,455 95 1,503 08 3,500 89 9,500 0,950 14 3,903 52 1,657 15 6,605	CD8 = CD18 = PWX = WlkLP/W25= WB1d/W25 = Loading = e442 th = WCHN/W25 = WCHN/W25 = WCTN/W25 =	0,96190 0,97000 50,00 0,00000 0,04225 100,00 0,86088 0,06700 0,06000 0,00000	kw %
HP Spool mech E IP Spool mech E LP Spool mech E	ff 1,0000 ff 1,0000 ff 1,0000	Nom Spd Nom Spd Nom Spd	12176 rpm 15000 rpm 12800 rpm	WCIR/W25 = WCLR/W25 =	0,00000 0,00000	

Figura 95. Resultados del nuevo punto de diseño

Analizando la figura 95 se anotan los valores más importantes y objeto de estudio:

$$FN = Empuje no \ efectivo = 58,92kN$$
$$TSFC = Consumo = 13,5360 \frac{g}{(kN * s)}$$
$$WF = Fuel \ Flow = 0,79748 \frac{kg}{s}$$
$$BPR = Bypass \ ratio = 11,6091$$
$$\frac{P3}{P2} = Pressure \ Overall \ Ratio = 49,991$$

Según las especificaciones del Rolls Royce Trent WXB-84 aportadas por EASA, este motor tiene un "*Pressure Overall Ratio*" límite máximo de 50 a 1, por lo que comprobamos que sigue dentro del correcto intervalo de funcionamiento.

De igual manera que se ha realizado anteriormente en el punto de diseño sin optimizar, se estudian los diagramas H-S y P-V con el objetivo de encontrar algún problema operativo, ambos diagramas son normales por lo que se prosigue el estudio. Estos diagramas junto con el T-S se pueden comprobar en el Anexo M

5.3.2. CÁLCULO DEL VUELO COMPLETO

Tras el cálculo del punto de diseño, se procede de la misma manera y se calcula los puntos más restrictivos del vuelo, coincidiendo con los de optimizaciones anteriores, en la figura 96 se muestra los resultados del vuelo completo

		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9
Description		despegue	subida 67{	subida 163	subida 44{	subida 72 [.]	crucero 91	crucero 10	crucero 11	crucero 12
Number of Iteration Loops		23.1	23.1	22.1	23.1	21.1	23.1	23.1	23.1	20.1
Altitude	m	0	678	1631	4488	7216	9144	10973	11582	12192
Delta T from ISA	K	0	0	0	0	0	0	0	0	0
Relative Humidity [%]		0	0	0	0	0	0	0	0	0
Mach Number		0,023	0,29	0,31665	0,4834	0,5276	0,583	0,737	0,72	0,705
Overboard Bleed	kg/s	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75
Power Offtake	kW	50	50	50	50	50	50	50	50	50
Net Thrust	kN	290,012	204,448	186,631	130,842	96,0109	74,5113	58,1031	52,0523	46,7161
Core Nozzle Gross Thrust	kN	28,7684	29,4233	28,2898	25,3721	20,2729	17,2002	16,3903	14,3134	12,5465
Bypass Nozzle Gross Thrust	kN	271,079	300,601	284,4	259,379	197,743	164,194	156,685	138,202	122,317
Sp. Fuel Consumption	g/(kN*s)	7,06561	9,81466	10,012	11,5648	11,8915	12,4439	13,854	13,7587	13,7007
Specific Thrust	m/s	230,793	159,442	156,58	132,599	129,31	123,257	109,986	110,117	110,29
Handling Bleed WB_hdl/W22		0	0	0	0	0	0	0	0	0
Total Rel. Overb. Bld W_bld/W25		0,0169643	0,0172975	0,0185415	0,0227535	0,0298356	0,0364993	0,0418464	0,0469082	0,0525173
Fuel Flow	kg/s	2,04911	2,00659	1,86855	1,51316	1,14171	0,927208	0,804959	0,716171	0,640042
Overall Pressure Ratio P3/P2		41,4582	41,5805	42,9419	45,5731	48,2261	49,5012	49,7627	49,3208	48,8762
HPT Pressure Ratio		3,90222	3,90429	3,90487	3,90761	3,90963	3,90626	3,90329	3,89858	3,8934
IPT Pressure Ratio		1,63927	1,64297	1,64598	1,65222	1,65222	1,65373	1,65738	1,65635	1,65523
LPT Pressure Ratio		5,05125	5,2525	5,38804	5,8726	6,14369	6,33591	6,66597	6,61955	6,57483
Isentr. Inner LPC Efficiency		0,87632	0,8948	0,897328	0,902932	0,891815	0,878633	0,870669	0,872962	0,875104
Polytr. Inner LPC Efficiency		0,88218	0,899784	0,902372	0,907971	0,897668	0,885333	0,877898	0,880021	0,882007
Isentr. Outer LPC Efficiency		0,884378	0,903028	0,905579	0,911235	0,900015	0,886713	0,878675	0,880989	0,883151
Polytr. Outer LPC Efficiency		0,889438	0,907273	0,909842	0,915478	0,905006	0,892484	0,884936	0,887093	0,889112
Isentr. IPC Efficiency		0,924431	0,92413	0,920454	0,904661	0,873724	0,851426	0,843069	0,839639	0,837406
Polytr. IPC Efficiency		0,936209	0,935988	0,932979	0,919812	0,893753	0,874893	0,867776	0,864749	0,862759
Isentr. HPC Efficiency		0,857147	0,857152	0,856985	0,856226	0,854976	0,852461	0,85078	0,848977	0,845595
Polytr. HPC Efficiency		0,890613	0,890605	0,890656	0,890502	0,890239	0,88878	0,887625	0,886317	0,883777
Isentropic HPT Efficiency		0,886488	0,886511	0,886878	0,887746	0,888989	0,889684	0,889932	0,890071	0,890045
Polytropic HPT Efficiency		0,869245	0,869261	0,869653	0,870569	0,8719	0,872672	0,872955	0,873127	0,873124
Thermodyn. HPT Efficiency		0,856718	0,856712	0,857153	0,858162	0,859643	0,86051	0,860763	0,860899	0,86089
Isentropic IPT Efficiency		0,919414	0,919222	0,919018	0,918545	0,918818	0,915909	0,912757	0,910582	0,908345
Polytropic IPT Efficiency		0,914908	0,914684	0,91445	0,913904	0,914176	0,911101	0,907756	0,905475	0,903133
Isentropic LPT Efficiency		0,908615	0,909815	0,910614	0,911522	0,906717	0,902784	0,900423	0,898179	0,896059
Polytropic LPT Efficiency		0,88974	0,89063	0,89122	0,891099	0,884598	0,879351	0,875699	0,873092	0,870658
Ambient Pressure Pamb	kPa	101,325	93,4408	83,2055	57,8198	39,8273	30,0896	22,7286	20,6475	18,7539
Ram Pressure P1	kPa	101,363	99,0591	89,1946	67,8469	48,1477	37,8832	32,6168	29,1692	26,1365
Inlet Temperature T2										

Figura 96. Resultados del vuelo completo

La figura 96 muestra los resultados obtenidos en el vuelo completo, se destacan los valores de empuje, consumo instanáneo y relación de compresión total.

Etapas	1	2	3	4	5	6	7	8	9
Empuje Requerido	289.98	203.38	157.1435	108.36	78.36	68.23	52.91	48.98	43.83
Empuje Aportado	290.01	204.44	186.631	130.84	96.01	74.51	58.10	52.05	46.71
Empuje no necesario	0.008%	1%	19%	21%	23%	9%	10%	6%	7%

Figura 97. Comparación del empuje requerido y aportado optimización 3

En la figura 97 se comprueba que el empuje aportado es suficiente para cumplir con los requerimientos, se y se pasa a valorar si la relación $\frac{P_3}{P_2} = Pressure \ Overall \ Ratio$ esté dentro del límite máximo en todos los puntos estudiados, en la figura 100 se observa que cumple satisfactoriamente y no supera el valor de 50

Figura 98. Gráfica que representa la relación de compresión total p3/p2

Al igual que con la optimización anterior, se estudian las curvas características de los compresores y las turbinas, pero con la diferencia es que ahora se representan todos los puntos estudiados. Se comprueba que ningún punto esté fuera del rango óptimos de funcionamiento y que no supere la línea de estabilidad operacional.

Se presentan las curvas características de las etapas de alta presión en las figuras 99-102, y en el Anexo N se adjuntan las correspondientes a las de baja presión y presión intermedia.

Figura 99. Curvas características del HPC de todos los puntos estudiados del vuelo

Figura 100. ZoomCurvas características del HPC de todos los puntos estudiados del vuelo

Figura 101. Curvas características del HPT de todos los puntos estudiados del vuelo

Figura 102. Zoom Curvas características del HPT de todos los puntos estudiados del vuelo

De forma análoga a lo realizado en la simulación inicial, se muestran en las figuras 103-105, se grafican diferentes variables que ayudan a entender mejor los puntos más restrictivos, y los valores que toman parámetros como el número de mach, el empuje, el consumo de combustible.

Figura 103. Gráfica que representa el empuje frente al consumo en el vuelo completo

Figura 104. Gráfica del consumo frente al número de mach en el vuelo completo

Figura 105. Gráfica que representa el empuje frente a la altura en el vuelo completo

Tras comprobar que en ninguna de las gráficas se supera la línea operacional, comprobar que el empuje aportado es suficiente y la relación de compresión no supera el límite máximo se toma el estudio como válido y se analizan los resultados obtenidos.

NUEVO PUNTO DISEÑO											
Net Thrust	kN	290.07	204.69	186.97	131.61	96.79	75.32	58.61	52.70	47.13	AHORRO
Sp. Fuel											
Consumption	g/(kN*s)	7.07	9.81	10.01	11.56	11.89	12.44	13.85	13.76	13.70	TOTAL
AHORRO DE CO	NSUMO	4 30%	2.96%	2 9 2%	2 5 7%	2 /0%	2 00%	1 3/1%	1 3/1%	1 27%	2 3 7%
INSTANTA	NEU	4.30%	2.90%	2.92/0	2.5770	2.49/0	2.0970	1.5470	1.5470	1.52/0	2.5770

Tabla 29.Ahorro de TSFC optimización 3

En la tabla 29 se observa que la disminución del consumo instantáneo (por unidad de tiempo y potencia) es de 2,37%, frente al 1,44% de la anterior optimización, por lo que se finalizará el estudio y se analizarán los datos.

6. COMPARACIÓN DE RESULTADOS

En este capítulo se presentan todos los resultados obtenidos durante el proyecto, se comparan los datos obtenidos teóricamente con los de las simulaciones tanto de AEDsys y Gasturb. Posteriormente se detallan y se comparan los datos de todas las simulaciones realizadas para analizarlos y valorarlos en detalle.

También se comparan los valores de las diferentes optimizaciones y se decide cual es la mejor estrategia a seguir si se quiere buscar un ahorro de combustible, y se estudian los posibles beneficios que conlleva cada optimización.

VUELO INICIAL											
Net Thrust	kN	326.99	234.94	214.46	150.83	110.41	86.13	67.75	60.86	54.76	
Sp. Fuel Consumption	g/(kN*s)	7.53	10.24	10.44	12.02	12.38	12.92	14.25	14.15	14.09	
OPTIMIZACION 1											
Net Thrust	kN	265.02	182.90	166.98	117.49	85.96	66.10	50.14	44.81	40.17	
Sp. Fuel Consumption	g/(kN*s)	6.60	9.40	9.58	11.05	11.35	11.90	13.50	13.41	13.34	
	_										
OPTIMIZACION 2											
Net Thrust	kN	320.78	228.19	208.22	146.31	107.46	83.97	66.14	59.39	53.41	AHORRO
Sp. Fuel Consumption	g/(kN*s)	7.38	10.11	10.31	11.87	12.20	12.71	14.04	13.94	13.88	TOTAL
AHORRO DE CONSUMO INSTA	ANTÁNEO	1.92%	1.20%	1.26%	1.21%	1.52%	1.60%	1.42%	1.42%	1.44%	1.44%
NUEVO PUNTO DISEÑO											
Net Thrust	kN	290.07	204.69	186.97	131.61	96.79	75.32	58.61	52.70	47.13	AHORRO
Sp. Fuel Consumption	g/(kN*s)	7.07	9.81	10.01	11.56	11.89	12.44	13.85	13.76	13.70	TOTAL
AHORRO DE CONSUMO INSTA	NTÁNEO	4.30%	2.96%	2.92%	2.57%	2.49%	2.09%	1.34%	1.34%	1.32%	2.37%

Figura 106. Resultados del ahorro de combustible instantáneo en cada etapa

Los resultados presentados en la figura 106 representan los puntos de comienzo de cada etapa estudiada, ya que el software Gasturb 14 en su modo Mission estudia puntos, no intervalos de tiempo.

A partir de estos datos, se interpretará cuál sería el ahorro de combustible total en un vuelo completo, para esto, se tomarán algunas suposiciones:

Se supondrá que a partir de la última etapa de crucero, al comenzar el descenso, no habrá un ahorro de combustible, ya que los requerimientos de empuje son muy bajos en comparación con los puntos de ascenso y crucero, es por esto que no se tendrán en cuenta estas etapas en las optimizaciones, además, se tomará como hipótesis que el requerimiento de empuje en estas etapas se mantendrá constante en todas las optimizaciones.

El cálculo de consumo de combustible se calculará sabiendo el tiempo que dura cada etapa y bajo la hipótesis de que el consumo será perfectamente constante durante el transcurso de la etapa, aunque respecto al estudio inicial hay un ahorro sustancial, en las etapas de despegue y ascensos la aeronave tarda más tiempo en completar las etapas, es por esto que el ahorro final será algo menor, además, en las etapas de descenso, aproximación y aterrizaje se supondrá un ahorro del 0%.

Además, los programas de simulación aportan los datos de empuje y consumo al comienzo de las fases, por lo que, los valores de consumo y empuje requerido de los intervalos de tiempo entre fases, se calcularán como el punto medio entre sus fases contiguas. Es decir, por ejemplo, el requerimiento de empuje en la fase de ascenso entre el punto de crucero a 9144m y el punto de crucero a 10973m se calculará como el punto medio entre los dos, ya que los datos aportados por Gasturb representan el empuje requerido justo al llegar al punto de 9144m y 10973m en un hipotético ascenso continuo desde el despegue hasta el punto más alto del vuelo, por lo que se sabe que el empuje requerido entre esas dos fases será menor, al igual que en las posteriores etapas de crucero, que también será considerablemente menor el empuje requerido.

Por último, los datos de la etapa de aterrizaje se supondrán iguales la etapa de aproximación, ya que es una etapa muy dependiente del piloto, de la pista, y varía considerablemente en cada vuelo, por lo que no hay datos públicos que aporten información sobre esta etapa.

VUELO INICIAL	ETAPA	1	2	3	4	5	6	7
Net Thrust	kN	326.99	234.94	214.46	150.83	110.41	86.13	76.94
Sp. Fuel Consumption	g/(kN*s)	7.53	10.24	10.44	12.02	12.38	12.92	13.58
CONSUMO (kg)		109.54	254.47	834.36	895.96	1691.31	18123.18	989.79

	8	9	10	11	12	13	14	15	16	17
J	67.75	64.31	60.86	57.81	54.76	3.6	3.6	3.6	3.6	3.6
	14.25	14.20	14.15	14.12	14.09	6	6	6	6	6
1	5041.76	423.19	6950.43	99.80	9483.95	11.44	7.69	4.73	8.53	8.53
Ī		CONSUMO TOTAL (kg)		44930.15						

Figura 107. Resultados de la simulación inicial

Se puede comprobar en la figura 107 que el factor de seguridad a la hora de estimar el combustible que lleva el avión es suficientemente grande.

Como se ha calculado y explicado previamente en el Fuel Planning realizado en el capítulo 4.4.3. Carga de Combustible, a la hora de calcular los requerimientos del vuelo, se ha sobredimensionado el peso de combustible que llevase en el vuelo el avión, se ha cuantificado el combustible total en 74250 kg. Esto sería equivalente a un Trip fuel de 62512 kg.

Experimentalmente se ha calculado que el consumo inicial del avión es de 44930 kg de combustible, este sería el desarrollado anteriormente Trip fuel, además, habría que añadirle las demás etapas explicadas anteriormente para aumentar la precisión del estudio, aunque en las demás etapas se supondrá un ahorro de combustible nulo.

- Taxi Fuel: 600 kg
- Combustible de Contingencia: 5% del Trip fuel = 2246.5kg
- Combustible extra: 0 kg
- Final reserve Fuel: se toma como hipótesis el máximo permitido de combustible reserva, como se explica detalladamente en el fuel planning, esto es un 10% del combustible de vuelo o Trip fuel= 44930 kg

Finalmente el combustible total del vuelo completo será la suma de las 4 etapas, por lo tanto el Consumo de combustible total = 52269.65 kg.

Este valor sigue siendo menor a los 74250 kg que se ha decidido teóricamente que lleve el avión, por lo que no habría ningún problema de falta o desavastecimiento de combustible, y se podría iterar y ajustar más ese peso. En este estudio no interesa ya que se prefiere mantener ese alto factor de seguridad.

Sabiendo que la densidad del combustible es $0.785 \frac{kg}{litros}$ se halla el valor del Consumo del combustible en litros = $66585.54 \ litros$

NUEVO PUNTO DISEÑO			ETA	PA	1		2	3	4	5	6	7
Net Thrust			kΝ	kN		07	204.69	186.97	131.61	96.79	75.32	66.97
Sp. Fuel Consumption			g/(kN	(kN*s)		7	9.81	10.01	11.56	11.89	12.44	13.15
AHORRO	DE COMB	JSTIBLE				%	2.96%	2.92%	2.57%	2.49%	2.09%	1.70%
CONSUMO (kg)					183.	02	709.16	1971.20	2176.51	4057.24	15296.81	834.13
8	9	10	1		1		12	13	14	15	16	17
58.61	55.66	52.70		49	.91	2	47.13	3.6	3.6	3.6	3.6	3.6
13.85	13.81	13.76		13	.73	1	13.70	6	6	6	6	6
1.34%	1.34%	1.34%	% 1.3		33%	1	L.32%	0%	0%	0%	0%	0%
4251.33	356.24	5862.9	1 83		.81	79	950.66	11.44	7.69	4.73	8.53	8.53
			CONSUMO TOTAL				43773.94					
			AHORRO TOTAL				2.57%					

Figura 108. Resultados del ahorro de combustible total optimización 3

En la figura 108 se muestran los resultados de la optimización 3, en la que cuantifica un ahorro de combustible conseguido del 2.57%, este ahorro es solamente sobre el combustible de vuelo (Trip Fuel), por lo que se calcula ese 2,57% sobre los 44930 kg, que son 1156.1 kg pasado a litros esto da un valor de litros de combustible ahorrados de 1472,67 *litros*

Se sabe que el Airbus A350-900 para vuelos comerciales consume actualmente combustible JET A-1, saber el precio exacto de este combustible es difícil, ya que no son datos públicos, por lo que se toma como valor el precio aportado por la empresa JUMP AVIATION SL, dedicada a la venta de combustibles en aeropuertos y aeródromos en España, con un precio de $(1,97 \in +21\% IVA) / litro$ de Jet A-1 para vuelos comerciales. Esto sería un precio final de 2,38 *euros/litro*

1472,67 *litros* * 2,38
$$\frac{€}{litro}$$
 = 3510,40€

A continuación se presenta un pequeño resumen de resultados para observar los datos en conjunto:

Combustible total (litros)	Combustible total (kg)	Trip Fuel (litros)	Trip fuel (kg)	Ahorro combustible sobre el Trip fuel (%)	Ahorro combustible (litros)	Ahorro (€)
66585,54	52269,65	57235,6	44930	2,57%	1472,67	3510,4

Tabla 30.Resultados de ahorro optimización 3

Paradójicamente, se observa que en la tercera optimización, aunque el TSFC disminuye considerablemente, sus unidades son $\frac{g}{kN*s}$ por unidad de tiempo y por unidad de potencia, aunque es cierto que la potencia se ha optimizado y ha disminuido respecto al primer estudio, el tiempo de cada etapa aumenta considerablente, por lo que el ahorro final no es tan grande.

Es importante valorar el ahorro, pero teniendo en cuenta que el tiempo de vuelo ha aumenta a su vez, esto se puede comprobar en los datos de los Anexo C y Anexo O.

Por lo que un supondría un ahorro de 3510,40 € pero el tiempo de vuelo aumenta en 71 minutos.

Esto podría acarrear algunos inconvenientes para la aeronave como para los pasajeros, un mayor tiempo de vuelo puede generar una afectación en la programación de vuelos y posibles retrasos en la llegada a destino.

Además, al prolongar el tiempo de vuelo, los componentes del avión, como los motores y otros sistemas, estarán operando durante más tiempo. Esto podría resultar en un mayor desgaste y requerir un mantenimiento más frecuente, lo que aumenta los costos de mantenimiento y la posibilidad de tiempos de inactividad no planificados.

Esto se sumará a una mayor fatiga estructural, ya que un vuelo más largo implica un mayor tiempo en condiciones de vuelo, lo que puede contribuir a la fatiga estructural de la aeronave. La fatiga estructural puede afectar la vida útil de los componentes y requerir inspecciones y reparaciones adicionales.

A la vista de los resultados, se decide estudiar el ahorro total de la segunda optimización, ya que a priori parecía que conllevaba un ahorro menor que la tercera optimización, pero al mantener el tiempo de vuelo original, podría no ser así.

OPTIMIZACION 2		ETA	PA 1	2	3	4	5	6	7
Net Thrust		kN	320.7	8 228.19	208.21	146.31	107.46	83.97	75.05
Sp. Fuel Consumption		g/(kN	*s) 7.3	8 10.11	10.31	11.87	12.20	12.71	13.38
AHORRO DE	CONSUMO IN	ISTANTÁNE	0 1.929	% 1.20%	1.26%	1.21%	1.52%	1.60%	1.51%
CONSUMO (kg)		105.4	0 244.18	799.86	858.61	1621.08	17385.58	950.95
8	9	10	11	12	13	14	15	16	17
66.14	62.76	59.39	56.40	53.41	3.6	i 3.0	5 3.	.6 3.6	3.6
14.04	13.99	13.94	13.91	13.88	6	j (5	6 6	6
1.42%	1.42%	1.42%	1.43%	1.44%	0%	5 0 %	6 0	% 0%	0%
4851.62	407.16	6685.75	95.97	9116.33	11.44	7.69	9 4.7	3 8.53	8.53
			CONSUMO	D TOTAL	43163.4	ł			
			AHORRO T	IORRO TOTAL					

Figura 109. Resultados de ahorro de combustible segunda optimización

Tras analizar los tiempos operativos de vuelo de cada etapa, se comprueba que finalmente supone un ahorro total de combustible de un 3,932%, aunque al principio parecía que esta optimización no era la más adecuada, ya que los ahorros de combustible instantáneo en los puntos estudiados eran menores, al estudiar la etapa en conjunto se demuestra lo contrario.

Realizando unos cálculos idénticos a la optimización anterior, y sabiendo que el ahorro conseguido en este caso es del 3.93 %, se calcula ese 3,93% sobre los 44930 kg que constituyen el Trip fuel o combustible de vuelo, realizando el cambio de unidades a litros con la densidad del combustible, esto da un valor de litros de combustible ahorrados de 2250,5 *litros*

2250,5 *litros* * 2,38
$$\frac{€}{litro}$$
 = 5356,19 €

A continuación, se presenta un pequeño resumen de resultados para observar los datos en conjunto:

Combustible total (litros)	Combustible total (kg)	Trip Fuel (litros)	Trip fuel (kg)	Ahorro combustible sobre el Trip fuel (%)	Ahorro combustible (litros)	Ahorro (€)
66585,54	52269,65	57235,6	44930	3,93%	2250,5	5356,19

Tabla 31.Resultados de ahorro optimización 2

Por último, se presenta en la tabla 32 una comparativa que ilustra los principales resultados obtenidos, el tiempo de vuelo se halla con los datos aportados por AEDsys en ambas simulaciones, se puede observar el fichero en el Anexo C y en el Anexo O, en ellos se comprueba que los tiempos en los descensos son iguales, ya que el motor no opera en su máxima potencia y prácticamente no requiere empuje, pero en las demás fases hay un aumento de la duración de la fase importante.

OPTIMIZACIÓN 3	Tiempo de vuelo	Ahorro combustible sobre el Trip fuel (%)	Ahorro combustible (litros)	Ahorro (€)	
	13h y 04min	2,57%	1472,67	3510,40	
OPTIMIZACIÓN 2	Tiempo de vuelo	Ahorro combustible sobre el Trip fuel (%)	Ahorro combustible (litros)	Ahorro (€)	
	12h y 03min	3,93%	2250,5	5356,19	

Tabla 32. Comparación de los resultados de las dos optimizaciones

Como se ha explicado anteriormente, resulta más interesante mantener un empuje más alto en el punto de diseño inicial, ya que no es directamente proporcional la bajada de empuje con el consumo de combustible, se observa que, al reducir un pequeño porcentaje de empuje, se aumenta demasiado el tiempo operativo de vuelo, lo que acaba siendo contraproducente de cara a un vuelo comercial.

De esta manera se finaliza el estudio experimental, verificando los resultados y comparándolos con los valores reales, respecto al tiempo de vuelo, el vuelo escogido con los datos aportados por Flightaware tarda 11 h y 24min en aterrizar, por lo que se asume el estudio realizado como correcto, ya que el vuelo simulado mediante gas turb tiene una duración solamente una duración 5,7% mayor, algo lógico ya que ninguna empresa estudiada en este trabajo publica sus datos sobre las configuraciones de los motores, y teniendo en cuenta que se han sobredimensionado todos los parámetros de peso, combustible, fuerzas y requerimientos con el objetivo de aumentar el factor de seguridad, es un grado de precisión muy válido.

Para estudios posteriores, sería interesante realizar nuevas iteraciones en el segundo punto de diseño, ya que el software Gasturb está programado para minimizar el consumo por unidad de tiempo, de modo que será interesante buscar el equilibrio que minimice el tiempo operativo a la vez que mantenga un consumo instantáneo bajo.

Otra forma de continuar el estudio sería realizar una nueva iteración ajustando el peso del combustible, anteriormente se supuso un combustible mucho mayor al real, con la finalidad de aumentar el factor de seguridad. De modo que se podría optimizar nuevamente realizando numerosas iteraciones hasta que el combustible supuesto coincida con el aportado por Gasturb

7. ESTUDIO DE VIABILIDAD ECONÓMICA

En este capítulo se cuantificarán todos los factores económicos asociados al proyecto, de modo que se tendrán en cuenta costes tanto de las horas empleadas por el personal a cargo del proyecto, como de los costes asociados a recursos.

7.1. INTRODUCCIÓN

El presente trabajo tiene como objetivo conseguir una correcta simulación y optimización de un vuelo escogido previamente, en concreto, usando los software AEDsys y Gasturb 14. En esta sección, se evaluarán y valorarán todos los costes asociados a la gestión del proyecto, incluyendo los costes de desarrollo, los equipos informáticos y materiales utilizados, así como las horas dedicadas por todas las personas involucradas en cada fase.

7.2. JERARQUÍA DEL PROYECTO Y EQUIPO DE TRABAJO

En este caso específico, el sector de la aviacióny la movilidad es un sector con alta inversión y competencia, por lo que los estudios como este recaerían sobre un equipo de trabajo amplio. Para llevar a cabo este proyecto de simulación y optimización de vuelos utilizando el programa Gasturb, se ha conformado un equipo de trabajo clave para su éxito. Este equipo está compuesto por:

- Jefe de Departamento: es el responsable de la concepción inicial del proyecto. Se encarga de la planificación, elaboración del presupuesto económico y coordinación de todas las personas involucradas y valorará la viabilidad económica del estudio. Este miembro se encarga de presentar el proyecto al área específica de la empresa de aviación y supervisar su implementación a lo largo del tiempo.
- Ingeniero de Desarrollo: encargado de la ejecución práctica del proyecto de simulación con Gasturb 14. Su responsabilidad incluye la recopilación de información relevante, verificación de su veracidad, análisis detallado y la elaboración de informes finales. Además, debe cumplir con los objetivos establecidos en la planificación proporcionada por el director del proyecto. En este proyecto, participa solo un ingeniero especializado en simulación y optimización de operaciones aéreas.

Este equipo multidisciplinario garantiza una cobertura completa de las áreas críticas del proyecto, desde la concepción hasta la implementación, asegurando una ejecución eficiente y el logro de los objetivos establecidos. La colaboración estrecha entre los diferentes miembros del equipo es fundamental para el éxito de este proyecto de simulación aplicado a la aviación.

7.3. FASES DE DESARROLLO

El proyecto se divide en fases de desarrollo para garantizar la consecución de los objetivos establecidos. Estas fases incluyen la decisión y planificación, presentación del proyecto, recopilación de información y estudio de campo, análisis de la información y desarrollo, y finalmente, la redacción de la memoria y presentación.

El desarrollo de un proyecto de optimización mediante una herramienta de simulación para la aviación es un desafío que demanda una planificación meticulosa para minimizar posibles errores. Se sigue un proceso específico para garantizar el éxito de este proyecto único.

- Fase de Concepción Estratégica: El proyecto se inicia con la definición de objetivos y la realización de un estudio detallado. Se lleva a cabo un análisis general para abordar el problema planteado, definiendo las funcionalidades esenciales de la herramienta y los recursos necesarios para su desarrollo.
- Fase de Análisis y Evaluación: Tras la descripción inicial, se realiza un análisis detallado para establecer los tiempos necesarios para cada tarea y asignar recursos de manera eficiente. En esta fase, se evalúa la viabilidad del proyecto en base a los requerimientos identificados.
- Fase de Simulación: Los ingenieros definirán todos los parámetros a estudiar, y se realizarán todas las iteraciones necesarias hasta conseguir el grado de precisión demandado. Esta etapa incluye el estudio de los requerimientos con Aedsys y la posterior simulación con Gasturb 14
- Fase de Optimización: Esta etapa implica iteración con el objetivo de optimizar y mejorar la simulación inicial, incluye todo tipo de estudios adicionales, variaciones de parámetros de vuelo u optimización de valores específicos con el fin de lograr el objetivo demandado.
- Fase de Validación y análisis de los resultados: Una de las etapas más importantes, donde el equipo técnico estudia y valora la viabilidad del estudio, y su posible implantación futura. En caso de no cumplir con los objetivos o

incumplir algún parámetro de seguridad se volverá a la fase de optimización para retomar los cálculos.

 Fase de presentación de los resultados: en esta etapa el manager junto con la ayuda administrativa adecuada presentará los resultados al cliente final, de manera que se presenten resultados finales cuantificados y especificación de los objetivos logrados.

La presentación de los resultados sería la última etapa realizada completamente por el equipo asignado, pero habría dos fases más en las que hay que trabajar en coordinación con el cliente final para lograr un correcto desenlace e implementación del proyecto.

- Fase de Documentación Integral y homologación: La fase más importante de todas, al ser un estudio aplicable a aviones comerciales que transporten pasajeros, los resultados obtenidos se deben someter a estudios de fiabilidad y homologaciones según la legislación de cada país de modo que se asegure el correcto funcionamiento de la aeronave. Así como se elaborará un manual detallado que explique los cambios que acaree el estudio, así como manuales para operarios o ténicos si es necesario.
- Fase de Implementación y Retroalimentación: Por último, si todas las fases anteriores han tenido un resultado satisfactorio, se implementan las optimizaciones y se consideran las sugerencias de mejora del cliente para aplicar los ajustes necesarios.

Este enfoque jerárquico y las fases definidas garantizan una ejecución eficiente y una distribución clara de responsabilidades dentro del equipo de trabajo.

La figura 110 muestra el Diagrama de Gantt del proyecto estudiado, en él solo se incluyen las 6 primeras fases ya que, como se ha detallado anteriormente, son las que el equipo de trabajo completará en su totalidad sin la coordinación del cliente final.

Universidad de Valladolid

FAS	FASES		FEBF	RERO	MAF	RZO	AB	ABRIL		MAYO		JUNIO		10	
DESCRIPCIÓN DE CADA TAREA	DURACIÓN	COMIEZO	FIN	Q1 Q2		Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2
FASE 1: CONCEPCIÓN ESTRATÉGICA	17 días	01/02/2023	18/02/2023												
FASE 2:ANÁLISIS Y EVALUACIÓN	18días	18/02/2024	08/03/2023												
FASE 3: SIMULACIÓN	49 días	08/03/2023	26/04/2024												
Simulación Aedsys	13 días	08/03/2023	21/03/2023												
Simulación Gasturb punto diseño	14 días	21/03/2023	04/04/2023												
Simulación Gasturb punto de despegue	8 días	04/04/2023	12/04/2023												
Simulación Gasturb vuelo completo	8 días	12/04/2023	20/04/2023												
Reunión y análisis de resultados	6 días	20/04/2023	26/04/2023												
FASE 4: OPTIMIZACIÓN	34 días	26/04/2023	01/06/2023												
Primera optimización	12 días	26/04/2023	10/05/2023												
Segunda optimización	9 dias	10/05/2023	19/05/2023												
Tercera optimización	8 diías	19/05/2023	27/05/2023												
Reunión y análisis de resultados	5 días	27/05/2023	01/06/2023												
FASE 5: VALIDACIÓN	10 días	01/06/2023	11/06/2023												
FASE 6: PRESENTACIÓN	142 días	04/03/2023	26/07/2023												
Redacción de la memoria de resultados	126 días	04/03/2023	10/07/2024												
Preparación de presentación	16 días	10/07/2024	26/07/2023												

Figura 110. Diagrama de Gantt proyecto

7.4. ESTUDIO ECONÓMICO

En este apartado, se realiza un análisis económico detallado del proyecto, desglosando los costes en varias secciones. Se realizan los cálculos correspondientes a cada una de las secciones que han sido esenciales para la ejecución del proyecto, desglosando detalladamente cada una de ellas en subsecciones pertinentes. Se establecerá una correlación entre las secciones a contabilizar y las etapas de desarrollo previamente descritas en la sección anterior. Se llevará a cabo una contabilidad por actividades, evaluando los costos asociados con cada actividad realizada en el proyecto.

7.4.1.COSTE POR TRABAJADOR Y HORAS ANUALES

Se asignarán los costes referentes al personal, calculando las tasas por hora de cada profesional, para hallarlo se calculan las horas efectivas anuales.

Días en un año	365 días
Fines de semana	-105 días
Vacaciones efectivas	-20 días
Días festivos	-12 días
Días por enfermedad	-15 días
Total	213 días
Total horas	1704 horas
Tabla 22 Horac	ofactivas anualos

Posteriormente, se detalla en la tabla 34 el coste por hora de cada profesional implicado en el proyecto, cuantificando su sueldo neto según el convenio de trabajadores de Castilla y León

	Jefe de Departamento	Ingeniero
Nº DE PERSONAS	1	1
SUELDO ANUAL NETO	48000	32000
SEGURIDAD SOCIAL (35%)	16800	11200
COSTE TOTAL (€)	64800	43200
COSTE (€/h)	38.03	25.35

Tabla 34.Coste por hora de cada empleado

Según el Diagrama de Gantt de la figura 110, para la consecución del proyecto se necesitan 173 días de un solo trabajador con horario de jornada completa, en la figura se especifican días no laborables:

Días necesarios a jornada completa	173 días
Fines de semana	49 días
Vacaciones efectivas	10 días
Días festivos	6 días
Días por enfermedad	8 días
Total	100 días

Tabla 35.Días necesarios para completar el proyecto

7.4.2.CÁLCULO DE AMORTIZACIONES PARA EL EQUIPO INFORMÁTICO

Se calculará el coste de amortización de los equipos informáticos utilizados en el proyecto, considerando una amortización lineal de cinco años o 60 meses, por eso mismo, ya que el proyecto dura 6 meses, se considera coste a amortizar el 10% de los equipos.

	Coste (€)	Cantidad	Coste total (€)	Coste a amortizar (€)
Portátil Lenovo Ideapad 330 Icore i7 8ºGen NVIDIA GEFORCE GTX	700	2	1400	140
Software AEDsys	0	1	0	0
Software Gasturb	445	1	445	445
Microsoft Windows 11	105	2	210	210
Microsoft Office 365	69	2	69	138
Total a amortizar (€)				933

Tabla 36.Coste de los equipos informáticos

7.4.3.COSTE DEL MATERIAL CONSUMIBLE

En este apartado se calcula el coste total del material consumible, ya que es un proyecto totalmente digital no se especifica el material que será necesario, como papel de impresora, suministros,etc... se realiza una estimación aproximada en función del consumo medio por persona y hora de trabajo.

CONCEPTO	Coste (€)	Cantidad	Coste total (€)
Material de oficina	200	1	200
Otros	200	1	200
Total a amortizar			400

Tabla 37.Coste del material consumible

7.4.4.COSTES INDIRECTOS

En este apartado se consideran todos los costes indirectos no asociados a trabajadores, equipo electrónico o material de oficina, pueden ser servicios básicos como (agua, luz, calefacción, teléfono, internet, etc.), que afectan al conjunto del proyecto y son necesarios.

CONCEPTO	Coste (€)	Cantidad	Coste total (€)
Electricidad, calefacción y agua	100	6	600
Internet	50	6	300
Otros	200	1	200
Total a amortizar			1100

Tabla 38. Costes indirectos

7.4.5.HORAS DE PERSONAL ASIGNADAS A CADA FASE DEL PROYECTO

En la tabla 39 se detalla la distribución de horas trabajadas por cada persona involucrada en cada fase del proyecto, se ha tenido en cuenta la carga técnica en cada fase y los días necesarios para la consecución del proyecto presentados en la tabla 35, de modo que deben coincidir las horas con las de un solo ingeniero trabajando 100 días a jornada completa.

Equipo		Total (baras)						
εquipo	F1	F2	F3	F4	F5	F6	Total (Horas)	
Jefe de departamento	30	20	20	20	30	60	180	
Ingeniero	20	66	130	104	50	250	620	
Total	50	86	150	124	80	310	800	

Tabla 39. Horas por fases de cada trabajador

7.4.6.CÁLCULO DEL COSTE TOTAL

A continuación, se calculan los costes de cada fase en función de las tasas, las amortizaciones, el material consumible y los costes indirectos, considerando las horas dedicadas por los profesionales.

CONCEDIO	Coste por hora		Total (F)						
CONCEPTO	(€)	F1	F2	F3	F4	F5	F6	TOLAT (€)	
Trabajadores									
Jefe de departamento	38.03	30	20	20	20	30	60	6845.07	
Ingeniero	25.35	20	66	130	104	50	250	15718.31	
Euipos electrónicos								933	
Costes Indirectos								1100	
Consumible								400	
Coste total (€)		20	66	130	104	50	250	18151.3	

Tabla 40. Costes totales

En resumen, este análisis económico proporciona una visión detallada de los recursos financieros y humanos involucrados en el proyecto, facilitando una comprensión exhaustiva de los costes asociados a cada fase y la totalidad del proyecto.

8. CONCLUSIONES

En el presente Trabajo de Fin de Grado se ha llevado a cabo diferentes simulaciones y optimizaciones con el objetivo general de acercarse con la mayor precisión posible a la realidad,

Como conclusiones generales podemos destacar las siguientes:

- En primer lugar, se ha realizado una revisión de todos los conceptos necesarios para entender el funcionamiento de un motor de reacción y en especial un turbofán que es el motor simulado en el presente TFG.
- A continuación, se utiliza una metodología de trabajo que consiste en la utilización de dos softwares para la simulación del vuelo: Aedsys para estudiar los requerimientos de empuje del vuelo inicial y Gasturb para realizar la simulación inicial del motor de reacción y posteriores optimizaciones.
- Se verifica la viabilidad y la precisión de los softwares utilizados a la hora de realizar los cálculos comparando los valores aportados en el marco teórico.
- Después se ha realizado una simulación inicial que incluye una caracterización del punto de diseño, una simulación del punto de despegue, escogido como el punto más restrictivo del vuelo, y una simulación del vuelo completo.
- Más tarde, se realizan tres optimizaciones a la simulación inicial, siguiendo diferentes estrategias de optimización para reducir el consumo de combustible utilizado en vuelo.
- Finalmente se ha presentado un estudio económico del presente TFG.

Las conclusiones específicas derivadas de cada una de las conclusiones generales anteriores son las siguientes:

- Respecto a la base teórica en la que se han fundamentado los primeros capítulos de este trabajo, se demuestran como verdaderas algunas de las hipótesis y suposiciones tomadas al principio del estudio, como que el punto de despegue es el punto más restrictivo en cuanto a empuje, y en cuanto a fuerzas de sustentación y aerodinámica.
- También se verifica que al realizar una posterior optimización o simulación, los puntos pertenecientes a las fases de descenso no serán nunca restrictivos en un estudio, por lo que se podrán incluir solamente en el cálculo a la hora de calcular la duración del vuelo.
- Respecto a la simulación realizada con AEDsys se muestra que las fases de tienen una variabilidad muy pequeña en cuanto a empuje, influyendo mayoritariamente la altura a la que operan.

- Se concluye que una forma viable de reducir estos requerimientos de empuje en el despegue puede ser reducir el peso ya que es en ese punto específico donde más influye.
- A través del Sofware GasTurb se han simulado y estudiado los modos de trabajo Performance y Off Design, explorando diferentes configuraciones y demostrado la efectividad si son usados conjuntamente
- Los datos aportados por FlightAware aunque a priori muestran una mayor dispersión, sirven para demostrar la viabilidad de la simulación al concluir con un error en la duración del vuelo menor al 6%
- Con respecto a la simulación inicial realizada cabo conjuntamente con AEDsys y Gasturb 14:
 - Se concluye de forma satisfactoria la viabilidad y la precisión de sus cálculos, y se demuestra que se debe mantener un adecuado factor de seguridad para que se mantengan los rangos operativos, ya que los parámetros están altamente correlacionados entre ellos, como bien se ha demostrado con la bajada excesiva del empuje en la primera simulación, que ha conllevado una subida desmedida de la relación total de compresión.
 - Se consigue una simulación inicial correcta comparando los valores con los teóricos aportados por la ficha técnica del motor Rolls Royce Trent XWB-84
- Respecto a la optimización llevada a cabo, cabe destacar que:
 - La primera optimización muestra que se debe buscar optimizar el punto más restrictivo del vuelo, ya que si se optimiza el punto de diseño el motor generaría un 17% menos del empuje necesario.
 - La segunda optimización muestra que al optimizar los datos conjuntamente el lugar de optimizar un solo punto, se consigue una optimización más precisa consiguiente un ahorro de combustible instantáneo del 1.44% y una reducción del consumo total del vuelo en un 3.93%
 - La tercera optimización demuestra que hay diferentes estrategias a la hora de optimizar un motor, y ratifica la viabilidad de el aumento de la longitud de pista en el despegue con un ahorro de combustible instantáneo del 2.37% y una reducción del consumo total del vuelo en un 2.57%
 - Se demuestra que al buscar mejorar la eficiencia de un motor a reacción, se debe priorizar una reducción de consumo total ante una reducción más acusada del consumo instantáneo en los puntos más restrictivos, ya que como se ha demostrado con la comparativa entre la tercera y la segunda optimización.

- Se concluye el estudio consiguiendo un ahorro económico de 5356€ en la segunda optimización y de 3510€ en la tercera optimización.
- Por último se confirma que el desarrollo de la simulación de una aeronave es un proceso complejo y las variables están relacionadas entre sí, por lo que se deben estudiar todos los parámetro en conjunto para lograr el objetivo, en este estudio se ejemplifica como una reducción excesiva del empuje y el consumo también conlleva un aumento del tiempo operativo de vuelo.

REFERENCIAS

- [1] Departamento de Ingeniería Energética y Fluidomecánica, APUNTES DE MÁQUINAS TÉRMICAS, 2023.
- [2] Jose Manuel López Granero, «Estudio de un turbofan», 2012.
- [3] Gasturb GmbH, «Gasturb 14», 2023.
- [4] Jack D. Mattingly, William H. Heiser, y David T. Pratt, *Aircraft Engine Design,* Second Edition, AIAA Education Series. American Institute of Aeronautics and Astronautics, 2002.
- [5] Jack D. Mattingly, William H. Heiser, y David T. Pratt, «AEDsys Software», 2002.
- [6] 2023Flightaware «Flightaware IBE6409».
- [7] Iberia líneas Aéreas de España SA 2023 «IBERIA A350-900 characteristics».
- [8] AIRBUS SAS 2023 «A350 Airbus Aircraft Data Sheet».
- [9] Rolls-Royce Deutschland Ltd & Co KG. EASA, «ROLLS ROYCE TRENT XWB SERIES ENGINES TYPE-CERTIFICATE DATA SHEET», 2019.
- [10] EUROCONTROL, «EUROCONTROL SERIES A350»,
- [11] ROLLS ROYCE, «ROLLS ROYCE TRENT».
- [12] AIRBUS S.A.S. y EASA, «TYPE-CERTIFICATE DATA SHEET EASA AIRBUS-A350 SERIES», 2023.
- [13] Lufthansa Consulting, «Review of Standard Passenger Weights EASA Final Report», 2022.
- [14] AIRBUS SAS, «Fuel Planning and management».
- [15] AIRBUS SAS, «Getting to grips with Fuel economy», 2004.
- [16] Andrew Wood, «AEROTOOLBOX School», 2023
- [17] AENA SME S.A, «Información pública de AENA», 2023