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Abstract—Nocturnal polysomnography (PSG) is the gold-

standard for sleep apnea-hypopnea syndrome (SAHS) diagnosis. 
It provides the value of the apnea-hypopnea index (AHI), which 
is used to evaluate SAHS severity. However, PSG is costly, 
complex, and time-consuming. We present a novel approach for 
automatic estimation of the AHI from nocturnal oxygen 
saturation (SaO2) recordings and the results of an assessment 
study designed to characterize its performance. A set of 240 SaO2 
signals was available for the assessment study. The data was 
divided into training (96 signals) and test (144 signals) sets for 
model optimization and validation, respectively. Fourteen time-
domain and frequency-domain features were used to quantify the 
effect of SAHS on SaO2 recordings. Regression analysis was 
performed to estimate the functional relationship between the 
extracted features and the AHI. Multiple linear regression 
(MLR) and multilayer perceptron (MLP) neural networks were 
evaluated. The MLP algorithm achieved the highest performance 
with an intraclass correlation coefficient (ICC) of 0.91. The 
proposed MLP-based method could be used as an accurate and 
cost-effective method for SAHS diagnosis in the absence of PSG. 
 

Index Terms—Sleep apnea-hypopnea syndrome, oxygen 
saturation, apnea-hypopnea index, regression analysis, multiple 
linear regression, multilayer perceptron neural networks. 
 

I. INTRODUCTION 
HE sleep apnea-hypopnea syndrome (SAHS) is 
characterized by repetitive complete (apnea) or partial 

(hypopnea) collapse of the upper airway during sleep [1]. 
Apnea events are associated to hypoxemia, heart rate 
variations and arousals. Epidemiological data support the 
finding that SAHS may have a role in the initiation or 
progression of diverse respiratory, cardiovascular, and 
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cerebrovascular diseases [1, 2]. The incidence of SAHS has 
been estimated at 5% of adults in western countries [2]. 
Furthermore, previous studies revealed that a high percentage 
of patients (82% of men and 93% of women) with moderate 
or severe SAHS might remain undiagnosed [3]. Therefore, 
early detection and treatment of SAHS are required in order to 
prevent long-term effects and end-organ damages. 

Nowadays, nocturnal polysomnography (PSG) is the gold-
standard for SAHS diagnosis [4]. PSG studies are performed 
in special sleep units and generally involve monitoring several 
physiological recordings such as electrocardiograms (ECG), 
electroencephalograms (EEG), electromyograms (EMG), 
electrooculograms (EOG), airflow signals, respiratory effort, 
and oxygen saturation (SaO2) or oximetry [1]. 
Polysomnographs are usually provided with specific software 
to assist medical doctors in the interpretation of these signals. 
Although it may be used during the examination of PSG data, 
manual analysis performed by a sleep specialist is required for 
accurate identification of apnea/hypopnea episodes. The 
number of detected events is divided by the hours of sleep to 
compute the apnea-hypopnea index (AHI), which is used to 
assess SAHS severity [4]. However, PSG studies have 
drawbacks since they are costly, time-consuming, and require 
subjects to be overnight in a special medical facility [5]. 
Additionally, the demand for PSG studies is progressively 
growing as people and clinicians are becoming aware of 
SAHS whereas the available infrastructure is insufficient to 
support it [6]. Consequently, research focused on alternative 
diagnostic methods that overcome some of the limitations 
associated to PSG has notably increased. 

New techniques for simplified SAHS detection have been 
commonly based on the analysis of a reduced set of data. The 
utility of clinical and demographic variables [7, 8] as well as 
ECG [9, 10] has been widely studied. In the context of this 
problem, SaO2 signals recorded through nocturnal pulse 
oximetry are of special interest since they can be easily 
acquired and enable for portable monitoring [11-18]. Pulse 
oximetry is a non-invasive technique used to monitor arterial 
blood oxygen saturation. Oximetry recordings contain 
essential information about SAHS and play a crucial role to 
interpret PSG studies. Apneas and hypopneas are usually 
accompanied by marked desaturation events due to the lack of 
airflow. As a result, patients with SAHS tend to present 
unstable SaO2 signals due to frequent drops in the saturation 
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value. A different behavior tends to be observed in healthy 
patients. Their recordings reflect normal ventilation, which 
corresponds with a saturation value near 96% and the absence 
of repetitive abrupt changes in the SaO2 profile [19]. 

Several signal processing techniques have been proposed to 
extract relevant diagnostic information from SaO2 recordings. 
Preceding studies showed that spectral and non-linear features 
can reflect the occurrence of apneas [11, 13, 21]. Moreover, 
highly accurate diagnostic models based on logistic regression 
[17] or neural networks [14, 15] have been built from these 
features. However, these algorithms only provide a categorical 
decision for each subject (labeled as non-SAHS or SAHS) and 
no information about SAHS severity is given. Automatic 
computation of the AHI has been addressed to obtain a more 
detailed characterization of the patient’s state. In addition to 
clinical and demographic variables [7, 8], SaO2 signals have 
been frequently used for this purpose. The linear relationship 
between the number of desaturation events and the AHI was 
previously evaluated [22, 23]. Multivariate pattern analysis 
techniques were also applied in order to deal with several 
measurements from oximetry simultaneously [12, 24]. Finally, 
the combination of ECG and SaO2 features has been also 
previously studied [9]. However, these previous studies did 
not evaluate the utility of the estimated AHI to rank SAHS 
severity and only correlation analysis was performed. 

In the present study, we hypothesize that an accurate 
estimation of the AHI can be automatically derived from SaO2 
data, providing more useful diagnostic information to 
practitioners compared with other methods based on a two-
class classification approach. We propose modeling SAHS 
diagnosis as a regression task. Time-domain and frequency-
domain features from oximetry data were used to reflect the 
occurrence of apneas and hypopneas during sleep. An 
approximation to the functional relationship between the 
extracted feature pattern and the AHI was derived from 
multivariate regression analysis. Multiple linear regression 
(MLR) models and multilayer perceptron (MLP) neural 
networks were used for this purpose [25]. The overall 
objective was to evaluate the degree of severity of SAHS (no 
SAHS, mild-SAHS, moderate-SAHS and severe-SAHS) from 
the estimated AHI. As a result, a more complete description 
about SAHS is provided as compared to the two-class 
classification approach. 

II. SUBJECTS AND DATA 
A group of 240 subjects suspected of suffering from SAHS 

were included in the study. All of them presented typical 
symptoms such as sleepiness, snoring, or apnea events 
reported by the subject or a bedmate. For a decision threshold 
of AHI = 10 h-1, a positive diagnosis of SAHS would 
correspond to 160 of these subjects while the remaining 80 
subjects would be non-SAHS cases. 

The initial population was randomly divided into training 
and test sets. The training set was composed of 96 subjects 
and was used for model optimization. Once this process is 

completed, a test set composed of previously unseen samples 
is required to objectively assess the performance of the 
estimator. In this assessment study, the oximetry signals from 
144 subjects composed the test set. Table I summarizes 
clinical data of subjects in both sets. 

Each subject underwent complete overnight PSG. It was 
carried out from midnight to 08:00 AM in the Sleep Unit of 
Hospital Universitario Río Hortega, Valladolid, Spain. The 
Review Board on Human Studies approved the protocol and 
subjects gave their consent to participate in the study. Patients 
were monitored using a polysomnograph (Alice 5, 
Respironics, Philips Healthcare, The Netherlands). ECG, 
EEG, chin EMG, EOG, nasal airflow and body position were 
recorded and stored on a computer. Simultaneously, a Nonin 
PureSAT pulse oximeter (Nonin Medical Inc., USA) was used 
to record SaO2 signals at a sampling frequency (fs) of 1 Hz. 
The averaging time was set to 3 seconds, following the 
recommendations from the American Academy of Sleep 
Medicine [26]. Oximetry recordings were saved to separate 
files to be off-line processed. Artifacts represented by drops to 
zero were removed. Finally, a sleep specialist analyzed the 
complete set of recordings using the rules proposed by 
Rechtschaffen and Kales [27] and derived the AHI for each 
subject. 

III. METHODS 
The proposed method comprises two different stages. In the 

first one, feature extraction from SaO2 data is carried out in 
order to capture the dynamical behavior of the signal. The 
second stage corresponds to regression analysis, which aims 
to provide an analytical expression for the AHI as a function 
of the extracted features. 

A. Feature extraction 
In the feature extraction phase, information in the SaO2 

recording was summarized into a reduced set of measurements 
or features. They are defined in order to represent different 
signal properties related to the degree of SAHS severity. 

Prior domain knowledge about the influence of apnea 
events on SaO2 dynamics was used to define a set of 14 
measurements. According to the domain used for SaO2 
analysis, the extracted features were divided into two groups: 
time-domain and frequency-domain features. 

 
Time-domain analysis 

Marked drops in the amplitude of oximetry signals reflect 
desaturation events due to apneas. Subjects with low AHI are 
expected to present SaO2 tracings with minor oscillations 

TABLE I 
CLINICAL AND DEMOGRAPHIC DATA FOR TRAINING AND TEST SETS 

 Training Set Test Set 
Subjects 96 144 

Age (years) 52.35 ± 13.76 52.19 ± 13.73 
Males (%) 77.08 77.78 

BMI (kg/m2) 29.83 ± 4.17 29.83 ± 4.53 
AHI (h-1) 24.75 ± 25.19 26.39 ± 26.74 
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around 96% during most of the time [19]. In contrast, a high 
AHI reflects the repetition of apneas, resulting in SaO2 
recordings with marked instability. Conventional statistics and 
non-linear methods were used to characterize this dynamic 
behavior in the time domain. 

Statistical analysis represents an easy-to-use tool to study 
SaO2 signals. The distribution of SaO2 values tends to reflect 
different properties depending on the AHI. Mean (μS), 
variance (σS), skewness (γS) and kurtosis (δS) were computed 
to quantify the central tendency, the degree of dispersion, the 
asymmetry and the peakedness, respectively, for variable s 
representing the SaO2 value. These measurements are defined 
as [28]: 

 
( )S k S k

k
s p sμ = ∑ , (1) 

 

[ ] ( )22
S k S S k

k
s p sσ μ= −∑ , (2) 

 

( ) [ ] ( )331S S k S S k
k

s p sγ σ μ= −∑ , (3) 

 

( ) [ ] ( )441S S k S S k
k

s p sδ σ μ= −∑ , (4) 

 
where pS denotes the probability density function of variable s. 
It was obtained from the relative frequency observed in the 
sequence of SaO2 samples s = {s1, …, si, …, sT}. 

On the other hand, non-linear analysis of SaO2 signals by 
means of approximate entropy (ApEn) [29], central tendency 
measure (CTM) [30] and Lempel-Ziv complexity (LZC) [31] 
was performed to measure irregularity, variability and 
complexity, respectively. As stated by previous studies, these 
properties are usually more pronounced in oximetry 
recordings from subjects with higher AHI [13, 21]. 

To compute ApEn, patterns si composed of m consecutive 
samples from the original sequence s are obtained. For a given 
pattern, the regularity (frequency) ( )m

rC i  is expressed as: 
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1

m
m
r
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where ( )mN i  denotes the number of patterns sj of length m to 
a distance less or equal than r from si. The ApEn is defined as 
the following ratio [29]: 
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where m* = m + 1. ApEn expresses the logarithmic likelihood 
that runs of patterns that are close remain close on subsequent 

incremental comparisons. 
CTM is obtained from second-order difference scatter plots 

representing (sk + 2 − sk + 1) vs. (sk + 1 − sk). A circular region of 
radius ρCTM is defined around the origin to compute CTM. The 
number of points that fall in this region is counted and divided 
by the total number of points [30]: 
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where δk = 1 if the kth point is inside the circle and 0 
otherwise. 

LZC is a non-parametric measure of complexity in a one-
dimensional signal. It is related to the number of distinct 
substrings and the rate of their recurrence along a given 
sequence. To compute LZC, the original signal s must be 
transformed into a two-symbol sequence p = {p1, …, pi, …, 
pT}. Each SaO2 sample is compared with the median value of 
the samples to perform the transformation. Then, the sequence 
p is scanned from left to right and the complexity counter c(T) 
is increased by one unit every time a new subsequence of 
consecutive characters is encountered. The value of LZC is 
given by [31]: 

 
( )
( )

c T
LZC

b T
= , (8) 

 
where b(T) is a normalization factor. It is given by: 

 

( )
2log

Tb T
T

= . (9) 

 
Oximetry recordings are generally non-stationary. Thus, 

each time-domain feature was computed by dividing the 
signal into 512-sample epochs, computing the value of the 
feature for each epoch and averaging over all the epochs. 
Several design parameters must be adjusted for the proposed 
non-linear methods. They were set to the optimum values 
proposed in previous studies [13, 17]. In the case of ApEn, the 
sequence length m was set to 1 while the optimum width of 
the tolerance window r was fixed at 0.25 times the standard 
deviation of the samples in each signal epoch [13]. To 
compute CTM, a radius ρCTM = 1 was selected as optimum 
[17]. Finally, LZC was computed by converting SaO2 samples 
in each epoch into a 0−1 sequence. Each sample was 
compared with the median value from the epoch to transform 
the data [17]. 

 
Frequency-domain analysis 

Previous studies have shown the influence of repeated 
apnea events on the spectral properties of SaO2 signals. 
Specifically, it has been found that signal power associated 
with frequency components between 0.010 and 0.033 Hz 
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tends to increase in subjects with AHI [11]. Apneas originate 
phase-lagged changes in SaO2 signals. Their duration usually 
ranges from 30 seconds to 2 minutes, including the awakening 
response after the event. Patients suffering from SAHS may 
have several consecutive episodes of apneas or hypopneas. 
Thus, the repetition of these events will be produced at a rate 
between 30 seconds and 2 minutes, which correspond with the 
frequency values mentioned before. Thus, high-power 
components in this range denote fluctuations in oximetry 
recordings due to periods with repetitive apneas. 

The non-parametric Welch’s method was used to compute 
the power spectral density (PSD) of oximetry recordings [32]. 
The original series s was divided into M overlapping 
sequences of length L by applying a window function v = {v1, 
…, vi, …, vL}. The modified periodogram was computed for 
each of them by using the Fast Fourier Transform (FFT): 

 
221

0
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j kiL

L
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i

P f s v e
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π− −

=
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The estimation of the PSD was obtained as the average of 

the periodograms: 
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A 512-sample Hanning window and 50% overlapping were 

applied to estimate the PSD of SaO2 signals using the Welch’s 
method. The length of the FFT for each signal segment was 
set to 1024 samples. 

Initially, statistical analysis was carried out in order to 
characterize the spectral properties of the signal. The variable 
representing the frequency component (f) was considered. The 
normalized PSD was used as its probability density function 
(pF). Mean (μF), variance (σF), skewness (γF) and kurtosis (δF) 
were computed according to the expressions in (1), (2), (3) 
and (4), respectively. 

In order to reflect the incidence of apnea events, three 
additional features were derived from the PSD function: the 
total power of the SaO2 signal (ST), the power in the band 
between 0.010 and 0.033 Hz (SB), and the most significant 
frequency component in that band (PA). They are given by the 
following expressions: 
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Prior to regression analysis, each of the extracted features 

was normalized to have a zero mean and unit variance 
distribution in order to avoid differences between their 
magnitudes. 

B. Regression analysis 
Regression techniques were used to estimate the function 

relating the AHI with the set of SaO2 features. A one-
dimensional continuous variable (t) was used to model the 
AHI value (target variable). The extracted features were 
grouped into a pattern x = (x1, x2, …, xd) representing the 
multivariate independent variable. The approximation is built 
from a finite training set D composed of N input-output 
independent pairs ( ){ } 1, ,

,n n n N
t

=
x

…
. Training samples are 

assumed to satisfy the following condition: 
 

( )n n nt h ε= +x , (16) 
 

where xn is known, h(·) is the true function and εn is an 
additive stochastic component (noise) characterized by a zero-
mean Gaussian distribution [25]. 

Regression techniques define a mapping function y(x,w) 
that represents an approximation to h(·), where w denotes a 
set of model adaptive parameters or weights. According to the 
maximum likelihood principle, these weights must be chosen 
in order to minimize the sum-of-squares error (ED) between 
the actual and estimated AHI for patterns in D [25]: 

 

( ) 2

1

1 ,
2

N

D n n
n

E y t
=

= −⎡ ⎤⎣ ⎦∑ x w . (17) 

 
As a result, the output of the model approximates the 

conditional average of the target data, which is known as the 
regression of t conditioned on x [25]: 

 
( )*,y E t= ⎡ ⎤⎣ ⎦x w x , (18) 

 
where w* denotes the set of model parameters that minimizes 
the sum-of-squares error function. In this study, the 
performance of two regression techniques was analyzed: MLR 
and MLP networks. 

 
Multiple linear regression 

MLR models assume a linear expression for the regression 
function. Thus, the mapping implemented by the algorithm 
takes the form [28]: 
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( ) 0 1 1, T
d dy w w x w x= + + + =x w w x , (19) 

 
where w = (w0, w1, …, wd)T are the adaptive parameters and x 
= (1, x1, x2, …, xd). Model optimization according to sum-of-
squares error minimization yields the following solution [28]: 

 
+=w X t , (20) 

 
where rows of matrix X are training patterns xn, X+ is its 
pseudoinverse matrix and vector t = (t1, t2, …, tN)T contains 
the target values corresponding to the training patterns. 

 
Multilayer perceptron networks 
MLP networks are models for expressing knowledge using a 
connectionist paradigm inspired in the human brain. They are 
composed of multiple simple units or neurons known as 
perceptrons, which are characterized by an activation function 
gt(·) [33]. Perceptrons are arranged in several interconnected 
layers. Each network connection between two of them is 
associated with a network adaptive parameter or weight (wij). 
The response of the network to the input pattern is provided 
by units in the final layer (output layer). The remaining 
network layers are referred to as hidden layers [33]. 

Typically, MLP networks with a single hidden layer 
composed of non-linear perceptrons (i.e., with a non-linear 
activation function) are implemented since they are capable of 
universal approximation [34]. The number of units in this 
layer must be determined by the designer. The configuration 
of the output layer depends on the specifications of the 
problem. The proposed regression task aims to approximate a 
one-dimensional continuous variable representing the AHI. 
Thus, a single output unit with a linear activation function is 
required [35]. Accordingly, the network output is given by: 

 

( ) 0
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j i

y w g w x b b
= =
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where w is the weight vector composed of all the adaptive 
parameters (weights and biases) in the network, NH is the 
number of hidden units, wj is the weight connecting hidden 
unit hj with the output unit, b0 is the bias associated with the 
output unit, wij is the weight connecting the input feature i 
with hidden unit hj and bj is its associated bias. 

Weights are adjusted from samples in the training set 
during the training or learning process. The aim is to infer the 
statistical properties of the problem into the network. 
According to the maximum likelihood principle, weights are 
chosen in order to minimize the sum-of-squares error 
function. Second-order non-linear optimization algorithms are 
used for this purpose [25]. 

Weight decay regularization can be applied to control 
network complexity and increase generalization capability. As 
stated by the bias-variance trade-off, networks with a large 
number of adaptive parameters (compared to the size of the 

training set) may overfit the data [25, 33]. Weight decay 
favors small weights (smooth mappings) by adding a penalty 
term to the error function ED. It is equal to the sum of the 
squares of the network weights [25]: 
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where υ is known as the regularization parameter. 

IV. RESULTS 

A. Intraclass correlation coefficient 
Regression methods were evaluated using the intraclass 

correlation coefficient (ICC), which is a measure of reliability 
between observers [36]. The model (2,1) defined by Shrout 
and Fleiss [36] for ICC was considered since it takes into 
account both the random and systematic errors. The ICC 
ranges from −1 to 1. A negative value indicates that more 
differences are observed within (error in the approximation) 
than between subjects. ICC values close to one reflect good 
reliability of the algorithm. 

B. Design and optimization from the training set 
The MLR model has a unique solution given the training set 

D [28]. Consequently, no design is required. Table II shows 
the coefficients (w1, …, wd) associated to each of the input 
features according to the MLR equation in (19). The 
additional bias term was w0 = 25.75 h-1. 

On the other hand, MLP models require a thorough design 
to achieve high generalization performance. According to the 
bias-variance trade-off, both excessively simple and complex 
models will lead to poor generalization due to underfitting and 
overfitting, respectively [25]. Therefore, model selection is 
required in order to find the optimum network complexity. It 
is related to the number and magnitude of network weights. 
Thus, complexity is influenced by the number of hidden units 
(NH) and the regularization parameter (υ). The performance of 
several network configurations was compared by varying 
these parameters. A wide range of values was defined for 
them in order to analyze their effect on generalization ability: 
NH was varied from 2 to 50 units while υ values between 0.01 
and 100 were evaluated. For each network configuration, the 
ICC was computed using leave-one-out cross-validation from 
data in the training set. 

The evolution of ICC is shown in Fig. 1. The performance 

TABLE II 
COEFFICIENTS OF THE MLR MODEL DERIVED FROM THE TRAINING SET 

Feature Coefficient Feature Coefficient 
μS -2.39 μF 14.41 
σS -6.74 σF 0.95 
γS -0.73 γF 3.23 
δS -5.55 δF 0.90 

ApEn -4.54 ST 13.45 
CTM -11.49 SB -27.08 
LZC 6.08 PA 14.38 
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increased as υ varied from 0.01 up to 50, which indicates that 
configurations with small υ may be affected by overfitting. 
Setting υ higher than 50 resulted in lower performance due to 
an excessive reduction of network complexity. Thus, υ was 
set to 50. For this value, we observed that ICC gradually 
increased as more hidden nodes were added. However, there 
was no substantial improvement beyond a given value of NH, 
which approximately corresponds to NH = 40. Therefore, this 
number of hidden nodes was selected as optimum. Finally, a 
MLP network with the selected configuration was trained 

using the complete training set. The scaled conjugate gradient 
algorithm was used for weight optimization [37]. 

C. Performance assessment on the test set 
MLR and MLP algorithms were assessed on the test set. 

From ICC analysis, the MLP network (ICC = 0.91) 
outperformed the MLR model (ICC = 0.80). Figure 2 depicts 
actual versus predicted AHI as well as Bland-Altman plots for 
MLR and MLP models. Graphs were derived from AHI 
estimations computed for subjects in the test set. As reflected 
by the ICC value, graphic representation of the results shows 
that more accurate AHI estimations were provided by the 
MLP network. A smaller deviation from the target AHI 
(dotted line) can be observed for this model. This behavior is 
also reflected by Bland-Altman analysis. The mean of the 
differences between actual and predicted AHI is closer to zero 
for the MLP model. Furthermore, the scatter of the points is 
substantially higher for the MLR model, as indicated by the 
value of the endpoints for the 95% confidence interval. 
Additionally, the ability of these estimators to rank SAHS 
severity was evaluated. The predicted AHI was used to assign 
each subject to one of the following categories [1]: non-SAHS 
(0 h-1 ≤ AHI < 5 h-1), mild-SAHS (5 h-1 ≤ AHI < 15 h-1), 
moderate-SAHS (15 h-1 ≤ AHI ≤ 30 h-1) and severe-SAHS 
(AHI > 30 h-1). The confusion matrices for MLR and MLP 
models are shown in Table III. The element (i,j) of the matrix 
represents the number of times that a class i subject was 

 
 
Fig. 1. Influence of the number of hidden nodes (NH) and the 
regularization parameter (υ) on generalization ability. 

  

      
 
Fig. 2. Predicted versus actual AHI for (a) the MLR model and (b) the MLP network. Bland-Altman plots obtained for (c) the MLR model and (d) the MLP 
network. Plots were derived from AHI estimations for subjects in the test set. 
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assigned to class j [38]. Both algorithms revealed difficulties 
in differentiating between non-SAHS and mild-SAHS cases. 
The MLR algorithm correctly identified one non-SAHS 
subject more than the MLP network. However, it showed poor 
diagnostic ability to classify mild-SAHS and moderate-SAHS 
subjects. The results indicate that the MLP network achieved 
the highest overall performance. 

Both regression algorithms were also assessed in a binary 
classification context in which non-SAHS and SAHS are the 
two only possible categories. Table IV summarizes the results 
obtained using an AHI of 5, 10 and 15 h-1 as the decision 
threshold. The MLP network improved the classification 
capability of the MLR model for all the evaluated thresholds. 
The highest accuracy of both algorithms was achieved for a 
decision threshold of 15 h-1, which represents a more 
conservative definition of SAHS. The MLP network provided 
a correct decision rate of 93.06% whereas the MLR model 
achieved 88.89%. 

V. DISCUSSION 
We proposed a regression approach to model SAHS 

diagnosis. A novel method to estimate the AHI from SaO2 
recordings was presented. Time-domain and frequency-
domain features were used to reflect the dynamic behavior of 
these signals. Regression analysis was performed to 
approximate the functional relationship between the extracted 
features and the AHI. We assessed the performance of MLR 
and MLP regression models. The MLP algorithm showed the 
highest capability to estimate the AHI (ICC = 0.91). It 
improved the performance achieved from linear analysis using 
MLR (ICC = 0.80). 

The results show that our proposed MLP algorithm 
provides an accurate assessment of the AHI from SaO2 data. It 

achieved a sensitivity of 94.87% and a specificity of 90.91% 
using a decision threshold of 15 h-1. The network was able to 
identify subjects with moderate and severe SAHS with a high 
level of accuracy. A total of 45 out of 48 severe-SAHS 
subjects and 21 out of 30 moderate-SAHS subjects were 
correctly diagnosed. As expected, most of the diagnostic 
errors corresponded to border-line patients. The algorithm 
assigned 14 non-SAHS subjects to the mild-SAHS group. 
However, the predicted AHI was smaller than 10 h-1 for 10 of 
them. Labeling SAHS-positive patients as non-SAHS is the 
most relevant diagnostic error since the lack of appropriate 
treatment could lead to other health complications. Only one 
subject with AHI ≥ 15 h-1 (moderate or severe SAHS) was 
catalogued as non-SAHS by the proposed MLP algorithm. 
The corresponding AHI was 19.8 h-1 and the minimum value 
of SaO2 during the night was 91.7%, which indicates that 
apnea events did not tend to be accompanied by marked 
desaturations. Additionally, 8 mild-SAHS patients were 
assigned to the non-SAHS group. The true AHI for 5 of these 
subjects was smaller than 10 h-1. Therefore, based on the 
results of this assessment we conclude that our proposed 
MLP-based algorithm is a reliable method to assess SAHS 
severity. 

Other methods to estimate the AHI from oximetry data have 
been suggested in the literature. Vázquez et al. [22] proposed 
the respiratory disturbance index (RDI), which is based on the 
detection of desaturation events over 4%. The correlation 
coefficient between RDI and AHI was 0.97. The utility of this 
index to classify subjects as non-SAHS or SAHS was 
evaluated. A sensitivity of 97% and a specificity of 80% were 
reached using AHI ≥ 10 h-1 to define SAHS. Magalang et al. 
[12] used several indices from oximetry data to compute the 
AHI. The oxygen desaturation index over 3% or 4% and the 
cumulative time spent below different levels of saturation 
were used as inputs to a multivariate adaptive regression 
splines (MARS) model. A correlation of 0.84 with the true 
AHI was achieved. This method provided a sensitivity of 90% 
and a specificity of 70% using AHI ≥ 15 h-1 to define SAHS. 
Similarly, Lin et al. [23] reported a correlation coefficient of 
0.92 by counting the number of desaturations over 3%. In 
addition, other signals and data different to SaO2 have been 
analyzed to approximate the AHI. Roche et al. [24] developed 
a MLR model from the combination of clinical and oximetry 
features. It achieved a low correlation value with the AHI 
derived from PSG (0.38). Its diagnostic accuracy was 62%. 
De Chazal et al. [9] proposed an algorithm to detect apnea 
epochs from ECG and SaO2 features. An estimate of the AHI 
was derived from the epoch-based classification approach. A 
sensitivity of 95% and a specificity of 83% were reached 
through the estimated AHI. However, patients with mild 
SAHS were not considered for testing. 

Neural networks have shown to be a powerful tool for 
regression analysis. As suggested in the present study, other 
researchers developed neural network-based regression 
algorithms for AHI estimation. Kirby et al. [8] used 23 clinical 
variables as inputs to a generalized regression neural network 

TABLE III 
DIAGNOSTIC RESULTS ACHIEVED BY MLR AND MLP REGRESSION 

MODELS 
MLR 

Predicted True 
No SAHS Mild Moderate Severe 

No SAHS 21 11 2 0 
Mild 10 11 10 1 

Moderate 1 2 17 10 
Severe 0 0 3 45 

MLP 
Predicted True 

No SAHS Mild Moderate Severe 
No SAHS 20 14 0 0 

Mild 8 18 6 0 
Moderate 1 3 21 5 

Severe 0 0 3 45 
 

TABLE IV 
DIAGNOSTIC RESULTS USING A BINARY CLASSIFICATION APPROACH 

 MLR MLP 
AHI (h-1) 5 10 15 5 10 15 
Se (%) 90.00 89.58 96.15 91.82 89.58 94.87 
Sp (%) 61.76 77.08 80.30 58.82 81.25 90.91 

Acc (%) 83.33 85.42 88.89 84.03 86.81 93.06 
Se: sensitivity: Sp: specificity; Acc: accuracy. 
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(GRNN), which provided a diagnostic accuracy of 91%. El-
Solh et al. [7] used a MLP network with clinical and 
demographic data to determine the AHI. The sensitivity (95%) 
was significantly higher than the specificity (65%). 
Nevertheless, these studies did not assess the ability of their 
methods to rank SAHS severity. Similarly, other previous 
studies from our research group were focused on SAHS 
detection from SaO2 analysis using neural networks. 
However, a classification approach was proposed. In this 
context, the output of the algorithm is a categorical variable 
that indicates the group membership (non-SAHS or SAHS) 
for the input feature pattern. MLP [14] and RBF [15] 
classifiers achieved an accuracy of 86% using non-linear 
features from SaO2 signals as inputs. Recently, linear 
classifiers based on discriminant analysis and logistic 
regression also achieved significant results. They provided an 
accuracy of 93% [18] and 90% [17], respectively. 

Despite the high performance of these classification 
algorithms, the regression approach results in a more accurate 
model to characterize SAHS. Two main advantages can be 
derived from AHI estimation. First, the model provides 
information about the severity of SAHS. Second, it is 
insensitive to the criterion used for a positive diagnosis, i.e., 
the AHI value used to discriminate between SAHS-negative 
and SAHS-positive. Typically, different criteria between 5 h-1 
and 15 h-1 are used and there is not a globally accepted 
standard [4]. 

The MLP algorithm achieved the highest diagnostic 
capability for the proposed regression problem. However, 
several limitations can be pointed out. Neural networks are 
complex models that require an exhaustive design process in 
comparison with MLR models. The study results indicate that 
the main source of errors of the MLP algorithm correspond to 
non-SAHS and mild-SAHS subjects. Therefore, increasing the 
number of samples in these groups would be desirable in order 
to obtain a more detailed description from training data. 
Future studies should also evaluate the effect of feature 
selection as a technique to remove redundant information and 
reduce model complexity. In addition, signal preprocessing 
for motion artifact reduction should be improved to achieve 
accurate SaO2 measurements, resulting in more reliable AHI 
estimations. Internal average (low-pass) filtering performed by 
the pulse oximetry equipment is not capable of complete 
artifact removal. Furthermore, the influence of the averaging 
time is a relevant factor to be considered. An excessively high 
value of this parameter may result in underestimated readings 
of desaturation events associated with apneas, leading to an 
incorrect representation of SaO2 dynamics [39]. Another 
limitation of the study is due to the behavior of SaO2 signals. 
In some cases, apneas and hypopneas occurred during sleep 
may not be accompanied by desaturation events. As a result, 
the extracted time-domain and frequency-domain features do 
not reflect the actual AHI, leading to a poor estimation. In 
order to avoid these situations, information from oximetry 
data could be combined with other signals such as nasal 
airflow. However, it may increase the complexity of the data 

acquisition process and the resulting algorithm. 

VI. CONCLUSION 
We proposed an algorithm for automatic estimation of AHI 

from SaO2 based on feature extraction of time-domain and 
frequency-domain characteristics, combined with a MLP-
based algorithm. The results of our assessment study show 
that the proposed MLP-based algorithm outperforms 
equivalent MLR-based algorithms that use the same input 
features. Our results indicate a high agreement between actual 
and predicted AHI (ICC = 0.91). 

The proposed algorithm only requires nocturnal SaO2 
recordings as the input, eliminating the need for costly, 
inconvenient, complex, and time-consuming PSG studies for 
most subjects. Furthermore, the non-invasive nature of SaO2 

makes it possible to create low-cost portable devices designed 
for home monitoring that can be used for widespread and cost-
effective first-line assessment of SAHS severity. 
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