. mathematics

Article

Why Improving the Accuracy of Exponential Integrators Can
Decrease Their Computational Cost?

Begoiia Cano **

check for

updates
Citation: Cano, B.; Reguera, N.
Why Improving the Accuracy of
Exponential Integrators Can Decrease
Their Computational
Cost? Mathematics 2021, 9, 1008.
https://doi.org/10.3390/math9091008

Academic Editor: Raimondas Ciegis

Received: 30 March 2021
Accepted: 23 April 2021
Published: 29 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Nuria Reguera

2,4

1 Departamento de Matemadtica Aplicada, Facultad de Ciencias, Universidad de Valladolid, IMUVA,

Paseo de Belén 7, 47011 Valladolid, Spain

Departamento de Mateméticas y Computacién, Universidad de Burgos, IMUVA, Escuela Politécnica Superior,
Avda. Cantabria, 09006 Burgos, Spain; nreguera@ubu.es

Correspondence: bcano@uva.es

1t These authors contributed equally to this work.

Abstract: In previous papers, a technique has been suggested to avoid order reduction when inte-
grating initial boundary value problems with several kinds of exponential methods. The technique
implies in principle to calculate additional terms at each step from those already necessary without
avoiding order reduction. The aim of the present paper is to explain the surprising result that,
many times, in spite of having to calculate more terms at each step, the computational cost of doing
it through Krylov methods decreases instead of increases. This is very interesting since, in that way,
the methods improve not only in terms of accuracy, but also in terms of computational cost.

Keywords: avoiding order reduction; efficiency; Krylov methods

1. Introduction

Exponential methods have become a valuable tool to integrate initial boundary value
problems due to the recent development of techniques which allow us to calculate exponen-
tial-type functions in a more efficient way. From the paper in [1] to that in [2] twenty-five
years later, some advances were made. However, apart from that, Krylov methods have
become especially interesting in the context of the space discretization of boundary value
problems because the matrices which turn up there are sparse. These iterative methods
reduce the computation of an exponential-type function of those large matrices applied
over a certain vector to the computation of a function of a much smaller matrix. In that
sense, not only polynomial Krylov methods [3-10] have been considered, but also rational
Krylov methods [11-18], which lead to a much better convergence rate, but imply to solve
linear systems during the iteration process.

On the other hand, exponential methods were first introduced and analysed for the
case of homogeneous boundary conditions [19]. Even in that case, order reduction is
observed with respect to their classical counterparts unless more stringent conditions of
annihilation on the boundary or periodic boundary conditions are considered (see [20,21]
for the analysis with Lawson methods and [22] for splitting ones). With exponential
Runge-Kutta methods, stiff order conditions have been derived [23] which may increase
the number of stages which are necessary to get a given order.

In order to avoid order reduction with all these methods (without increasing the
number of stages and even for time-dependent boundary conditions), some techniques
have been suggested in [24-30]. What we have observed in some numerical experiments
with the techniques in those papers is that, when avoiding order reduction, it does not
only happen that the error diminishes more quickly with the stepsize, but also that, for
a same moderate stepsize, the error is smaller and, what is more impressive, that the
computational cost for a same stepsize is smaller. This is striking because increasing the
order of the method implies calculating more terms at each step. However, by using the

Mathematics 2021, 9, 1008. https:/ /doi.org/10.3390 /math9091008

https://www.mdpi.com/journal /mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9212-9156
https://orcid.org/0000-0002-6219-5531
https://doi.org/10.3390/math9091008
https://doi.org/10.3390/math9091008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9091008
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9091008?type=check_update&version=1

Mathematics 2021, 9, 1008

2 of 20

Krylov subroutine phipm.m in [8] in MATLAB to calculate those terms, we have checked in
some cases that the computational cost is reduced. More precisely, Figure 6.1 in [30] shows
this phenomenon when avoiding order reduction with a second-order Lawson method
and Figure 1 [28] does the same with a second-order exponential Runge-Kutta method.

The aim of the paper is to understand why that reduction in computational cost for a
same stepsize happens when avoiding order reduction. For that, we centre on symmetric
discretizations of the differential operator of the problem at hand. Moreover, we will
consider both the standard Krylov method and the purely rational Krylov one.

The paper is structured as follows. Section 2 gives some preliminaries on the problem
to integrate and the technique to avoid order reduction. In Section 3, the standard Krylov
technique and the commonly used adaptive subroutine phipm.m is described. It is then
analysed how the subroutine works when the technique to avoid order reduction is applied
in the naive way. Then, another more clever way to apply the same subroutine is suggested,
as well as an improvement of the subroutine for the case at hand. Finally, in Section 4,
the behaviour of the purely rational Krylov method is also studied when applied inside the
technique to avoid order reduction, and it is again justified that increasing the order (and
therefore accuracy) may be cheaper than not doing it. The main conclusions are stated in
Section 5.

2. Preliminaries

The technique in [21,24-27,29,30] to avoid order reduction when integrating linear
and non-linear initial boundary value problems with exponential splitting, Lawson and
Runge-Kutta methods is based on applying the method of lines in the reverse order than
usual: Integrating firstly in time and then in space.

More precisely, we assume that the problem to integrate is

w'(t) = Au(t)+ f(tu(t)), 0<t<T,
u(0) = wup€X,)
au(t) = g(t)ey, 0<t<T,

where ’ corresponds to differentiation with respect to time, X and Y are function spaces,
d:D(A) C X — Y corresponds to a boundary operator, A : D(A) — X to a differential
space operator, and f : [0, T] x D(A) — X is a smooth source term. For a more detailed
description of the assumptions, look at [21,24-27,29,30]. When considering the time inte-
gration of this problem with exponential methods, exponential-type functions turn up. We
remind that ¢y(z) = €, and that, for j > 1,

1 [:
) — z(1—u),,j—1
¢j(z) G- /o e W™ du. 2)

For example, ¢1(z) = (e —1)/z, ¢2(z) = (¢? — 1 —z)/z. Then, as the exponen-
tials and ¢;-functions should be applied over a differential operator instead of a matrix,
those terms were suggested to be substituted by the solution of initial boundary value
problems with appropriate boundaries. More precisely, e™“a has been understood as the
solution of problem

dvs.(t) = B(Z—Ala), (©)]
0

Mathematics 2021, 9, 1008

30f20

when « € D(A™*1), while @;(TA)a (j > 1) has been understood as the solution of problem

I j 1
0(1) = (A= L)+ e
v(0) =],1!oc,
dvs.(t) = B(Zr: v Ala) 4)
' B+

Suitably increasing the value of r in these expressions implies increasing the local
order of the method until the classical order is achieved (i.e., the order obtained when a
non-stiff ordinary differential system is integrated).

Then, a space discretization for A is considered. For each elliptic problem of the form

Av =F, ou=g,

with source term F and boundary condition g, the approximation is given through a vector
V;, € RN which satisfies a system of the form

ApoVi + Crg = PyF,

for some matrix Ay € RN x RN, some operator Cj, : Y € RN, and some approximation
vector P,F € RN of F. We will assume throughout the paper that Ay, is symmetric
and negative definite, and that, for small enough #, there exists a constant A such that
p(App) < A <0 (see (H1)in [26]).

In such a way, if aAl«x(l = 0,...,r) can be calculated in terms of data, the space
discretization of (3) becomes

Vi(t) = Ah,th(T)JrCha[liO;;Ala]l
V,(0) = Py,)
and that of (4),
Vi) = (o= Vi) + B Gl Al
j—Dlit = (+))
V,y(0) = jl!Pha.

By using the variation-of-constants formula and the definition of the ¢;-functions, the
solution of these systems can then be written, respectively, as

;
eTAh,Oph[x + Z TH_l q)l—&-l(TAh,O)ChaAl[X’ (6)
1=0
;
@j(TApo) Pra + Z T Pi+i+1 (TAh,o)ChaAl“’ @)
I=0

In order to achieve a certain local order p + 1, the value of r to be considered for
the approximation of each of the terms which define the time integrator should be p
or p — 1. That depends on whether these terms are multiplied or not by the factor &,
which corresponds to the timestepsize in the definition of the time integrator. In any
case, increasing the value of r implies getting a higher local order of the method (until
the classical local order is achieved), but that means calculating more terms in each of the
expressions of the form (6) to (7).

Mathematics 2021, 9, 1008

4 0f 20

2.1. An Example as a Motivation

In order to better understand how Krylov subroutines behave when calculating those
terms, we have considered a specific example.

In (1), we take X = C[0,1], Y = R2, A the second-order space derivative, 0 a Dirichlet
boundary condition and, for the space discretization, we take A, o and C, as the standard
symmetric second-order difference scheme, so that, for the boundary conditions gy and g;
at x = 0 and x = 1, respectively,

App = tridiag(1,—2,1)/h?, Cj, = [g00 ... 0g1]T/1?,

and P, is the nodal projection of a function on the nodes (h,2h, ..., Nh) with (N +1)h = 1.

Then, we concentrate on calculating an expression like (6). More precisely, we take
a = cos(x)/+/0.5 + 0.25sin(2), which has unit L2-norm in the interval [0, 1]. We consider
T = 0.1, h = 1073, and the values r = —1,0,1,2. For that, we have used subroutine
phipm.m in [8], which is explicitly constructed to calculate

r
eTBbO + Z Tl+1 qol+1 (TB)bl+1,
1=0

for some vectors by, . .., b,+1, and therefore it seems very suitable for our purposes. As the
subroutine is adaptive, it calculates this expression except for an estimated error, which is
assured to be less than a parameter tol, and which is given as an input of the subroutine.
We have considered two values for the tolerances: tol = 10~ and tol = 10~13. The results
in terms of CPU time in a laptop computer can be seen in Table 1, which clearly shows that,
for the first tolerance tol = 107, in spite of having to calculate more terms, the subroutine
phipm.m takes less cpu time when r increases. However, when tol = 10713, the cpu time
increases with r. We give an explanation for this in the following section.

Table 1. CPU time to calculate (6) for the data in Section 2.1 with subroutine phipm.m.

r=—1 r=20 r=1 r=2
tol =107 6.5e-01 5.5e-01 5.1e-01 4 4e-01
tol = 10713 1.4e+00 1.6e+00 1.8e+00 2.1e+00

3. Standard Krylov Method
3.1. Description of Subroutine Phipm.m

The subroutine phipm.m is based on the standard Krylov method, which consists of
the following: For a symmetric matrix B, a scalar T > 0 and a vector v,

¢1(1B)v = BV (TTm)e1, 8

where B = ||v]|, Viy and T, are obtained from a Lanczos iteration process [31] and e; =
[1,0,..., O]T. More precisely, the columns of V,,, are the elements of an orthonormal basis
of the space

<9v,By,...,B" o>,

whose first element is v/ and Ty, is a tridiagonal (m x m)-matrix which satisfies
VIBV, = Tp.

In order to calculate ¢; (7T)es, it is usual to consider the idea of Saad [9] (generalized
by Sidje [10]) in which an augmented matrix T, is constructed, which has the form

Tw e O M TOWS
Tw=| 0 0 I | I—1rows,)
0 0 O 1 row

Mathematics 2021, 9, 1008

50f 20

where [is the (I — 1) x (I — 1) identity matrix. Then, the top m entries of the last column
of exp(tT)) yield the vector T/ @;(TTy)e;. In phipm.m, this exponential of the small matrix
7Ty is calculated through the function expm from MATLAB, which calculates it considering
a 13-degree diagonal Padé approximant combined with scaling and squaring [32].
According to [9], the error when approximating ¢;(7B)v through (8) is bounded by

CB(p(tB))™/m!, (10)

for some constant C for large enough m. Therefore, when p(7B) is large, m must be very
big in order to approximate the exact value. More precisely, in [3,5,6] it is stated that,
for symmetric matrices, only when m > /7||B|| superlinear convergence is guaranteed.
As for our purposes, B = Ajy comes from the space discretization of an unbounded
differential operator, || A || is very large, and the way to manage convergence without
increasing m too much is by diminishing 7 through time-stepping. The main idea is that

.
u(t) =eBbg+ Y T @11 (TB) b1 (11)
=0

is the solution of the differential problem

r 1

u'(t) = Bu(T)JrZ%blH, (12)
=0 *

u(0) = by,

which corresponds to (5) and (6) for specific B and b;. In such a way, if we are interested in
calculating 1(T,,4),agrid0 =1 < 77 < -+ < Ty = T,y can be considered and (12) must
be solved from T to T taking u(7;) as initial condition. According to [33],

; = sl o]
u(Ter1) = ePu(t) + Y sppi(siB)) j7b1+j/ (13)
i= -0 I

where s; = Tj11 — Tk. Then, phipm.m is based on considering the recurrence relation

(z) —1/]!
%(Z)Z /i 240, gpa(0) = 1 (14)

Pj+1(z) = G+1)!

so that this expression can be written just in terms of ¢, 1 and not the rest of functions ¢;.
More precisely,

rogl
() = slzﬂq)rﬂ(skB)er + ;}],—’!‘wj, (15)
]:

where w; can be recursively calculated through

r+1—j S%{ '
wo = u(T), w; = Bw;_1 + Z ﬂbl‘rl’ j=1,...,r+1 (16)
=0 *“

Then, subroutine phipm.m is adaptive in the sense that, taking an estimate for the
error in Krylov iteration, it changes at each step the value s; or the number m of Krylov
iterations to calculate ¢, 1(sgB) in (15) so that the estimate of the error at the final time T,,,4
is below the given tolerance tol. Moreover, it chooses one or another possibility in order to
minimize the computational cost. The estimate in [8,10] for the error when approximating
¢1(TB)v is taken as the norm of

em = Toltms1,m@r+1(TTn) m10m+1, (17)

Mathematics 2021, 9, 1008

6 0f 20

where v,, ;1 is the unit vector originated in the Lanczos process which is orthogonal to all
columns of V;;;. In phipm.m, they even add this estimation of the error to the approximation
in order to be more accurate. More precisely, they take

¢I(TB)U ~ B [qu)l(TTm)el =+ Tthrl,m[(Pl+1<TTm)]m,lvm+1]r (18)

where ¢;,1(7T};,) is computed through the exponentiation of T times the augmented matrix
(9) with I substituted by I + 1 and taking into account that ¢; (7T,)e; also appears in the
result. In such a way, just a matrix of size m + I + 1 needs to be exponentiated.

3.2. Application to Our Problem

What we firstly observe when trying to apply standard Krylov subroutines to the
formulas which turn up when avoiding order reduction (6) and (7) is that there are two
types of terms: those which contain P&, and those which contain ChaAl(x. In the first case,
as in the example of Section 2.1, « is taken as a continuous function of unit L2-norm, and
therefore its nodal projection Py is also uniformly bounded on in the discrete L>-norm
by an amount near 1. However, in the second case, ChaAlzx is very big. In fact, the smallest
h is to integrate more accurately in space, the biggest those terms are. (These remarks are
general for other regular functions although not bounded by 1).

In order to see the convergence with the number of iterations for each type of terms
with the standard Krylov method, in Figure 1 we represent the discrete L2-error against the
number of iterations when & = 1073 and T = 1072,10~4,107°. The top figure corresponds
to approximating ¢;(TAy0) Py (j =0,1,2,3), and the bottom one to ¢;(TAy,)Cpon (j=1,2,3).
(We notice that, in our precise example, dA'a = +9u for any natural /). Apart from seeing
that the size of errors is much bigger in the bottom plot, we can also check in both figures
that the smaller 7 is, the quicker the convergence with m. This corroborates the result
in [3,5,6], which guarantees superlinear convergence for m > /7|| A}, o||. We would also
like to remark here that Figure 1 also shows that, in spite of the fact that the convergence
with m is similar, when the subindex of the function ¢ grows, the size of errors is smaller.
Regarding the estimate of error (17), that may be due to the fact that ¢;,; evaluated at
the eigenvalues of 7T, , is smaller when I grows. By looking at (14), we notice that the
exponential-type functions are smaller near zero when I grows, and the convergence to
zero at —oo is also a bit quicker. Look at Figure 2. Moreover, we do have the following
result for the first iteration, which implies that the square of the error of the first Krylov
iteration is an average of the square of the difference of ¢ evaluated at each eigenvalue
minus its evaluation on an average of those eigenvalues:

Theorem 1. If {uy,...,un} is an orthonormal basis of eigenvectors of B, with corresponding

eigenvalues {A1,..., AN}, and v = pyug + - - - + uNuy is a unit-norm vector, it happens that, for
every analytic function defined over an interval which contains the eigenvalues,

lo(TB)o — @(tt,1)0|* = Zﬂk (TAx) — Zﬂ]z/\

Proof. On the one hand, it is clear that

@(TB)v = u1p(tA)ur + - + un@(TAN)uN

On the other hand, by Lanczos iteration, ¢1; = vT Bu. Therefore,

ti1 = Z HiHkH; B“k = Z]/t] jr
jk=1

Mathematics 2021, 9, 1008

7 of 20

where the fact that {u1,...,uyx} is an orthonormal basis of eigenvectors of B has been used
in the last equality. Then,

N N
¢(tB)o — ¢(tt1)v =) mlp(tAx) — (T Z;.“;Z)‘j)]uk/
=

k=1

from what the result follows. O

10°®

10-10

Discrete L% error

10-15

1020

Discrete L>- error

10718

Approximating @, +1(7Apo)Pro

wwwwu/wwLAv_/)\u;\;;uki/Awﬂ;\qu/wwwwu KKK KK

k

SlSEiE IS Sl | o S S R SIS i B S

é‘éi;%g‘v&v‘vvvvvvvvvvvvvvvvvvvvvvvvv v

% KR s aneee

) VVVVvv =] °3ee,

& Vvyv E}E;BB Cog,

v\ X VVVV a3
R VAR = q
VD P PEEe

VQ}Q vv"’vv 1]
A7) VT Y
VX
v 7=102 (blue), 107*(red), 105 (green)
\m\ 1
VHO
A \ —f—r=-1
©
m\ \ — G -r=0
VDJ\\\ e |
vm\@\ Foor=2
1 1 L L
10 20 30 40 50

m

Approximating ¢, 1(7Ap,0)CrLoa

10 20 30 40 50

Figure 1. Discrete L?-error against number of Krylov iterations when approximating ¢, 1 (TA 1,0) Prtt
(top) and ¢,41(TAy0)Cpon (bottom) through standard Krylov method for different values of T,
r=0,1,2and fixed h = 1073,

Because of this, the less ¢ changes in the interval where the eigenvalues of B stay,
the smaller the error will be. Obviously, ¢; changes less in (—co,0) the bigger ! is, which ex-
plains the relative behaviour of these functions in Figure 1.

On the other hand, in order to better understand why the errors when v = Cj,dx are
much bigger and, furthermore, that the smaller 7 is the bigger difference with respect to

Mathematics 2021, 9, 1008

8 0of 20

the case v = P&, we can consider the estimation of error (17). We notice that the fact that
|lv]| is much bigger for v = Cj,da than for v = P,a cannot be the only reason to explain the
behaviour in Figure 1 since that factor does not depend on 7. Because of that, we have
decided to look into the factor [@;1 (7T, ;)]m,1, Where T,, j, is the tridiagonal matrix which
turns up after applying Lanczos iteration to B = Ay, o. As T, , is a tridiagonal symmetric
matrix whose numerical range is contained in that of B = A}, [31], the eigenvalues of
Ty, are also contained in the numerical range of Ay, y, and therefore are negative and less
than a value A for a certain A < 0. Denoting by D,, , the diagonal matrix containing the
eigenvalues of T}, ;, it happens that

P11 (TTpp) = Uy, @141 (TDyy) Ui s

for some orthogonal (m x m)-matrix Uy, ;, and it seems that

(@11 (T)1 = emUsh @141 (TDyy) Ui ey

is liable to behave as ¢;.1(TA,,), where A,) is the biggest of eigenvalues of T, .
Kaniel-Paige-Saad theory [31] does not give a good bound for A, ; when & is small
since that bound depends on the distance to the smallest of the eigenvalues of Aj, 5, which
is very far from A,, ;, for small h. We notice that, for m = 1, A1 ;,(C;0a) ~ —2 x 10° while
Ay (Ppav) = =2 % 103. Because of that, the quotient of the estimation of errors (17) when
applying Krylov standard method with m =1, v = C;,dx and v = Py« is approximately

(—2 X 104)f21 (Chaﬂé)

Pr+1 -2
Cyox , T=10"7,
ol 2 10)im (P
1Cda| @141(—200)t; (Cha“), =104
@141(—0.2)t1 (Pyax)
Pr+1(—2)t21(Cpon) 106

C 8Dc ’
IC ”(pl+1(—2>< 10-3)ty (Ppar)

The behaviour of the functions ¢4, as plotted in Figure 2, explains that this factor
increases from the top to the bottom, i.e., when T decreases.

1 T T T T T T T T T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20 -18 -6 -14 -12 -10 -8 -6 -4 -2 0
Figure 2. ¢, (continuous line), ¢, (dashed line), ¢3 (dash-dotted line), ¢4 (dotted line).
In order to understand what happens when m increases, we have observed that

tms1,m(Cpot) / tys1,m (Ppet) is constant for m > 2. Moreover, we represent A, , (P,a) and
Ay (Cpoa) in Figure 3. They both seem to converge to the same quantity but, in any case,

Mathematics 2021, 9, 1008

9 of 20

for the values of m = 1,...,50 (which are considered in Figure 1), A, ,(C,00) / Ay, jy(Pyx) is
still very big, which explains the different relative behaviour of both plots in Figure 1 also
form=2,...,50.

As for the behaviour when & gets smaller, although not shown here for the sake of
brevity, it is already well-known that the standard Krylov iteration does not give uniform
convergence and, the smaller / is, the bigger m must be to get a given error for the
approximation [6,14].

7

10 T T T
T
106k \\\ 4
\\\\ +V:Pha
5L A = 4
10 ~ 7+7V—Ch6a

Figure 3. A,, , against number of iterations for h = 1073 and both v = P&, v = Cj0u.

What subroutine phipm.m does in order to calculate (6) is not to apply Krylov iteration
to each of the terms in that expression. The more natural seems to choose b; in (11) as

bO = Pth, bl+1 = ChaAllX, I = 0, B

and the corresponding time-stepping (15) and (16) is performed, where Krylov iteration is
just applied to approximate @, 1(sxBo)w,1. Doing things that way, Table 1 is obtained.
On the one hand, the fact that just the biggest ¢, is considered in (6) for Krylov iteration
is positive, since the errors are smaller when r grows. On the other hand, from what can
be observed at least for tol = 1077, the bigger errors coming from the consideration of the
terms on Cj,0a seem to be ameliorated by the factors si in (16), since the more terms of that
type are considered, the less CPU time the subroutine requires to get a given accuracy.

3.3. Suggestion to Improve the Result with Phipm.m

In order to simplify time-stepping, what we suggest in this section is to apply recur-
rence (14) to (6) and (7) before attempting to use subroutine phipm.m. More precisely,
we take profit of the following result.

Mathematics 2021, 9, 1008 10 of 20
Proposition 1. Forr > 0, formulas (6) and (7) can be written, respectively, as
r ”L'j -1
Rt 10 A+ T AlpGaa]
=17
+T g1 (TA) [A] S P + 2 A}, 0 CroA™], (19)
1=0
r j+i i—1
P+ Z [Ahopha + Y A} CroAT 1]
:1 1=0
T +1goj+,+1(~cAh,0) (A} 5 Py + Z A 0ChoA™). (20)

Proof. The proof follows by induction on r. Notice that, for r = 0 and formula (6), using the
first formula of (14) with j =0,

AP a4+ T (TAR)Crda = [TApop1(TAnp) + [Py + 1 (TA0)Croa
= P+ TP (TAh,O) [Ah,othx —+ Chatx].

Then, assuming that (19) is the same as (6), the same equivalence is true for » + 1, since

r+1
eTAn0 Py + Z Tl (le(TAh,O)ChaAla

rog . j—1 .
= P+ Z F]L' [A;llophlk + Z AL,OChaAJ_I_lzx}
=9 =0

(P +1(TAh O) [AH_lPhIX + Z Ah OChBA’ !]
1=0

+TH—2(Pr+2(TAh 0)ChoA o

r-‘rl j—1 .
= P+ Z Pha + 2 A} 0CLoAT " 1a]

+T 20, 42(TAR) [Af 2 Pre + Z AL CRo A+ oA],
1=0

where, for the second equality, ¢,41 has been substituted from its expression when solving
from the first formula in (14) with j = r + 1. It is then easy to see that this expression is
equivalent to (19) with r changed by r + 1.

The proof follows in a similar way for (20). O

Let us now concentrate on (19). Calling subroutine phipm.m just for the last term of
this expression, i.e., taking

bij=0, j=0,...,r, b1 =A P+t 2 A 0ChoA (21)
1=0

many calculations in the time-stepping procedure (15) and (16) are avoided and, in some
way, calculated just once and for all at the beginning in expression (19). We also notice
that each bracket in this expression is approximating Alg G=1,...,r+1)whenh — O,
with the only remark that, the bigger j is, the more relevant the errors coming from the
ill-posedness of numerical differentiation in space may be. Nevertheless, for smaller values
of j, those brackets are controlled and, under enough regularity of &, do not grow in norm
for the values of 1, which are usually required for enough accuracy in space. Another
important remark is that each of those brackets can be recursively calculated from the

Mathematics 2021, 9, 1008

11 of 20

previous one just by multiplying by Ao and summing a term like C;,dA'a. Therefore,
many fewer calculations than those apparent are really necessary.

The results doing things that way for the example in Section 2.1 are shown in Table 2,
where the improvement with respect to the results on cpu time in Table 1 are evident.
Moreover, for the smallest tolerance, not only the necessary time to achieve a similar error
(related to tol = 10713) is smaller, but we also notice that increasing the value of , that time
is smaller (as it also happened with tol = 1077 in Table 1). This seems to suggest that
rounding errors due to time-stepping in Table 1 were too important.

Table 2. CPU time to calculate (6) for the data in Section 2.1 using formula (19) and subroutine
phipm.m just for the last term.

r=20 r=1 r=2
tol = 1077 4.9¢-01 4.2¢-01 3.9e-01
tol =10~ 13 8.1e-01 6.5e-01 5.8e-01

In order to better understand why taking bigger r implies that CPU time is smaller,
we have applied Krylov iteration to

¢7+1<TA}1,0>UV+1I r = 0/ 1/ 2/

where
v1 = ApoPya+ Cpon,
v, = Apovr + CpoAun,
U3 = Ahrovz + ChaAzﬁc. (22)

Notice that @, 1(TAj0)vy41 is the last term in (19) except for the factor 7! and that,
in exact arithmetic, when i — 0,

Oy~ Ay, r=0,1,2.

In Figure 4, we again represent the L2-discrete error against the number of Krylov
iterations for different values of T = 1072,10~%,10~°. We can again see that the smaller T
is, the quicker the convergence with m. As for the size of errors, for r = 0, 1, they are quite
similar to the first plot in Figure 1, and therefore not as big as in the second plot of the same
figure. However, for r = 2, the errors are quite bigger than the corresponding ones in that
first plot and, in any case, bigger than those of r = 0, 1. This is due to the fact that ||v3]| can
be numerically seen to be of order 10° in spite of the fact of being presumable approximating
A3a = —a. This is caused by roundoff errors, since numerical differentiation is a badly
posed problem and a sixth-order space derivative is being considered.

On the other hand, the other terms in (19) are exactly calculated except for roundoff.
Therefore, the error when calculating the whole expression should be the error which was
represented in Figure 4 multiplied by 7"+1. This explains that, in Figure 5, the errors are
so small even for T = 10~1,1072,10~%. Moreover, the error is smaller when r increases,
not only from r = 0 tor = 1, but also from r = 1 to » = 2 (although in a smaller proportion).
This is the reason why taking a bigger value of r can decrease the computational cost when
using phipm.m to approximate (6).

Mathematics 2021, 9, 1008

12 of 20

Approximating @, 1(TAko)vri1

Discrete L2-error

T T

=102 (blue), 10 (red), 10 (green)

1020
0

10

20 30
m

40

50

Figure 4. Discrete L?-error against number of Krylov iterations when approximating ¢y 1(tA0) 0,11

for v,1 in (22), different values of 7, ¥ = 0,1,2 and fixed h = 1073

Approximating (19)

10 T

CE8saEg
10>5 EEK}BEEK}EEBEE}EEEEKHEEEEE}}BEEK}BBEE}B}BEEK}EEEEK{

99099@

Discrete L% error

10710

107"

T

T

T

[CEOSCCEISSCEISCCCTISCCEISCCLIDCCEICCIocCeICe

<<t

i

Figure 5. Discrete L2-error against number of Krylov iterations when approximating (19) for the data

in Section 2.1 for different values of 7,7 = 0,1,2 and fixed h = 1073 .

To better illustrate that when trying to approximate (6) with T = 0.1, we represent
in Figure 6 (0.1/7) times the error when approximating (6) through (19) against (0.1/71)
times the CPU required to calculate (6) for T = 0.1,1072,10~* and different values of m.
In such a way, we are implicitly assuming that, in order to approximate (6) with ¥ = 0.1,

e exact (0.1/7) steps are made through time-stepping in the Krylov iteration in (19);

* the cost of the first part in (19) is negligible;

® the errors committed at each step sum linearly.

These assumptions are not completely satisfied but, in such a way, we can have an
overview of the total cost to calculate (19) for the different values of r. As Figure 6 shows,
r = 2 seems cheaper than r = 1 and this one cheaper than » = 0.

Mathematics 2021, 9, 1008

13 of 20

Approximating (19) with 7= 107

- -
[T s Sa— Vﬂ\\\]
5] I --g RS
= < Tl o~
o 6L T \Q\]
™ 10 4 RN N \\
o T
S 8L N]
a 1 S
e} Y \\
2 N
=3 - \
» 1070 VN
4] B \
IS N
= \
T10%E — o -r=0 AR
S -—G-r=1 \‘\
= g r=2 ‘\‘\
101 E \
@
10-16 1 L
1)) 0
10 (0.1/7) times cpu time 10
2 Approximating (19) with 7= 1072
10?2
;\\\‘ﬂ\\\
- el
5 10%F ~ 1
) =N T~
o' T T
- Tl
o B
© 106k s]
= 10 e
2 =R
° T~
[0} Tl
ES T
B
é 108k <]
- <
i o 0
S 101 - or= J
=10 S-r=1 4
< =2
10712 . .
10t)) 10°
(0.1/7) times cpu time
5 Approximating (19) with 7= 10
10" T T T T T
P R
o
_ 10%E Theo 3
o \\\
@ o)
N—l 10—6 L 4
2
[
5] B
2 T
o 108k el]
= T
2 B
£ T
£ o0k q -y 1
©
g -G--r=0 <
~ a2l —Be-r=1]
10 J-r=2
10.14 L L L L L L L L L
0.4 0.6 0.8 1 1.2 14 16 18 2

(0.1/7) times cpu time

Figure 6. (0.1/7) times the discrete L?-error against (0.1/7) times CPU time when approximating
(19) for the data in Section 2.1 for T = 0.1 (m = 300, 600,900, 1200), T = 102 (m = 100,200, 300,400)
and T = 10~* (m = 10,20, 30,40), r = 0,1,2 and fixed h = 10~3.

Although not shown here for the sake of brevity, similar arguments apply for the case
in which (7) is to be approximated with the same subroutine.

3.4. Modification of Subroutine Phipm.m

Estimate (17) was originally proposed in [9] in a context where it was reasonable just
when || TB|| < 1. For our purposes, and as it was also stated in [7], that is not useful. In fact,
in Figure 7, we represent the discrete L2-error against the number of Krylov iterations

Mathematics 2021, 9, 1008

14 of 20

when approximating ¢,1(TAj)P, using the extrapolation (18) and when not using it
(8). We can see that, only when 7 is very small so that ||TA}, || is near 1, the extrapolation
formula improves the standard one. However, in [7], by relating it to the error which
is committed when integrating linear systems with the standard Krylov method, the
following similar estimate was obtained:

Em = [0/ Ttms 1,m @1 (TTim) I, 10m+ 1, (23)

where the difference comes from the subindex in the ¢-function evaluated at T;;;, which is
now [instead of I + 1. Notice that, in such a case, the augmented matrix of size m +1 + 1
does not need to be calculated, and it is enough to consider that in (9), which just has
dimension m + [. As the authors mention in [7], (23) is not the first term of a series for the
whole error, but it is just a rough estimate. Therefore, extrapolation has no sense in this
case. If we change subroutine phipm.m accordingly, without considering the extrapolation
(18) but just (8), and leaving the same adaptive strategy but with the new error estimation
(23), the results in Table 3 are obtained when approximating (6), where again expression
(19) and the choice (21) are used.

Approximating ¢1(7An0)Pro

10?
5 10 ~ -0~ without extrapolation, 7= 10 b
o — -G~ — without extrapolation, 7= 10
) without extrapolation, 7= 10°®
I — =~ with extrapolation, = 10
a 10 — == — with extrapolation, 7= 10
with extrapolation, 7= 10
104A L
10-18 L
0 10 20 30 40 50
m
Approximating @2 (7Ap0)Pra
102 T T
Soanmeg
i
GEEa5A000006,
102 CEEBERE30000000
ERSEEE9000
'===¢¢,
:.1.:999”
- 52880000
5 =800
5 10° Sy
o
- ~—E -~ without extrapolation, = 102
® -—E - without extrapolation, 7= 10
2 10710 without extrapolation, 7= 10®
a ~=%=~with extrapolation, = 102
— =0~ — with extrapolation, = 10
" -6
with =10
107
1018 .
0 10 20 30 40 50
m
Approximating @3(7Ap0)Pra
102 T T T T
*%
107 [N Ty - <A
B
g
By
g
I -
5 \ ++++++++
@ 107 K \
N_l
o < without extrapolation, 7= 102
o .
5 1010 < without extrapolation, 4
2
a without extrapolation, 6
+ with extrapolation.
- with extrapolation, 7= 10"
10 with extrapolation, 7= 10®
0 10 20 30 40 50

m

Figure 7. Discrete L2-error against number of Krylov iterations when approximating ¢, 1(TA 1,0) Prtt
for the data in Section 2.1 for different values of T with extrapolation (18) and without it, r = 0 (top),
r = 1 (middle), r = 2 (bottom), (& = 1073).

Mathematics 2021, 9, 1008

15 of 20

Table 3. CPU time to calculate (6) for the data in Section 2.1 using formula (19) and a modification of
subroutine phipm.m (with error estimate (23) and without extrapolation) just for the last term.

r=20 r=1 r=2
tol =107 3.9¢-01 3.4e-01 3.5e-01
tol = 10713 1.0e+00 5.9e-01 5.3e-01

In this table, we can see that the CPU time which is required to achieve a given
tolerance is smaller than in Table 2 for fol = 10~7. This agrees with the fact that, when
the stepsize is not very small, not doing extrapolation is more accurate and cheap than
doing it. For the smaller tolerance tol = 10713, the CPU time which is required when r = 0
is a bit bigger than in Table 2, which may be due to the fact that, in this particular case,
the stepsizes which the subroutine has to take are so small that the extrapolation is worth
doing. In any case, CPU time continues to diminish from r = 0 to r = 1 for both tolerances
and, in the same way than in Table 2, it diminishes also for tol = 1078 fromr=1tor = 2.

4. Purely Rational Krylov Method

Exponential methods are in principle constructed so that linear systems do not have to
be solved when integrating stiff linear problems with standard implicit methods. For non-
linear stiff problems, standard Rosenbrock methods are usually used, which avoid to solve
a non-linear problem at each stage by the use of the Jacobian of the problem. In any case,
the calculation of this Jacobian at each step can be difficult or expensive and, therefore,
this part may be more costly than the one of having to solve a linear system at each stage.
Because of this, extended Krylov methods which require the calculation of powers of the
inverse of a certain sparse matrix applied over a vector are justified when applied inside
exponential methods which aim to solve non-linear problems. More precisely, although
the calculations of those terms imply solving linear systems with sparse matrices, its cost
may be justified in non-linear problems because the Jacobian of the non-linear function
does not need to be calculated. We notice that, if Gaussian elimination for sparse matrices
is used, as the matrix is always the same, the LU factorization is done once and for all at
the very beginning. Moreover, if multigrid methods are used, the computational cost is
just of the order of the number of grid points in the space discretization (the same order of
the number of computations which are required when multiplying a sparse matrix times a
vector in standard Krylov methods).

Extended Krylov subspace methods for symmetric matrices were described in [11]
and estimates of convergence where given in terms of the smallest and biggest of the
eigenvalues. In such a way, similarly to standard Krylov methods, they are not uniform
convergence estimates on the spacegrid when the matrices come from the discretization
of an unbounded operator but, as distinct, those estimates were smaller than those of
standard Krylov methods and, in practice, the true error was even much smaller than
those estimates. Much better estimates of the error observed in practice were obtained
in [16] for both symmetric and nonsymmetric B, although just for the case in which the
corresponding Krylov space contains the same number of positive and negative powers of
B and for matrix functions, which do not include the exponential-type functions in which
we are interested.

In this paper, we will centre on the purely rational Krylov method, which is based on
considering as Krylov subspace

<v,(yI-B)1o,...,(yI —B) "y >, (24)

for a certain real parameter for which the inverse of yI — B exists. An analysis of this
method is performed in [14] when the matrix B is substituted by an unbounded operator
with a field of values on the left half plane. In such a way, estimates of the error are obtained
which are valid for discretizations of such an operator which are independent of the grid

Mathematics 2021, 9, 1008

16 of 20

size. Furthermore, the bounds of the error which are proved in [14] are smaller when the
index of the function ¢; grows. More precisely, they decrease like

O(|[oljm™2), (25)

although in practice, an exponential decay can be observed.

Using both powers of B and (I — B) ! has been proven to be advantageous when
some powers B'v are bounded. More precisely, in the case that v discretizes a function
which vanishes at the boundary and which satisfies that several of the powers of A exist
and also vanish at the same boundary, in [13] it is shown that the rate of convergence is

quicker (O(||BY ZJHm’HTq) if B'v is bounded for 0 < I < g) when, in the Krylov subspace,
those powers of B are considered as well as those on (I — B)~!. Numerically, even a
higher order rate of convergence can be observed, which approximates that of the purely
rational Krylov method.

In any case, as we are just interested in problems with non-vanishing boundary
conditions, we will directly consider the purely rational Krylov method, which is based
on constructing iteratively an orthonormal basis of the Krylov subspace (24) through
Lanczos iteration.

If we denote by V;, also to the matrix whose columns are that orthonormal basis, the
projection onto that space (24) is given by Q,;, = V,, V. The approximation to ¢;(7B)v is
then given by ¢;(TBy)v, where By, = Q;BQy,. Therefore,

¢1(tB)v ~ @(tBm)v = ¢;(TQmBQm)v = (PI(TVmVrI:BVmVrﬁI)U
= Vugi(tVi BVi) Vo = [[0[|Viugy (TSm)er,
where
< Bvy,v1 > ... < Boy,v1 >
S = : : ,
< Buvy, vy > ... < Bvuy, v, >

and ¢; (TS)e; is calculated through expm(r@nl), where S, is like T}, in (9) with T, substi-
tuted by Sy;.

Application to Our Problem

The aim of this section is to apply the purely rational Krylov method just described to
our problem in Section 2.1.

In a similar way to Figures 1 and 4 in Section 3.2 for the standard Krylov method,
in Figure 8 we represent, for r = 0, 1,2, the error when approximating ¢,1(7Ay)Pa,
@r41(TAp)CroA e and @y 1(TAy0)vy4+1 with v, in (22) against the number of iterations.
We have taken now 7 = 1071,1072,1073 and, as distinct as what happened with the
standard Krylov method and not explained in the literature, the convergence with m is now
quicker when 7 is bigger and, in any case, exponential from the very beginning (m = 1)
although with a smaller rate when 7 diminishes. Because of this, time-stepping has no
sense with this method and the best approach is to apply Krylov iteration directly with the
value of T in which we are interested in (6).

As for the behaviour for the different values of the index [in ¢;, in the same way as
with standard Krylov iteration, the errors are smaller when ! grows. We notice that, for
m = 1, this method coincides with standard Krylov iteration and therefore, the explanation
for that is given in Theorem 1. On the other hand, the rate of convergence also seems to be
more advantageous when I/ grows, as in accordance with bound (25).

Mathematics 2021, 9, 1008

17 of 20

10°

Approximating ¢, +1(7Ap0)Pra

<
&
T

Discrete L2-error

10—10 L

7=10"" (black), 107 (blue), 10" (orange)

10718
0

Approximating ¢, 1(7Ap0)Crla

Discrete L2-error

=10 (black), 107 (blue), 10 (orange)

G -r=0
——g—r=1
T

10_15 L L L L
0 10 20 30 40 50
m
Approximating @, 1(7An,0)vr 41
4 ‘ ‘ ‘ ‘
10° L 1
\"*ggq =10 (black), 102 (blue), 10 (orange)
1 o
\ tﬁg\ = ::1
5L \ == 4
5 10 g R
@
K
-
o
o
&
2107
10-15 1 1 1 L
0 10 20 30 40 50
m

Figure 8. Discrete L2-error against number of Krylov iterations when approximating ¢, 1(tA0) P,

@r+1(TAp0)Crox, 941 (TAy0)vp41 for the data in Section 2.1 through purely rational Krylov methods
for different values of 7,7 = 0,1,2, and fixed h = 10~3.

Although not shown here for the sake of brevity, we have also run our experiments
with smaller values of the grid size i and we have seen that the errors are very similar.
This agrees with the analysis performed for rational Krylov methods in [14], and this
behaviour makes this method more interesting than the standard one, which does not
show uniform convergence on the space grid size. (Only when calculating ¢3(TAy)vs3,

Mathematics 2021, 9, 1008

18 of 20

the errors are a bit bigger when h diminishes for the higher values of m, and that is due to
the fact that the calculation of v3 is already quite difficult when / is small).

In any case, what is important is the behaviour of the error when approximating (19)
against the number of iterations m for the different values of ¥ = 0,1, 2.

That can be observed in Figure 9. We notice that the error now is that of the bottom
graph of Figure 8 multiplied by 7" 1. We restrict here to the case T = 0.1, since the aim is
to approximate (6) with that value of T. What we can observe in Figure 8 is that the error is
smaller with » = 1 than with r = 0, and also slightly smaller with r = 2 than with » = 1.

Approximating (19) with 7=0.1

]_Oo T T
N
o --0--r=0
1S ~ =
T G\\\ —F-r=1
1 \ﬁz\\ RSN J-r=2
105 F el e A
= QN ~_
g \.E]\ \&
© N T~o
t\l_l N S\\
Q _ S~
© By
3 1 RN
a 10 F . El\.\ \\@ 4
4 Ny T
R
RN
B i
10—15, . 4
1 2 3 4 5 6 7 8 9 10
m

Figure 9. Discrete L?-error against number of Krylov iterations when approximating (6) for the data
in Section 2.1 through (19) using purely rational Krylov method for T = 0.1, r = 0,1,2 and fixed
h=10"3.

5. General Conclusions

e At least for the range of values in which we move in the example of Section 2.1,
calculating (6) or (7) with a given required accuracy is likely to be cheaper when r
increases, in spite of the fact that, apparently, more terms need to be calculated.

® In the case that having to solve several linear systems at each step with a same matrix
is not a drawback for having chosen an exponential method to integrate a problem
like (1), we recommend to approximate (6) or (7) by using (19) or (20) and a purely
rational Krylov method to calculate the last term there.

¢ Whenever having to solve several linear systems at each step is a drawback for
using exponential methods to integrate a problem like (1), we recommend using the
modification of the adaptive subroutine phipm.m, which is described in Section 3.4,
although the subroutine phipm.m applied as described in Section 3.3 also gives quite
acceptable results, at least in our precise example.

Author Contributions: Conceptualization, B.C.; Data curation, N.R.; Formal analysis, B.C. and N.R,;
Investigation, B.C.; Methodology, N.R.; Software, N.R.; Writing—original draft, B.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministerio de Ciencia e Innovacién and Regional Development
European Funds through project PGC2018-101443-B-I00 and by Junta de Castilla y Le6n and Feder
through project VA169P20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Mathematics 2021, 9, 1008 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moler, C; Loan, C.V. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 1978, 20, 801-836. [CrossRef]

2. Moler, C,; Loan, C.V. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev.
2003, 45, 3-49. [CrossRef]

3. Druskin, V.L.; Knizhnerman, L.A. Two polynomial methods of calculating functions of symmetric matrices. USSR Comput. Math.
Math. Phys. 1989, 29, 112-121. [CrossRef]

4. Druskin, V.L.; Knizhnerman, L.A. Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices
and eigenvalues. Comput. Maths. Math. Phys. 1991, 31, 970-983.

5. Druskin, V.L.; Knizhnerman, L.A. Krylov subspace approximations of eigenpairs and matrix functions in exact and computer
arithmetic. Numer. Linear Algebra Appl. 1995, 2, 205-217. [CrossRef]

6. Hochbruck, M.; Lubich, C. On Krylov subspace approximations to the matrix exponential operator. SIAM]. Numer. Anal.
1997, 34, 1911-1925. [CrossRef]

7. Hochbruck, M.; Lubich, C.; Selhofer, H. Exponential Integrators for Large Systems of Differential Equations. SIAM J. Sci. Comput.
1998, 19, 1552-1574. [CrossRef]

8. Niesen, J.; Wright, WM. Algorithm 919: A Krylov subspace algorithm for evaluating the ¢-functions appearing in exponential
integrators. ACM Trans. Math. Softw. 2012, 38, 22. [CrossRef]

9. Saad, Y. Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM]. Numer. Anal.
1992, 29, 209-228. [CrossRef]

10. Sidje, R.B. EXPOKIT: A Software Package for Computing Matrix Exponentials. ACM Trans. Math. Softw. 1998, 24, 130-156.
[CrossRef]

11. Druskin, V.L.; Knizhnerman, L.A. Extended Krylov subspaces: Approximation of the square root and related functions. SIAM |.
Matrix Anal. Appl. 1998, 19, 755-771. [CrossRef]

12. Eshof,].V.D.; Hochbruck, M. Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput.
2006, 27, 1438-1457. [CrossRef]

13. Gockler, T.; Grimm, V. Convergence analysis of an extended Krylov subspace method for the approximation of operator functions
in exponential integrators. SIAM |. Numer. Anal. 2013, 51, 2189-2213. [CrossRef]

14. Grimm, V. Resolvent Krylov subspace approximation to operator functions. BIT Numer. Math. 2012, 52, 639-659. [CrossRef]

15. Jagels, C.; Reichel, L. The extended Krylov subspace method and orthogonal Laurent polynomials. Linear Algebra Its Appl.
2009, 431, 441-458. [CrossRef]

16. Knizherman, L.; Simoncini, V. A new investigation of the extended Krylov subspace method for matrix function evaluations.
Numer. Linear Algebra Appl. 2010, 17, 615-638.

17. Lépez, L.; Simoncini, V. Analysis of projection methods for rational function approximation to the matrix exponential. SIAM J.
Num. Anal. 2006, 44, 613—-635. [CrossRef]

18. Moret, I.; Novati, P. RD-Rational approximations of the matrix exponential. BIT Numer. Math. 2004, 44, 595-615. [CrossRef]

19. Hochbruck, M.; Ostermann, A. Exponential integrators. Acta Numer. 2010, 29 209-286. [CrossRef]

20. Alonso-Mallo, I.; Cano, B.; Reguera, N. Analysis of order reduction when integrating linear initial boundary value problems with
Lawson methods. Appl. Numer. Math. 2017, 118, 64-74. [CrossRef]

21. Cano, B.; Reguera, N. Order reduction and how to avoid it when Lawson methods integrate reaction-diffusion boundary value
problems. arXiv 2019, arXiv:1909.12659

22. Faou, E.; Ostermann, A.; Schratz, K. Analysis of exponential splitting methods for inhomogeneous parabolic equations. IMA J.
Numer. Anal. 2015, 35, 161-178. [CrossRef]

23. Hochbruck, M.; Ostermann, A. Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM |. Num. Anal.
2005, 43, 1069-1090. [CrossRef]

24. Alonso-Mallo, I.; Cano, B.; Reguera, N. Avoiding order reduction when integrating linear initial boundary value problems with
Lawson methods. IMA |. Numer. Anal. 2017, 37, 2091-2119. [CrossRef]

25. Alonso-Mallo, I.; Cano, B.; Reguera, N. Avoiding order reduction when integrating linear initial boundary value problems with
exponential splitting methods . IMA]. Numer. Anal. 2018, 38, 1294-1323. [CrossRef]

26. Alonso-Mallo, I; Cano, B.; Reguera, N. Avoiding order reduction when integrating reaction-diffusion boundary value problems
with exponential splitting methods. J. Comput. Appl. Math. 2019, 357, 228-250. [CrossRef]

27. Cano, B.; Moreta, M.]. Exponential quadrature rules without order reduction for integrating linear initial boundary value
problems. SIAM J. Num. Anal. 2018, 56, 1187-1209. [CrossRef]

28. Cano, B.; Moreta, M.]. How to Avoid Order Reduction When Explicit Runge-Kutta Exponential Methods Integrate Nonlinear Initial
Boundary Value Problems; Submitted for Publication

29. Cano, B.; Reguera, N. Avoiding order reduction when integrating nonlinear Schrodinger equation with Strang method. J. Comp.
Appl. Math. 2017, 316, 86-99. [CrossRef]

30. Cano, B.; Reguera, N. How to Avoid Order Reduction When Lawson Methods Integrate Nonlinear Initial Boundary Value Problems;

Submitted for Publication.

http://doi.org/10.1137/1020098
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1016/S0041-5553(89)80020-5
http://dx.doi.org/10.1002/nla.1680020303
http://dx.doi.org/10.1137/S0036142995280572
http://dx.doi.org/10.1137/S1064827595295337
http://dx.doi.org/10.1145/2168773.2168781
http://dx.doi.org/10.1137/0729014
http://dx.doi.org/10.1145/285861.285868
http://dx.doi.org/10.1137/S0895479895292400
http://dx.doi.org/10.1137/040605461
http://dx.doi.org/10.1137/12089226X
http://dx.doi.org/10.1007/s10543-011-0367-8
http://dx.doi.org/10.1016/j.laa.2009.03.006
http://dx.doi.org/10.1137/05062590
http://dx.doi.org/10.1023/B:BITN.0000046805.27551.3b
http://dx.doi.org/10.1017/S0962492910000048
http://dx.doi.org/10.1016/j.apnum.2017.02.010
http://dx.doi.org/10.1093/imanum/dru002
http://dx.doi.org/10.1137/040611434
http://dx.doi.org/10.1093/imanum/drw052
http://dx.doi.org/10.1093/imanum/drx047
http://dx.doi.org/10.1016/j.cam.2019.02.023
http://dx.doi.org/10.1137/17M1124279
http://dx.doi.org/10.1016/j.cam.2016.09.033

Mathematics 2021, 9, 1008 20 of 20

31. Golub, G.H.; van Loan, C.E. Matrix Computations, 4th ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2013.

32. Higham, N.J. The scaling and squaring method for the matrix exponential revisited. SIAM]. Matrix Anal. Appl. 2005, 26, 1179-1193.
[CrossRef]

33. Skaflestad, B.; Wright, W. The scaling and modified squaring method for matrix functions related to the exponential. Appl. Numer.
Math. 2009, 59, 783-799. [CrossRef]

http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1016/j.apnum.2008.03.035

	Introduction
	Preliminaries
	An Example as a Motivation

	Standard Krylov Method
	Description of Subroutine Phipm.m
	Application to Our Problem
	Suggestion to Improve the Result with Phipm.m
	Modification of Subroutine Phipm.m

	Purely Rational Krylov Method
	General Conclusions
	References

