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The aim of this study was to introduce a novel global measure of graph complexity: Shannon Graph Complexity 

(SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The 

proposed complexity measure was designed to capture the interplay between two properties of a system: the 

‘information’ (calculated by means of Shannon entropy) and the ‘order’ of the system (estimated by means of a 

disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between 

the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, 

SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) 

recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure 

used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of 

node degree distribution. Furthermore, its variation with graph size (N) is close to zero for N > 30. Results from the 

real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls 

and schizophrenia patients, though these changes are more relevant for controls. Our findings revealed that SGC does 

not need a comparison with null hypothesis networks constructed by a surrogate process. In addition, SGC results on 

the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to 

secondary pathways of the brain network. 
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1. Introduction 

The application of graph-theoretical analyses to study 

brain networks constitutes an evolving field with a high 

impact in neuroscience. The characterization of brain 

networks in terms of integration, segregation, regularity 

or complexity has become of paramount importance to 

identify the underlying processes of the functional neural 

organization in the brain. In order to understand brain 

network behavior, previous works conducted resting-

state activity analyses1,2 as well as task-related activity 

ones.3–5 Both together provide an overall view of brain 

networks generated under different conditions. 

Functional complex brain networks are usually depicted 

by a set of nodes (vertices) and connections (edges or 

links). These connections represent the statistical 
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dependence between neural activity in different brain 

areas, obtained by correlations, mutual information or 

coherence, among others.6,7 Most brain graph studies use 

binary connections between nodes (i.e., a threshold is 

applied to dichotomize the edge weights.8 Although this 

is an apparently simple model, these graph analyses are 

interpretable in relation to general principles of complex 

system organization.8 On the other hand, weighted 

network analysis introduces the concept of connection 

strength between nodes. It can be considered a more 

realistic approach of the physiological properties of brain 

networks.8,9 Unfortunately, the use of weighted graphs is 

not exempt from methodological concerns, which have 

not been completely solved yet. 9 

A high amount of measures have been proposed to 

describe the organization and function of brain 

networks.10–12 These network measures are usually 

defined for binary graphs and, when possible, 

generalized for more complex graphs, such as weighted 

and/or directed graphs. Roughly speaking, network 

measures can be divided into two classes depending on 

the nodes involved: (i) local measures, related to a single 

node or edge (for the computation other nodes/edges can 

be involved, even all of them), and (ii) global measures, 

which describe the properties of the entire network. 

Usually, global network measures are strongly 

influenced by basic properties, such as network size (N), 

graph density (GD) and node degree distribution.9 For 

instance, consider a graph A, as a complete, binary and 

undirected graph with N = 10 nodes, and a graph B with 

equal basic characteristics (complete, binary and 

undirected), but with N = 100 nodes. Node degree 

distributions are similar for both cases, and the maximum 

GD possible for each respective N is reached for these 

two graphs. Although both graphs have similar topology 

and their main difference is N, the characteristic path 

length (i.e., the average shortest path length between all 

pairs of nodes in the network13) of graph A is much lower 

than that of the graph B because of the network size. 

Consequently, the statistical significance of the network 

parameters must be considered by comparing them with 

null-hypothesis networks (i.e., networks constructed by 

surrogate process).11 Null-hypothesis networks can be 

modeled as networks with the same basic characteristics 

as the original network (N, GD and node degree 

distribution), but with different topology.11 Null models 

are often used as a reference point to determine whether 

a graph displays a topological feature to a greater extent 

than expected by chance. To date, the most widespread 

method to construct null-hypothesis weighted networks 

is based on applying a random rewiring process.1 

Although there are several ways to generate these null-

hypothesis networks, none of them are bias-free for 

weighted graphs.9 There are even graph methodologies 

that remove non-relevant connections from the brain 

graphs by means of techniques based on the percentile14 

or the p-value15, making surrogate processes completely 

necessary, even when the same electrode configuration is 

used. 

It is generally accepted that the brain is a well-

designed anatomical network, which exhibits an optimal 

balance between functional integration and 

segregation.6,16 On the other hand, pathological networks 

are usually accompanied by diverse alterations and/or 

deficits in network functions. However, contradictory 

results have been found after computing measures of 

integration or segregation when some specific diseases 

were studied. Discrepancies in brain network properties 

can occur due to several reasons: the method of edge 

weight assignment, the thresholding method used to 

construct binary graphs (when these are considered 

instead of weighted graphs) or the surrogate process used 

to compare with null-hypothesis networks, among others. 

Nevertheless, there is consensus about the high 

complexity of the brain when compared to other 

networks, such as regular or random configurations.17 

Although the study of complex networks has provided us 

with a further understanding of brain coupling 

dynamics,18–21 the underlying concern is that there is not 

a widely accepted scientific definition of graph 

complexity. Several complexity measures have 

attempted to capture the intuitive notion of complexity by 

emphasizing the idea that complex systems are neither 

completely regular nor completely random.22 In this 

context, a number of graph complexity measures have 

been proposed to assess brain behavior. This is the case 

of the study of Ahmadlou et al.,23 which proposed the 

power of scale-freeness of a graph structure and the 

maximum eigenvalue of the adjacency matrix of a graph 

as features to measure graph complexity. For that 

purpose, they used Visibility Graph Similarity (VGS) a 

recently introduced concept to accurately quantify the 

overall synchronization in both identical and non-

identical couplings of time series.24 Machta and Machta25 

proposed the computational complexity of a parallel 

algorithm, to evaluate brain behavior. Meyer-Ortmanns26 
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associated the complexity of the network with the 

number of topologically non-equivalent graphs generated 

by selecting vertices and partitioning the edges of the 

original vertex among the new vertices. There are even 

measures that define graph complexity in the context of 

information theory.22,27,28 Tononi et al.22 reported an 

elaborate new concept of complexity based on mutual 

information, which relies on the coexistence of functional 

specialization and integration. Morabito et al.28 used 

mutual information to construct the connectivity matrix. 

Claussen27 defined off-diagonal complexity, computed 

by the entropy of a vertex-vertex edge correlation matrix. 

Nonetheless, all these measures are influenced by 

network topology, making surrogate processes 

necessary. This implies an additional source of possible 

confusion that it is convenient to avoid. To date, none of 

them have been generalized for weighted graphs. In our 

opinion, the weighted graph model is more appropriate 

than the binary one to analyze brain dynamics, since it 

provides a realistic framework to address the 

characterization of the neural substrates of the brain. 

Thus, a new and complementary graph complexity 

measure, not influenced by network topology, is 

pertinent. 

The main objective of this study was to introduce 

Shannon Graph Complexity (SGC), a novel graph 

measure based on the assumption that a complex network 

is a system that can be modeled as a graph that should 

maintain equilibrium between the ‘order’ and the amount 

of ‘information’ stored. SGC should meet three 

requirements: (i) it should be able to measure the 

aforementioned interplay, (ii) it should be independent of 

the network topology, and (iii) it should not require a 

comparison with null-hypothesis networks. Our primary 

hypothesis for the mathematical definition of SGC states 

that, for a fixed topology, the weight distribution of a 

complex network is directly related to its reliability and 

information propagation speed. The second objective of 

the present study was to assess the usefulness of SGC in 

determining the properties of the real brain networks. 

Specifically, real graphs were obtained from the 

electroencephalographic (EEG) signals of controls and 

schizophrenia patients during an auditory oddball task. In 

this regard, we hypothesize that pathological neural 

substrates affecting network connectivity29 can be 

characterized by analyzing the balance of the weight 

distribution by means of SGC.  

This paper is divided into six sections. In Section 2, 

the theoretical ground of SGC is introduced. Section 3 

describes the four synthetic and the real EEG datasets 

used in the study. The simulation results for synthetic 

data and the results obtained from EEG recordings are 

shown in Section 4. Finally, we discuss the implications 

of these results and summarize the main conclusions of 

the study. 

2. Complex network measures 

2.1. Null-hypothesis models and traditional global 

measures 

Several null-hypothesis networks have been proposed to 

accurately assess brain graphs. The two most used 

weighted null-hypothesis networks are: (i) null-

hypothesis networks that preserve N, GD and edge 

weight distribution by means of a connection reshuffling 

process1; and (ii) null-hypothesis networks that preserve 

N, GD and the degree of each node.30 It is important to 

note that none of the two null-hypothesis networks 

preserve node degree distribution for weighted graphs, 

especially if the weight distribution is 

nonhomogeneous.11 Ansmann et al.9 compared these two 

kinds of surrogate processes and the non-surrogate 

model. They concluded that weight-preserving null-

hypothesis networks could segregate the influence of 

basic parameters more accurately than degree-preserving 

network model and the model performed without any 

surrogate process. However, all the previous methods are 

not bias-free.9 Even though the bias is always present in 

any measure, the bias introduced via surrogate data must 

be reduced as much as possible for preventing 

inappropriate conclusions.9 Specifically, this bias could 

be the reason of the previously mentioned contradictory 

results in graph measures when some specific diseases 

were studied. To overcome this issue, three options can 

be proposed. The first one is to accept the bias introduced 

by the weight-preserving surrogate process; nonetheless, 

this additional source of bias could yield contradictory 

results. The second option is to design a new non-biased 

method, though some researches claim that an “unbiased 

method for empirical data does not exist”.31 Due to the 

drawbacks of the previously mentioned options, we 

chose the third one: to define a global graph measure that 

does not need a surrogate process. 

Indeed, there are network measures, such as GD, that 

do not need a surrogate process, when comparing 
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networks with the same N. GD values are identical in the 

original network and in the null-hypothesis networks 

constructed using the weight-preserving approach. 

Thereby, this measure does not depend on the node 

degree distribution and normalization is not required. GD 

is then an appropriate measure to validate SGC, not only 

because a surrogate process is not needed to compute 

both measures, but also because GD can be used to 

estimate network complexity.10,12 In fact, Bonchev and 

Buck renamed GD for binary graphs as 'normalized edge 

complexity'.12 In addition, GD indicates the connectivity 

of the network, since it provides a measure of the average 

weight of the graph edges. For undirected, weighted 

networks without self-loops, GD can be mathematically 

defined as follows: 

 

  (1) 

 

where wij represents the edge weight between nodes i and 

j, and ( ) 21−= NNT  is the total number of connections 

in a undirected graph. 

2.2. Shannon Graph Complexity 

Most of the complexity definitions proposed in previous 

studies have different drawbacks: (i) high computational 

cost; (ii) difficulty to be generalized for weighted graphs; 

and (iii) influence of network topology. This influence is 

not a problem by itself but, to segregate the influence of 

the topology, a comparison with null-hypothesis 

networks becomes necessary, especially for small 

networks typically derived from the study of functional 

connectivity using EEG signals.9 In order to overcome 

these limitations, we introduce a novel definition of 

complexity that is independent of network topology. In 

our preliminary study,32 we defined a novel graph 

complexity measure based on information theory, 

nevertheless, the dependences on basic network 

parameters were not assessed. SGC is based on analyzing 

the weight distribution balance of the network. This 

statistical complexity measure considers that the weight 

distribution of a graph can be measured in terms of 

‘order’ and ‘information’. To capture this interplay, SGC 

was defined as the product of the Shannon graph entropy 

(H) and the statistical disequilibrium (D): 

.DHSGC =    (2) 

Firstly, for the computation of H, we rely on the 

definition of Shannon entropy,33 as a measure of the 

stochastic edge weight distribution. H is given by the 

following formula12: 

 

(3) 

 

 

where W is the sum of all weights of the graph and T2log  

is a normalization factor introduced to ensure that 0 ≤ H 

≤ 1. 

Secondly, D is defined as the statistical distance in the 

probability space between the equilibrium distribution 

and the weighted distribution of the graph under study.34 

It is noteworthy that the distribution with uniform 

weights (i.e., weights with the same value) is considered 

as the equilibrium distribution in Gibbs’ statistical 

mechanics.34 Thereby, a highly balanced weighted graph 

(such as a graph with all weights equally valued) yields a 

maximum Shannon graph entropy, Hbalanced = 1, and a 

value of D equal to zero. On the contrary, a highly 

unbalanced weighted graph distribution gives Hunbalanced ≈ 

0 and a high D value. In this study, the Euclidean distance 

was used to compute D as follows: 

(4) 

 

where w  is the average of all edge values of the graph 

and   is the standard deviation of those values. 

In equation (4), D was normalized to take values in the 0-

1 interval, dividing by its maximum value.34 

In a different context, this concept of complexity was 

defined by López-Ruiz et al.35 The authors defined a 

statistical measure of complexity as a balance between 

‘order’ and amount of ‘information’. They proposed that 

a crystal might have maximum ‘order’ and minimum 

‘information’ (the structure can be described using two 

or three parameters). Conversely, an ideal gas would 

have minimum ‘order’ and maximum ‘information’. 

They are examples of simple models and, therefore, 

systems with zero complexity.35 The parallelism between 

a lattice graph and the description of a crystal in terms of 

‘information’ and ‘order’ is clear. On the other hand, an 

ideal gas can be seen as an unbalanced graph. Therefore, 

it is expected that these two kinds of graphs have 

complexity values close to zero. 

It is noteworthy that, by definition, SGC depends on 

both N and the weight distribution balance, but it is 

normalized with respect to GD and is independent of 

node degree distribution. To illustrate these issues, four 
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synthetic datasets were generated by varying different 

network properties. 

3. Simulated and real data 

To perform the simulations of synthetic graphs and to 

analyze the real data, we used Matlab® R2013b 

(MathWorks Inc., USA) by means of custom scripts and 

the available functions on Statistics and Machine 

Learning Toolbox and Signal Processing Toolbox. In 

addition, EEGLAB toolbox was used to carry out the 

Independent Component Analysis (ICA) over the EEG 

data in order to remove artifacts. 

3.1. Synthetic graphs 

In this section, we describe four synthetic graph datasets. 

Synthetic graphs were generated by varying: (i) N; (ii) the 

unbalancing factor, UF (i.e., a measure of the 

unbalancing strength, which is defined as the number of 

times the largest graph edge value is greater than the 

lower one); (iii) GD; and (iv) the node degree distribution 

(i.e., distribution of the sum of the weights reaching to 

each node). The datasets were constructed in order to 

study the SGC dependences on the previous variables in 

terms of weight balance. Fig. 1 illustrates the 

construction process for the four datasets. 

DATASET-1: In order to determine the SGC-

dependence on N and UF, DATASET-1 was generated 

as follows: 

(i) Consider a weighted and undirected graph with size 

N in which all the edges, except one, have a fixed 

value of 1. The remaining edge was set to the UF 

value. 

(ii) An edge with a value 1 was randomly chosen and 

replaced by the UF value, obtaining a new graph. 

(iii) Step ii was repeated until all edges were set to the 

UF value. The last graph is defined as a completely 

balanced graph. 

 

Fig. 1. Dataset construction examples for N = 5. Each row exemplifies the construction of one of the datasets. 
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(iv) The process was repeated for all combinations of 

network sizes with N ∈ {2, 3,…, 128} and different 

values of UF ∈ {2, 10, 102, 103, 104, 105}. The 

maximum value of N was selected for being the 

typical value of the number of electrodes in high 

density EEG recordings. On the other hand, UF was 

chosen in order to comprise a range of values large 

enough to accurately assess SGC dependences. 

This dataset is comprised of 

2,097,024 adjacency matrices with sizes between 2×2 

and 128×128, 6 different UF values and a single change 

in each of their connections (there are a total of 

( ) 21−NN  connections in each graph). 

DATASET-2: This dataset was used to characterize 

the graph complexity when N and UF change, but GD 

remains constant. Construction of DATASET-2 is 

similar to the generation of DATASET-1, except that all 

graphs were normalized by their GD. Thus, edge weights 

in DATASET-2 were proportional to DATASET-1, but 

their GD was fixed to 1. 

DATASET-3: The purpose of this dataset was to 

determine the dependence of SGC on the node degree 

distribution. The generation of DATASET-3 can be 

summarized as follows: 

(i) Consider a weighted and undirected graph with fixed 

size (N = 31), where all the edges values are 

randomly distributed. The value of N was chosen in 

order to coincide with the number of EEG electrodes 

in the DATASET-real (see next subsection for 

details). 

(ii) A new graph was constructed by randomly 

reshuffling the edge weights. By means of this 

process, different node degree distributions were 

obtained, but maintaining the same weight 

distribution. 

(iii) Step ii was repeated 999 times, obtaining a total of 

1000 graphs with the same weights, but different 

node degree distributions. 

(iv) All the previous steps were performed for three 

different distributions of edge values: a uniform 

distribution from 0 to 1 edge values, a normal 

distribution (0.5 ± 0.1, mean ± standard deviation, 

SD) and a bimodal distribution constructed as the 

mixture of two normal distributions (1/3 ± 0.1 and 

2/3 ± 0.1, mean ± SD). 

It is important to note that we ensured that all edge 

values ranged from 0 to 1. Thus, 3000 (1000 of each type) 

graph formed this DATASET-3. 

DATASET-4: The purpose of this dataset was to 

study the behavior of SGC for graphs with different 

number of connections. The DATASET-4 construction is 

summarized as follows: 

(i) Consider an empty graph (edgeless graph) with  

size N. 

(ii) An aleatory edge between two disconnected nodes 

was set to a random value from 0 to 1 (edge values 

were uniformly distributed between those values). 

(iii) Step ii) was repeated until all edges were connected. 

The last graph is defined as a fully connected graph. 

(iv) The process was repeated for all combinations of 

network sizes with N ∈ {2, 3,…, 128}. As in the 

DATASET-1 and DATASET-2, the maximum value 

of N was selected for being a common value of the 

number of electrodes in high density EEG 

recordings. 

This dataset is comprised of ( ) =− =

128

2
21

N
NN  

349,504 adjacency matrices with sizes between 2×2 and 

128×128. 

3.2. Real EEG data 

As an example of application on real graphs, a real 

dataset (DATASET-real hereinafter) was included in this 

study. Connectivity patterns come from the EEG 

recordings of 51 healthy controls and 28 schizophrenia 

patients. Diagnosis was made by and expert clinician 

involved in the treatment of the patients according to 

Diagnostic and Statistical Manual of Mental Disorders, 

5th edition (DSM-V) criteria.36  The clinical status of 

schizophrenia patients was scored using the Positive and 

Negative Syndrome Scale (PANSS).37 Demographics 

and clinical characteristics of schizophrenia patients and 

controls are summarized in Table 1. In order to avoid 

medical conditions, which might influence the results, 

controls and schizophrenia patients were selected using 

inclusion/exclusion criteria based on clinical history and 

structured interviews (see Refs. 3 and 4 for a complete 

description). No significant between-group differences 

(p > 0.05) were found in age (Wilcoxon signed-rank test) 

( ) =− =

128

2
216

N
NN

Table 1. Demographic and clinical characteristics. Values 

are shown as ‘mean ± standard deviation (SD). NA means 

‘not applicable’. M: male. F: female. 

Characteristic SCH Patients Controls 

Age (years) 31.19 ± 10.43 29.31 ± 9.74 

Gender (M:F) 13:15 24:27 

PANSS–positive 11.39 ± 3.40 NA 

PANSS–negative 18.26 ± 8.24 NA 

PANSS–total 54.00 ± 21.47 NA 
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or gender (Chi-squared test). All participants gave their 

informed consent prior to their participation in the study. 

Moreover, the study protocol was approved by the local 

Ethics Committee of Clinical University Hospital of 

Valladolid (Spain) according to the code of ethics of the 

World Medical Association (Declaration of Helsinki). 

Data acquisition and preprocessing were performed 

in an identical way as described by Nakamura et al.30 In 

summary, the acquisition was performed using an EEG 

system (BrainVision, Brain Products GmbH; Munich, 

Germany). The electrode placement followed the 10/10 

system, with 32 active electrodes. Impedances were kept 

below 5 kΩ. Event-related potentials (ERP) were 

recorded while the participants were sitting with their 

eyes closed. The auditory oddball task consisted of 

random series of 600 tones with three different kinds of 

tones: target (500 Hz tone), distractor (1000 Hz tone) and 

standard (2000 Hz tone) with probabilities of 0.20, 0.20 

and 0.60, respectively. Only attended target tones (i.e., 

target tones followed by a mouse click from the 

participants) were considered. ERP signals were 

recorded at a sampling frequency of 500 Hz during 13 

min of an auditory oddball task. After a visual inspection, 

signals from TP9 and TP10 electrodes were removed 

because of muscle artifacts. Data were re-referenced to 

the average activity of all active sensors obtaining 31 

channels. Signals were filtered using a band-pass finite 

impulse response filter between 1 and 70 Hz, as well as a 

50 Hz notch filter. Finally, a three-steps artifact rejection 

algorithm was applied to minimize ocular noise and 

myographic artifacts: (i)  ICA was carried out and, after 

visual inspection, ICA components associated with 

artifacts were discarded; (ii) reconstruction and 

segmentation of the data into trials of 1 second length 

ranging from 300 ms before to 700 ms after stimulus 

onset; and (iii) automatic and adaptive trial rejection 

using a statistical-based thresholding method.4 

In order to study the dynamical changes in the EEG, 

the single trial approach was used.38,39 Each trials of 1 

second length was divided into two time windows: 

baseline window ([-300 0] ms from the stimulus onset) 

and response window ([150 450] ms after the stimulus 

onset).3,4 The baseline window is related to the resting 

prior to the stimulus and the response window 

corresponds to the cognitive response of the P300 task 

processing. Accordingly, the auditory oddball task is 

useful to analyze the dynamical neural reorganization 

during a cognitive processing.3,4 

Continuous wavelet transform (CWT) was used in 

order to generate brain graphs. Wavelet transform is a 

useful method to accurately assess the changes of 

electrophysiological signals in the time-frequency 

plane.40 In this study, the complex Morlet wavelet was 

used as ‘mother’ function, since it provides a plausible 

biological fit to EEG data.38 It is characterized by the 

bandwidth (
b

 ) and the wavelet center frequency (
c

 ) 

parameters. They were set to 1 to obtain an adequate 

balance between the temporal and frequency resolution.4 

Complex Morlet can be defined as follows: 

 

 

(5) 

 

 

To obtain the CWT coefficients, the convolution of 

each 1-s length EEG trial, x(t), and the complex Morlet 

function must be calculated: 

 

 

(6) 

 

 

where s and k denote the dilation and translation 

factors and * represents the complex conjugation. It is 

important to note that edge effects are not negligible, 

since the trials are finite short-length time series.38 

Contrary to Fourier analysis, CWT has a variable time-

frequency resolution.36 In this regard, a Heisenberg box 

can be introduced. It is defined as a constant area 

rectangle whose height and width depends on the 

frequency (Δf) and the time (Δt) resolution, 

respectively.36 Following previous studies, the size of the 

Heisenberg box was chosen to be two times Δt and Δf.37 

The influence of the edge effect changes across that 

representation, since Δt and Δf are not constant in the 

time-frequency plane. Hence, in order to overcome the 

errors at the beginning and the end of the wavelet power 

spectrum, zero padding was introduced at the extremes 

of each EEG trial. Nevertheless, this introduces 

discontinuities at the edges. Thus, the spectral content 

must only be considered in the time-frequency regions 

delimited by their respective cones of influence (COIs), 

where the edge effect can be ignored (see Fig. 2). In this 

study, target trials of 1 second length were decomposed 

into the baseline and response window. Therefore, it is 

( ) ( ) ,*
1

, 


−








 −
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necessary to define one COI for each of the 

aforementioned time window.  

The analysis of the delta band was not performed 

because it could be affected by a significant bias, 

resulting in an inaccurate time-frequency estimation. In 

this regard, some studies recommend 6 cycles to 

accurately estimate wavelet coefficients41; nevertheless, 

two cycles can also be used at the expense of frequency 

resolution.42 In this study, this latter approach was used 

in order to study a maximum range of the spectral 

content, taking care with the lower frequencies because 

of the possible bias introduced due to the time-frequency 

resolution. Thereby, the CWT from 4 Hz to 70 Hz was 

divided according to the conventional EEG frequency 

bands: theta (4–8 Hz), alpha (8–13 Hz), beta-1 (13–19 

Hz), beta-2 (19–30 Hz) and gamma (30–70 Hz). 

Graph edge weights were obtained from the WC 

without the application of any threshold to obtain the 

adjacency matrices. Each node of the graph corresponds 

to an electrode (N = 31) and each edge weight 

corresponds to the WC between the signals of the 

considered pair of electrodes. To obtain the WC, the 

wavelet cross-spectrum (WCS) between two 1-s length 

ERP trials was computed as follows: 

 

(7) 

 

where subscripts i and j identify a pair of electrodes. Once 

WCS was obtained for all pairwise electrode 

combinations, it was averaged across trials in two 

windows of interest: (i) the baseline window; and (ii) the 

response window. Finally, WC between two given 

electrodes i and j was calculated as follows4,43: 

 

(8) 

 

 

WC is a straightforward method, commonly used in 

previous EEG studies.43–45 It represents the linear 

relationship between the amplitude of two signals in the 

spectral domain (nonlinear relationships are not 

considered).44 WC was obtained for each frequency (or 

scale) and, then, averaged across scales in the previously 

defined frequency bands. Hence, one adjacency matrix 

was obtained for each frequency band, subject and time 

window (i.e., 10 adjacency matrices per subject). As a 

result, 790 graphs were obtained for the DATASET-real: 

79 subjects × 2 time windows (baseline and response) × 

5 frequency bands. Graph edge weights range from 0 to 

1, since a thresholding method was not applied to the WC 

values. 

4. Results 

4.1. Results on synthetic graphs 

Fig. 3 shows the changes in SGC and GD for DATASET-

1 and DATASET-2 for different values of UF, N and the 

number of edges set to UF (ES-UF). The last parameter, 

ES-UF, reflects the balance of the edge weight 

distribution. When only one edge value is set to UF (and 

UF is large enough), the unbalance strength reaches its 

maximum; on the contrary, when all the edge values are 

set to UF, the edge weight distribution is completely 

balanced. 

The first row show SGC values for DATASET-1 and 

DATASET-2. SGC values are exactly the same for both 

datasets, which implies that SGC is density invariant (the 

only difference between DATASET-1 and DATASET-2 

is that graphs in DATASET-2 were normalized by their 

GD). SGC plots show that there is little variation in the 

complexity values for N > 30. Furthermore, there is a 

strong dependence between UF and the number of ES-

UF needed to reach an equilibrium between a completely 

weight balanced distribution and a strongly weight 

unbalanced distribution (i.e., the maximum value of SGC 

when N is fixed). 

On the contrary, GD behavior is completely different 

for these two datasets, since it directly depends on weight 

values but not on the weight distribution. The two bottom 

rows in Fig. 3 show the GD dependences for these two 

datasets. For DATASET-1, GD increases with the 

number of ES-UF. In addition, GD becomes higher as UF 

( )
( )

( ) ( )
,

2

sWCSsWCS

sWCS
sWC

jjii

ij
ij


=

( ) ( ) ( ),,,, * skCWTskCWTskWCS jiij =

 

Fig. 2. Example of the normalized wavelet coefficients at 

Pz electrode averaged across trials in a control subject. The 

transparency outline represents the limits of the COI in the 

baseline and response windows, where the spectral content 

is not affected by edge effects. 
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increases (note the logarithmic scale on z-axis). It is 

important to note that all the GD plots of the DATASET-

1 have the same shape, but it is not evident since all plots 

have the same scale in the axes. On the other hand, GD 

remains constant and equal to 1 for DATASET-2, since 

each graph was normalized by their own GD. Therefore, 

the behavior of GD for DATASET-1 is completely 

different than for DATASET-2, contrary to SGC. It is 

noteworthy that SGC and GD cannot be computed for all 

N and number of ES-UF, since it is impossible to 

generate an undirected graph of size N with more than 

( ) 21−NN  ES-UF. That is the reason why some SGC 

and GD values were not plotted.  

 The results for DATASET-3 showed that SGC and 

GD values were constant for each distribution. Therefore, 

SGC and GD are invariant with respect to the node degree 

distribution. These measures only depend on the value of 

the edge weights, but not on the degree of each node. 

Additionally, SGC provided complexity values of 0.026 

for a uniform distribution, 0.020 for a bimodal 

distribution and 0.015 for a normal distribution (see 

Table 2). On the contrary, GD was not able to 

differentiate between these distributions. 

The DATASET-4 was constructed to analyze the 

behavior of SGC for graphs with different numbers of 

connections. The SGC and GD results are shown in Fig. 

4. Similarly to DATASET-1 and DATASET-2, SGC 

showed little variation for N > 30. On the other hand, GD 

showed an important dependence on the number of 

connections.  

 

Fig. 3. SGC and GD values for DATASET-1 and DATASET-2. Note that GD results for DATASET-1 (second row) are represented 

in logarithmic scale, due to the high dependence of GD on N and UF. 

Table 2. SGC and GD values for all the graphs of 

DATASET-3. SGC and GD are independent of node 

degree distribution. 

 Uniform 

distribution 

Normal 

distribution 

Bimodal 

distribution 

GD 0.500 0.500 0.500 

SGC 0.026 0.015 0.020 

 

 

 

Fig. 4. SGC and GD values for DATASET-4. . Note that GD 

results are represented in logarithmic scale, due to the high 

dependence of GD on the number of connections. 
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Finally, Fig. 5 depicts SGC as a function of H and UF 

for N = 31 (number of nodes in DATASET-real). The 

graphs used to generate Fig. 5 are the same as those used 

in DATASET-1, but with several more values of UF in 

order to obtain a compact representation of SGC. Fig. 5a 

is useful to visualize SGC as function of H and UF, while 

the maximum and minimum values of SGC are easily 

observed in the Fig. 5b.  

4.2. Results on real brain graphs: Application to 

schizophrenia 

We computed SGC for real ERP signals recorded from 

healthy controls and schizophrenia patients. Complexity 

values were compared between time windows (baseline 

and response) and groups (controls and patients) in the 

five frequency bands under study. Prior to this, an 

exploratory analysis was carried out to analyze data 

distribution. The Kolmogorov-Smirnov and the Levene 

tests were used to check normality and homoscedasticity 

of data distributions. Nonparametric tests were applied to 

assess statistical differences, since parametric 

assumptions were not met: (i) Wilcoxon signed-rank test 

was used to compare baseline and response network 

measures for within-group analyses; 

 and (ii) Mann-Whitney U-test was used for between-

group analyses. In addition, Bonferroni correction for 

multiple comparisons was applied. Thus, the significance 

level was set to  = 0.01. 

Within-group analyses for SGC values on each group 

and window are shown in Fig. 6a. Only the theta band 

exhibited statistically differences between baseline and 

response windows (Z = -5.37, p = 7.83E-8, in the control 

group; Z = -3.05, p = 2.28E-3, in the schizophrenia 

group). On the other hand, GD was computed to validate 

the performance of SGC (Fig. 6b). Within-group analyses 

showed a statistically significant increase from the 

baseline to the response window in the theta band for 

both controls (Z = 5.75, p = 8.65E-9) and schizophrenia 

patients (Z = 3.37, p = 7.51E-4). No significant 

differences were found on the other frequency bands. In 

view of these results, only the theta band was considered 

for further analyses.  

SGC and GD were baseline corrected (i.e., 

complexity values during baseline window were 

subtracted from their values during response window).3,38 

Between-group analyses showed a marked reduction on 

SGC values during the response window for both controls 

and schizophrenia patients. However, no significant 

differences were found in between-group comparisons 

using corrected SGC after Bonferroni correction though 

(Z = -1.95, p = 5.01E-2). Nevertheless, controls showed 

a more marked decrease in SGC values during cognitive 

response than patients. Regarding GD analysis, results 

indicated that controls exhibited a statistically significant 

more prominent increase in corrected GD values during 

the response than schizophrenia patients (Z = 2.64, p = 

8.31E-3). Hence, for both network changes from baseline 

to response were more prominent in controls than in 

schizophrenia patients. 

It is interesting to note that H increased during the 

response window for both controls and schizophrenia 

patients. This indicates that the reduction of SGC, which 

 

Fig. 5. a) 3D and b) 2D plots corresponding to SGC as 

function of H and UF, when N = 31. Maximum and 

minimum values of SGC are also depicted in b). 
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is a measure of the equilibrium between balanced and 

unbalanced edge eight distribution, is due to an increase 

in the weight balance of the network. To evaluate brain 

complexity dynamics during the auditory oddball task, 

the change of SGC as function of H from baseline to 

response windows for controls and schizophrenia 

patients is represented in Fig. 7. 

5. Discussion 

The main objective of this study was to propose a novel 

graph complexity measure and assess its behavior under 

different conditions using synthetic and real datasets. 

SGC is essentially normalized with respect to GD and 

independent of node degree distribution. Additionally, 

the influence of network size on SGC seems to be small 

for N > 30 when UF takes small values. Hence, the need 

to make comparisons with null-hypothesis networks was 

not required for networks of the same size. On the other 

hand, statistically significant differences in network 

reorganization dynamics after an auditory oddball task 

were found between controls and schizophrenia patients 

with SGC.  

5.1. Shannon Graph Complexity dependences: 

Synthetic graphs 

Four synthetic datasets were generated by varying basic 

network characteristics, such as N, UF, GD and node 

degree distribution. DATASET-1 showed that SGC and 

GD depend on N and the number of ES-UF. It is 

important to note that a high UF value yields weighted 

graphs with similar behavior than binary graphs. Binary 

graphs have some connections set to 1 and others set to 

0. Their behavior is similar to weighted graphs with 

connections set to a high UF value and others set to 1. 

Therefore, when SGC is applied to binary graphs, the 

behavior is similar to the previously showed 

 

Fig. 6. a) SGC and b) GD values for each group, window 

and frequency band. Values are depicted as mean and 

standard error. * indicates p < 0.01, while ** indicates  

p < 0.001. 

 

Fig. 7. Detailed plot of the complexity dynamics from 

baseline to response in the theta frequency band for controls 

(blue arrow) and schizophrenia patients (red arrow). The 

small figure represents the maximum and minimum 

possible SGC values for this network size. The square in the 

small figure corresponds to the zoomed area in the large 

figure. H increases and SGC decreases for both groups, but 

the behavior is more remarkable for controls than for 

schizophrenia patients. 
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performance. This is a significant advantage with respect 

to other complexity measures, which cannot always be 

applied to binary and weighted graphs.25–27 On the 

contrary, SGC can be directly applied to binary and 

weighted graphs.  

Fig. 3 shows that the maximum of SGC for each N is 

always obtained for a number of ES-UF lower than 

( ) 21−NN . This is an important difference compared 

to GD, where the maximum is reached for ES-UF =

( ) 21−NN . Therefore, SGC introduces a graph 

complexity definition more intuitive than GD, since 

graph complexity is considered as an equilibrium 

between ‘order’ and ‘information’ stored. If graph 

complexity is measured by means of GD,12 a complete 

graph (i.e., a graph with all their nodes connected) with 

network connections set to the maximum value always 

has the highest complexity. However, this does not 

correspond to the intuitive notion of graph complexity, 

where some connections (and thus pathways) are more 

important than others, creating a tangled mesh of paths.46  

DATASET-2 was assembled similarly to 

DATASET-1. The only difference was that the 

DATASET-2 graphs were normalized by their own 

density. That is the reason for the constant GD values 

shown in the bottom row of Fig. 3. Nevertheless, graphs 

with proportional weights show the same H and D values 

by construction; therefore, SGC is also the same. In this 

regard, the same SGC values were reached for 

DATASET-1 and DATASET-2 (see Fig. 3). This is 

another advantage of SGC in comparison with GD. In 

addition, it is not necessary to normalize the graphs by 

their density to compare the complexity among them, 

enabling the comparability between studies. 

Results obtained from DATASET-3 proved that both 

SGC and GD are independent of node degree 

distribution. This implies that SGC is independent of 

network topology, which suggests that this measure 

provides complementary information to network 

measures based on topology. Two graphs with different 

node degree distribution or GD, but with the same set of 

weights, would have the same SGC value. Therefore, 

comparisons with null-hypothesis networks become 

unnecessary for networks with the same N. Furthermore, 

as we mentioned previously, the change of SGC is small 

for N > 30, when UF takes small values and ES-UF are 

fixed. Hence, the possible bias introduced when 

comparing with networks of different size is minimized 

in relation to other topology-based graph measures. 

DATASET-3 also provides an important difference 

between the two measures of graph complexity analyzed 

in this study. GD took the same value for the three 

different distributions. However, SGC results indicated 

that a uniform distribution of the edge weights had a 

higher complexity value than a normal or a bimodal 

distribution. This advantage of SGC with respect to GD 

is based on the ‘order’ of each distribution. A graph with 

maximum ‘order’ (a complete graph with the same value 

of all edges) corresponds to a delta distribution. In that 

case, SGC would provide a value equal to zero. The more 

the distribution under study resembles the distribution of 

maximum ‘order’, the lower the value of complexity 

provided by SGC. For that reason, the minimum 

complexity value was obtained with the normal 

distribution, with a value of 0.015 (Table 2). The bimodal 

distribution achieved a SGC value of 0.020, whereas the 

uniform one obtained a value of 0.026. 

Regarding DATASET-4, our results showed that the 

SGC behavior with not fully connected graphs is similar 

to that observed for fully connected ones, since there is 

little variation of SGC for N > 30. On the other hand, GD 

has an important dependence on the number of 

connections in the graph.  

Finally, it is important to note that graphs with the 

same size and edge values, but different topology, 

achieve the same value of SGC. Therefore, from the point 

of view of ‘order’ and amount of ‘information’ stored by 

the system, there are no differences between, for 

example, scale free and small-world networks (if they 

have the same size and edge values). 

In addition, the computational cost of SGC is 

significantly lower that other complexity measures based 

on several iterations of mutual information22 or on 

generating motifs from the original network.26 SGC is 

based on Shannon entropy and it only needs one iteration 

to be computed. This is another important difference with 

previously proposed complexity measures.22,26  

5.2. Brain dynamics using Shannon Graph 

Complexity: Real graphs 

The results derived from DATASET-real showed that 

SGC is a metric that may allow differentiating the brain 

networks of controls and schizophrenia patients. For both 

groups, SGC decreased during the response window, 

which suggests a reduction of the equilibrium between 

‘order’ and amount ‘information’ stored by the system. 

In addition, Fig. 6 showed higher values of H during the 

response window for both groups. Therefore, the ‘order’ 
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decreased while the amount of ‘information’ stored by 

the system increased in the subjects’ brain networks 

during the cognitive task. However, the variation of SGC 

from the baseline to the response window is more 

prominent in controls, specifically in the theta band, 

which could evidence a deficit in the reorganization 

patterns in schizophrenia. In this regard, results showed 

that only theta band exhibited statistical differences in 

within-group analyses. In addition, the changes between 

baseline and response windows were lower in 

schizophrenia patients. Previous studies reported a 

decrease of the relative power in alpha frequency band in 

schizophrenia patients,47,48 and an increase of power in 

theta band.49 Furthermore, oscillations in low frequency 

ranges (such as theta) are related with the modulation of 

the long-range synchronization,50,51 whereas high 

frequency ranges (such as beta and gamma) reflect 

synchronization in large-scale networks.52 Thus, it can be 

inferred that impaired activation response of long-range 

interactions might contribute to the pathological process 

of schizophrenia, which usually shows an integration 

deficit among distant brain areas.29 In view of these 

results, the present study reports similar ideas to previous 

ones, which suggested that schizophrenia is accompanied 

by a disrupted network reorganization of neural 

functions, mainly in long-range interactions.3,53,54 

Our results also agree with previous studies that 

linked impaired network reorganization capacity with the 

aberrant salience and the disconnection hypotheses.55,56 

In this regard, Bachiller et al.4 posed the idea that 

schizophrenia patients failed to change their coupling 

dynamics between stimulus response and baseline when 

performing a stimulus processing. It can be related to a 

diminished ability to optimize the neural synchronicity 

leading to a functional disconnection. This idea was 

clearly shown by GD results. Controls showed a 

significant increase in GD during the response, which 

implies a global increment of connectivity patterns. As 

reported in task-related studies,4,57 an increase of ERP 

synchronicity on the theta frequency band is observed 

during cognitive processing. Nonetheless, schizophrenia 

patients usually show a failure to modulate synchronous 

activity, particularly when asked to attend to target 

stimuli.4,58 This modulation deficit produces lower WC 

values for schizophrenia patients than for controls. 

Therefore, it seems reasonable that schizophrenia 

patients exhibited lower GD values during the response 

window. 

There are important aspects that indicate the 

complementarity of SGC and GD. On the one hand, SGC 

(jointly with H) showed that the weight distribution is 

more balanced during the response compared to baseline 

(see Fig. 6). Taking into account only SGC results, the 

increased balance could be a consequence of: (i) a 

prominent increase in the value of weak connections (i.e., 

secondary neural pathways); (ii) a decrease in the value 

of the connections with higher values; or (iii) the 

combined effect of the previous two points. On the other 

hand, GD showed an increase, on average, of the edge 

weights during the response window. Therefore, the 

increase of edge values for the secondary neural 

pathways should have a higher effect than a possible 

decrease in the connections with higher values (option 

(i)). Furthermore, SGC modulation is higher for controls, 

but statistically significant differences were not found 

between the baseline windows of both groups. Thus, it is 

likely that secondary neural pathways can be 

strengthened in controls compared to schizophrenia 

patients during cognitive processing. This strengthening 

balances the weight distribution, which could increase 

the reliability and the information propagation speed in 

the brain. Therefore, controls can reorganize their brain 

network between different areas in a flexible and 

transient way in order to coordinate the response to the 

cognitive task. The previous inferences have only been 

possible due to the complementary information provided 

by SGC and GD. Although the statistical differences 

between healthy subjects and schizophrenia patients are 

more marked for GD than for SGC, it is important to note 

that the second objective of this study is to assess the 

usefulness of SGC in determining the properties of the 

real brain networks. In this regard, SGC provided 

different and complementary information to that of a 

classical measure of graph complexity, GD, meeting the 

second objective of the study. 

The idea of classifying brain graph connections in 

different topological levels (primary and secondary 

connections) is in line with a recent concept introduced 

in neuroscience to model the brain network: the 

minimum spanning tree (MST).46,59 MST is an acyclic 

subgraph that connects all nodes using exactly N–1 edges 

while minimizing distance between nodes (i.e., 

maximizing the connection strength).60 It represents a 

critical backbone of information flow in weighted 

networks, providing information about how the brain 

structures the information in different topological levels. 
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The nodes involved could be similar to those forming the 

weighted “rich club” (i.e., a subset of high-degree nodes 

that are connected by a larger fraction of the most highly 

weighted edges in the graph that expected by chance).61 

Thus, the brain network is modeled as a two topological 

levels structure. The first topological level is formed by 

the main connections (i.e., the MST backbone and the 

“rich club” motifs). The second topological level is 

formed by secondary neural pathways, which are 

removed in the MST model. Thus, this idea supports our 

concept of network complexity: the brain is a network 

halfway between a completely balanced and unbalanced 

weight distribution, where the higher-level topologies are 

part of the previously mentioned MST backbone. SGC is 

useful to evaluate the relationship between primary and 

secondary pathways in terms of weight balance, which 

can support the existence of “rich club” assemblies in the 

brain network. In this regard, it is commonly accepted 

that the archetypal brain network is sparsely connected 

between nodes in different modules.62 In this study, SGC 

showed that weak connections increase their strength 

during the response window, generating new alternative 

pathways that should work to increment network 

integration. It is noteworthy that several EEG studies 

reported an increase in brain network integration during 

cognitive processing.63,64 This integration, usually 

measured by means of the path length, is reduced in 

schizophrenia patients compared to controls during an 

oddball task,5 which is again in agreement with the 

disconnection hypothesis.29 The present results support 

an altered information processing in schizophrenia, 

which may not characterize, however, all the patients in 

this syndrome, given its likely heterogeneous biological 

substrate.65 

5.3. Limitations and future lines of research 

Some methodological issues of this study merit 

consideration. Firstly, SGC does not provide information 

about graph topology. Although this is an important 

advantage because the requirement for a surrogate 

process is avoided by comparing networks with the same 

N, the lack of this information requires the use of 

complementary measures in order to obtain a global 

vision of the network. Nonetheless, the need for various 

measures to fully characterize a graph is commonly 

accepted.66,67 Individually, topological features do not 

provide information on the connectivity balance or the 

strength of the functional neural connections. In our 

opinion, this edge weight distribution balance has a very 

important role in the analysis of the impact of network 

complexity. Therefore, the lack of this information could 

lead to ignoring important aspects of the brain network. 

The second methodological issue is related to the 

intrinsic SGC property as an entropy-based measure. 

Previous studies suggested that entropy quantifiers might 

overestimate the irregularity in the brain network.68 This 

could explain why entropy values obtained from brain 

networks reached values close to 1, as shown in Fig. 7. 

Different entropy measures could provide different 

degrees of disorder estimation. Future works should 

address this concern by quantifying the irregularity by 

means of other entropy measures. Likewise, different 

disequilibrium measures based on more complex 

measures of distance (Euclidean distance was used in this 

study) could provide complementary results. 

Thirdly, the methods used to estimate the 

connectivity between brain areas could have a high 

impact on measures that are strongly dependent on edge 

weights. DATASET-real was obtained by applying WC 

to EEG recordings. The choice of this connectivity 

measure was motivated by its widespread use as a 

method for weight estimation in functional brain 

graphs.44 Coherence is a straightforward method that 

assesses the linear relation between the amplitude of two 

signals in the frequency domain. However, it is sensitive 

to volume conduction,44 which could lead to an 

erroneously high estimation of connectivity between two 

network nodes.44,69 In this regard, a statistical threshold 

to remove spurious connections could help to clarify the 

results. Future works should be carried out to evaluate 

SGC behavior in graphs obtained using metrics that do 

not overestimate the connectivity between nodes, such as 

phase-based measures. In addition, it could be interesting 

to apply multivariate approaches for causal interactions 

between nodes, since directed edges can be interpreted in 

a more physiological way. The application of SGC in 

these conditions would not need any reformulation, since 

it is applicable to directed graphs. Nonetheless, it is 

important to note that the proposed measure is an 

extension of a metric originated in information theory by 

considering normalized weights as probabilities. For that 

reason, it is not possible to compute SGC when a graph 

takes negative edge weights. In this regard, an interesting 

future line of research could be a more theoretical 

approach of the interpretation of the proposed metric. It 

would provide more meaningful and general results.  
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6. Conclusions 

Several pieces of evidence suggest that the edge weight 

distribution of complex brain networks is directly related 

to reliability aspects and to its information propagation 

speed. Therefore, graph measures that evaluate the 

weight distribution are fully justified. SGC was 

introduced as a useful alternative to GD and other graph 

complexity measures. In this study, we proved the 

independence of SGC with respect to basic graph 

characteristics, in addition to an almost small dependence 

on N when UF takes small values. 

Our results from real brain graphs indicate that SGC 

is particularly useful to determine the intrinsic properties 

of neural dynamics during a cognitive task. Specifically, 

SGC results suggest that the auditory oddball task elicits 

an increment of the connection weights, mainly in the 

edges related to secondary neural links. This provides 

alternative pathways to the neural backbone. Another 

important remark is the prominent change in SGC and 

GD observed in controls compared to schizophrenia 

patients. These insights are in line with the disconnection 

and aberrant salience hypotheses. They involve a deficit 

in neural network reorganization during cognitive 

processing that could lead to a lower functional 

integration of the brain network. 
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