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Abstract—Spectral unmixing pursues the identification of spec-
trally pure constituents, called endmembers, and their correspond-
ing abundances in each pixel of a hyperspectral image. Most
unmixing techniques have focused on the exploitation of spectral
information alone. Recently, some techniques have been developed
to take advantage of the complementary information provided by
the spatial correlation of the pixels in the image. Computational
complexity represents a major problem in these spatial–spectral
techniques, as hyperspectral images contain very rich information
in both the spatial and spectral domains. In this letter, we develop a
computationally efficient implementation of a spatial–spectral pro-
cessing algorithm that has been successfully applied prior to the
spectral unmixing of the hyperspectral data. Our implementation
has been optimized for the commodity graphics processing units
(GPUs) and is evaluated (using both synthetic and real data) using
different GPU architectures. Significant speedups can be achieved
when processing hyperspectral images of different sizes. This allows
for the inclusion of the proposed parallel preprocessing module in
a full hyperspectral unmixing chain able to operate in real time.

Index Terms—Graphics processing units (GPUs), hyperspectral
unmixing, spatial–spectral preprocessing (SSPP).

I. INTRODUCTION

THE wealth of spectral information provided by imaging
spectrometers has promoted the application of hyperspec-

tral imaging techniques in many different areas of interest [1]. In
hyperspectral unmixing, endmember extraction is the process
of collecting pure signature spectra of the materials present in a
remotely sensed hyperspectral scene. These pure signatures are
then used to decompose the scene into a set of so-called abun-
dance fractions, representing the coverage of each endmember
in each image pixel.

Several algorithms have been developed for automatic or semi-
automatic identification of endmembers over the last decade [2].
A majority of the algorithms havebeen developed under the pure
pixel assumption, i.e., they assume that the remotely sensed data
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contain one pure observation for each different material in the
scene [3]. These algorithms often rely exclusively on the exploi-
tation of spectral information in order to select the final set of end-
members. However, spatial information can greatly assist in the
unmixing task by considering local structures latent in thedata[4].

In order to also include the spatial information, several
techniques have been proposed in the literature, such as the au-
tomatic morphological endmember extraction [5] or the spatial–
spectral endmember extraction [6]. Furthermore, several spatial
preprocessing algorithms have been developed that can be
applied prior to any spectral-based endmember extraction tech-
nique. Techniques include the spatial preprocessing (SPP)
[7], region-based SPP [8], and spatial–spectral preprocessing
(SSPP) [9]. The goal of these preprocessing methods is to guide
the search for endmembers using not only spectral but also
spatial information, which can greatly assist in the selection
of more spatially representative endmembers without the need
to modify the endmember identification algorithm (the pre-
processing can be applied as an optional step). Such SPP adds
some extra computational cost to the full spectral unmixing
chain. As a result, the development of efficient implementations
for SPP techniques has become an important goal.

In this letter, we present a new parallel implementation of the
SSPP algorithm, which has been shown to be one of the most
successful SPP techniques available in the literature [9]. Our
implementation has been developed for commodity graphics
processing units (GPUs) [10] and tested on several GPU archi-
tectures. Synthetic scenes are used to validate the efficacy of the
implementation, whereas real hyperspectral data are used to eval-
uate a full unmixing chain that includes our efficient preprocess-
ing module. The results indicate that significant speedups can be
achieved, allowing us to embed the SSPP into a full unmixing
chain that performs in real time after including the SPP module.

The remainder of this letter is organized as follows. Section II
enumerates and describes the different steps of the SSPP
method. Section III describes the proposed parallel implementa-
tion for GPUs. Section IV describes the experiments conducted
using synthetic data, as well as the real data experiments
intended to evaluate the acceleration achieved by our parallel
implementation in the context of a full hyperspectral unmixing
chain. Section V concludes this letter with some remarks and
hints at plausible future research lines.

II. SSPP

This section briefly outlines the SSPP algorithm in [9]. As
shown in the flowchart given in Fig. 1, the SSPP method
consists of the following steps.

1) Multiscale Gaussian filtering. This step takes as input
the original hyperspectral image YI×J×B , where I is the
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Fig. 5. Fully parallel hyperspectral unmixing chain.

MultiCPU versions as the number of endmember increases. In
the GPU case, this is a consequence of the implementation
strategy considered for maxminbands and weights kernels.
Last but not least, the linear trend of the results suggests that
real data sets with larger sizes may allow for the inclusion of
SSPP in a full unmixing chain able to operate in real time.

B. Real Data Experiments

We have used two real hyperspectral data sets. The first
one was collected by the Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) instrument, which is operated by the
NASA’s Jet Propulsion Laboratory, over the Cuprite mining
district in Nevada in the summer of 1997 (these data are avail-
able online).5 The portion used in the experiments corresponds
to a 350 × 350 pixel subset with 188 spectral bands in the range
from 400 to 2500 μm, and a total size of 50 MB (several bands
were removed due to water absorption and low signal to noise
ratio in those bands). The second hyperspectral scene was also
collected by AVIRIS over the World Trade Center (WTC) area
in New York City on September 16, 2001 just five days after the
terrorist attacks that collapsed the two main towers and other
buildings in the WTC complex.6 The full data set selected for
experiments consists of 614 × 512 pixels, 224 spectral bands,
and a total size of ≈140 MB.

The unmixing chain used in these experiments is composed
of five different parallel steps (see Fig. 5). The GPU imple-
mentation of the different parts of the chain is described in
[14]. The estimated number of endmembers is p = 25 for the
Cuprite scene and p = 31 for the WTC scene. Table II shows
the time for each step of the parallel unmixing chain (with our
GPU version of SSPP embedded) and the obtained speedups
in three different GPU architectures. Architectures 1 and 2
(based on NVidia GTX devices) obtain better performance than
Architecture 3 (based on NVidia TESLA GPU devices). This
is because the NVidia TESLA includes error checking and
correction that guarantees more stable results at the expense
of a slightly reduced performance. Fig. 4 shows the execution
times of each step of the unmixing chain for the WTC data
set. The time taken by data transfers between the CPU and the
GPU is included in the execution times reported in Fig. 4. Such
overhead represents 16.63%, 21.94%, and 9.4% of the total
execution time for Architectures 1, 2, and 3, respectively. In the
case of AVIRIS (a pushbroom instrument), the cross-track line
scan time is quite fast (8.3 ms to collect 512 full pixel vectors).
For real-time performance, the WTC image (512 × 614 pixel

5http://aviris.jpl.nasa.gov
6http://speclab.cr.usgs.gov/wtc/

vectors) needs to be processed in approximately 5.2 s, which
results from a data collection rate of approximately 27 MB/s.
As shown in Table II, the execution of the SSPP algorithm
is always below this threshold. In addition, the full unmixing
chain is below the threshold in the case of Architecture 2.

V. CONCLUSIONS AND FUTURE LINES

In this letter, we have developed a new GPU implementation
of the SSPP algorithm. The obtained results indicate that it
is possible to achieve significant speedups by overlapping the
execution of the algorithm in the CPU/GPU. The parallel SSPP
has been embedded into a full real-time unmixing chain. Future
work will focus on improving this implementation by studying
different clustering and endmember extraction algorithms.
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