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Abstract

This study presents an asynchronous P300-based Brain–Computer Interface
(BCI) system for controlling social networking features of a smartphone.
There are very few BCI studies based on these mobile devices and, to the
best of our knowledge, none of them supports networking applications or
are focused on an assistive context, failing to test their systems with motor-
disabled users. Therefore, the aim of the present study is twofold: (i) to de-
sign and develop an asynchronous P300-based BCI system that allows users
to control Twitter and Telegram in an Android device; and (ii) to test the
usefulness of the developed system with a motor-disabled population in order
to meet their daily communication needs. Row-col paradigm (RCP) is used
in order to elicitate the P300 potentials in the scalp of the user, which are
immediately processed for decoding the user’s intentions. The expert system
integrates a decision-making stage that analyzes the attention of the user in
real-time, providing a comprehensive and asynchronous control. These inten-
tions are then translated into application commands and sent via Bluetooth
to the mobile device, which interprets them and provides visual feedback
to the user. During the assessment, both qualitative and quantitative met-
rics were obtained, and a comparison among other state-of-the-art studies
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javier.gomez@gib.tel.uva.es (Javier Gomez-Pilar), robhor@tel.uva.es
(Roberto Hornero)

1Phone number: +34 983 18 47 16

Preprint submitted to Expert Systems with Applications November 7, 2018

Expert Systems With Applications  ©Elsevier
Accepted version of an article published in Expert Systems With Applications, vol. 120, 2019, pp. 155-166
DOI: https://doi.org/10.1016/j.eswa.2018.11.026

https://doi.org/10.1016/j.eswa.2018.11.026


was performed as well. The system was tested with 10 healthy control sub-
jects and 18 motor-disabled subjects, reaching average online accuracies of
92.3% and 80.6%, respectively. Results suggest that the system allows users
to successfully control two socializing features of a smartphone, bridging the
accessibility gap in these trending devices. Our proposal could become a use-
ful tool within households, rehabilitation centers or even companies, opening
up new ways to support the integration of motor-disabled people, and mak-
ing an impact in their quality of life by improving personal autonomy and
self-dependence.

Keywords: Brain-computer interface (BCI), smartphones, asynchronous
control, social networks, P300 event-related potentials,
electroencephalography (EEG).

1. Introduction1

Brain–Computer Interfaces (BCI) are able to establish a communication2

system between our brains and the environment, making it possible to con-3

trol devices with our brain signals. Such bypassing requires the monitoring4

of brain activity, which is commonly accomplished using electroencephalog-5

raphy (EEG) due to its portability, non-invasiveness, and low-cost (Wolpaw6

et al., 2000). Hence, electric potentials are recorded by placing a set of elec-7

trodes over the user’s scalp (Wolpaw et al., 2000, 2002). The main motivation8

of BCI systems has always been to improve the quality of life of motor-9

disabled people, which usually contributes to reduce the accessibility gap in10

different fields. Thus, end users can take advantage of this novel technol-11

ogy to reduce their dependence, regardless of their disability. These motor-12

disabilities could have been caused by neurodegenerative diseases, traumas,13

muscle disorders, or any illness that impair the neural pathways that con-14

trol muscles or the muscles themselves (Wolpaw et al., 2000, 2002; Kübler15

et al., 2007; Kübler and Birbaumer, 2008). Moreover, BCI systems may use16

a wide variety of control signals to detect the user’s intentions in real time17

(Wolpaw et al., 2002). In particular, exogenous signals, such as P300 evoked18

potentials, are commonly used to assure the efficacy of the systems with any19

motor-disabled user. These potentials are produced in response to infrequent20

and particularly significant stimuli about 300 ms after their onset (Wolpaw21

et al., 2002).22

The rapid growth of the Internet in the last decades has caused a huge23
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impact on people’s lives, bringing entirely new ways of everyday communica-24

tion. This impact has been enlarged by the popularity of the smartphones,25

which provide a continuous Internet connection. In fact, it is estimated that26

there are 4.9 billion of unique mobile users in the world, reaching a market27

penetration of 66% (Kemp, 2017). Their functionalities cover from manag-28

ing finances to reading news, including watching videos, shopping, playing29

games or searching for information. However, it is worthy to note that more30

than the 56% of the time spent is dedicated to socializing (i.e., social media31

and instant messaging), both in everyday and working environments (Ipsos32

MORI and Google, 2017). Currently, there are 2.8 billion of active social33

media users, and 91.4% of them access social media with their smartphones34

or tablets (Ipsos MORI and Google, 2017). Despite this development, the35

accessibility of these devices is still restricted for motor-disabled people that36

are unable to use accurately their hands and fingers.37

Motor disabilities comprise the limitations on people’s physical function-38

ing that hinder their full and effective interaction with the environment39

and society (World Health Organization, 2011). These impairments may be40

caused by: (i) neurodegenerative diseases, such as multiple sclerosis, amy-41

otrophic lateral sclerosis, Friedreich’s ataxias, etc.; (ii) congenital conditions,42

such as cerebral palsy, polymalformative syndromes, myotonic dystrophies,43

etc.; or (iii) traumas, such as strokes or spinal cord injuries, among oth-44

ers. It is estimated that the world average prevalence rate of disability for45

adult people is 15.6%, which ranges from 11.8% in higher income countries46

to 18.0% in lower ones (World Health Organization, 2011). Moreover, dis-47

eases and traumas are not the only cause that can lead to develop a motor48

disability, but also the natural ageing contributes in a high extent. In fact,49

older people are disproportionately represented in disability populations and50

thus, everybody is susceptible to develop a motor disability at some point in51

their lives (World Health Organization, 2011). In this respect, BCI applica-52

tions represent a novel technology from which disabled people can benefit to53

reduce their dependence.54

From an expert and intelligent systems point of view, BCIs utilize artifi-55

cial intelligent techniques to replace, restore, enhance or supplement the nat-56

ural central nervous system outputs of their users (Hill and Wolpaw, 2016).57

To this end, BCIs should comprise a decision-making stage that interprets58

neural activity and determines users’ intentions or emotions. Moreover, sev-59

eral BCIs include an adaptive engine that learns from the experience, modify-60

ing classifier weights and features while the user controls the system (Atkin-61
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son and Campos, 2016). These systems can be trained to react to changes62

in the EEG signals that could reflect: (i) emotions (Blondet et al., 2013;63

Atkinson and Campos, 2016), (ii) road drowsiness (Da Silveira et al., 2016),64

(iii) driving stress (Chen et al., 2017), (iv) mental effort (Zammouri et al.,65

2018), (v) attention (Aloise et al., 2011; Pinegger et al., 2015; Mart́ınez-66

Cagigal et al., 2017a), (vi) motor imagery (Wolpaw et al., 2002), or (vii)67

event-related responses (Luck, 2014), among others. Accordingly, BCIs play68

a potential role as knowledge-based systems in many clinical and industrial69

applications.70

In recent years, some studies have attempted to apply BCI systems to71

mobile devices with the aim of controlling a wheelchair (Jayabhavani et al.,72

2013), robots (Ma et al., 2015), or detecting the user’s emotions (Blondet73

et al., 2013). Despite the popularity of the smartphones and tablets these74

days, there are very few studies in the scientific literature that aim to control75

any of their functionalities. These studies are limited to dial numbers in cell76

phones (Wang et al., 2011; Chi et al., 2012), accept incoming calls (Katona77

et al., 2014), call contacts (Campbell et al., 2010; Wang et al., 2011), spell78

words (Obeidat et al., 2017; Elsawy et al., 2017), or play a simple racing79

game (Wu et al., 2014). Possibly the work of Elsawy and Eldawlatly (2015)80

is the one that relates more closely to the topic, which allows users to open81

pre-installed apps and visualize the image gallery. Nevertheless, to the best82

of our knowledge, none of those studies has been focused on providing a high-83

level control of a smartphone or tablet, nor making social apps accessible to84

disabled people. Furthermore, it is well known that disabled users generally85

reach lower accuracies than healthy users (Wolpaw et al., 2002; Sellers and86

Donchin, 2006; Mart́ınez-Cagigal et al., 2017a) and thus, the assessment of87

BCI systems with end users is essential for ensuring a fair evaluation. Since88

these studies have not been tested with a disabled population, their reliability89

may be compromised in real life situations.90

The purpose of this study is twofold: (i) to design and develop a practi-91

cal BCI-based application that allows disabled people to access social media92

with any smartphone or tablet; and (ii) to evaluate it with a population93

of motor-disabled people in order to assess the usefulness of our proposal94

to meet their daily communication needs. With the objective of providing a95

comprehensive social networking support, we consider that the system should96

implement both a social network and an instant messaging applications. In97

this case, the application will provide a complete control of Twitter and98

Telegram, which currently have more than 317 and 100 millions of mobile99
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Table 1: Demographic and clinical data of the participants

User Sex Age DD Disease

M
o
to

r-
D

is
a
b

le
d

su
b

je
c
ts

M01 F 48 90% Stroke
M02 M 46 80% Spinal cord injury
M03 F 38 93% Friedreich’s ataxia
M04 M 39 98% Spinal cord injury
M05 F 49 78% Friedreich’s ataxia
M06 M 31 76% Cerebral palsy
M07 M 52 99% Cerebral palsy
M08 M 44 90% Friedreich’s ataxia
M09 M 47 69% Cerebral palsy
M10 M 67 87% Cerebral palsy
M11 M 62 86% Myotonic dystrophy
M12 M 47 90% Polymalformative syndrome
M13 F 66 94% Friedreich’s ataxia
M14 F 40 88% Friedreich’s ataxia
M15 M 38 98% Spinal cord injury
M16 M 50 80% Spinal cord injury
M17 F 42 89% Cerebral palsy
M18 F 45 84% Spinal cord injury

C
o
n
tr

o
l

su
b

je
c
ts

C01 M 25 0% -
C02 M 25 0% -
C03 M 24 0% -
C04 M 25 0% -
C05 M 25 0% -
C06 M 32 0% -
C07 M 24 0% -
C08 M 25 0% -
C09 F 23 0% -
C10 F 33 0% -

F: female, M: male, DD: degree of disability.

active users, respectively (Kemp, 2017). Moreover, the application will mon-100

itor users’ attention and apply a dynamic asynchronous control management101

(Mart́ınez-Cagigal et al., 2017a). As a result, the expert system will only102

deliver conscious selections, eliminating the need of read-mode commands or103

external supervisors.104

5



2. Subjects105

Eighteen motor-disabled subjects (MDS, mean age: 47.63 ± 9.53 years;106

11 males, 8 females) and ten healthy control subjects (CS, mean age: 26.10107

± 3.45 years; 8 males, 2 females) were included in this study. MDS par-108

ticipants were recruited from the National Reference Centre on Disability109

and Dependence, located in León (Spain). All subjects gave their informed110

written consent to participate in the study, previously approved by the local111

ethics committee. Table 1 summarizes the clinical and demographic charac-112

teristics of all participants. As can be noticed, all MDS present moderate or113

high degrees of motor disability (mean: 86.42% ± 8.58%), caused by different114

diseases: stroke (1), spinal cord injuries (5), Friedreich’s ataxias (5), cerebral115

palsies (5), polymalformative syndrome (1), and myotonic dystrophy (1).116

3. Methods117

As shown in Fig. 1, the developed BCI application involves three main118

entities, which communicate among themselves: (i) the user, which involves119

the EEG signal acquisition; (ii) the laptop, which generates the visual stimuli,120

processes the signal, decodes the user’s intentions and translates them into121

commands; and (iii) the mobile device, which interprets those commands122

and provides visual feedback to the user. The methodology that is applied123

to each stage, as well as the evaluation procedure, are described below.124

3.1. Signal acquisition125

EEG signals from users were recorded using eight active electrodes, placed126

on Fz, Cz, Pz, P3, P4, PO7, PO8 and Oz, according to the International 10–127

20 System distribution (Jasper, 1958). The system was referenced to the128

earlobe, using the Fpz electrode as a ground. Electrodes were connected to129

a g.USBamp amplifier (g.Tec, Guger Technologies, Austria) with a sampling130

frequency of 256 Hz. As a pre-processing stage, band-pass (0.1–60 Hz), notch131

(50 Hz) and common average reference (CAR) filters were applied. BCI2000132

platform was used to record the data, display and process the stimuli (Schalk133

et al., 2004).134

3.2. Signal processing135

The exogenous nature of P300 evoked potentials avoids training (Wol-136

paw et al., 2002). Furthermore, the number of different commands that can137
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Figure 1: Structure of the BCI social network application. The EEG signal of the user
is sent to the laptop, which processes it, decodes the user’s intentions and translates
them into commands in real time. These commands are finally sent to the device (i.e.,
smartphone or tablet) via Bluetooth, which interprets them and provides visual feedback
to the user.

be selected by the user is extremely large whether the odd-ball paradigm138

is used (Farwell and Donchin, 1988; Wolpaw et al., 2002; Mart́ınez-Cagigal139

et al., 2017a). In this paradigm, an infrequent target stimulus, which has to140

be attended, is presented among other distracting background stimuli that141

have to be ignored. When the user attends to the target stimulus, a P300142

potential appears mainly on the parietal and occipital cortex (Farwell and143

Donchin, 1988; Wolpaw et al., 2002; Mart́ınez-Cagigal et al., 2017a). We used144

an extension of the odd-ball paradigm, known as row-col paradigm (RCP),145

for decoding the users’ intentions (Townsend et al., 2010). In the RCP, a ma-146

trix containing the commands that control the BCI application is displayed,147

whose rows and columns are randomly flashed. The user, who has to stare at148

the desired command, will generate a P300 potential when the target’s row149

or column is illuminated (Farwell and Donchin, 1988; Wolpaw et al., 2002;150

Townsend et al., 2010; Mart́ınez-Cagigal et al., 2017a; Mart́ınez-Cagigal and151

Hornero, 2017; Obeidat et al., 2017).152

Social media apps in general and, particularly, Twitter and Telegram,153

have some key functionalities that should be controlled. In this regard,154
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Figure 2: Evaluation setup from the point of view of the user: (a) EEG acquisition
unit, (b) laptop that monitors the EEG signal, processes it and generates the stimuli; (c)
smartphone on a small tripod, close enough to the user for receiving the visual feedback;
(d) panoramic screen that displays the stimuli. Both matrices are depicted: (left) main
matrix, whose first row is currently flashed; and (right) keyboard matrix, which can be
toggled by the user through the “MTX” command.

owing to the fact that not only the RCP matrices have to include control155

commands, but also alphanumeric characters and symbols, our application156

uses alternatively two different matrices: (i) main matrix, and (ii) keyboard157

matrix (see Fig. 2). The first one is intended to control the main function-158

alities of Twitter and Telegram, such as loading the home view, opening a159

new tweet or chat, visualizing a profile or contact, toggling between both160

social networks or scrolling the current view. The second one, by contrast,161

is intended to write texts and fill out forms. Both matrices can be freely162

toggled between themselves if the user selects the command “MTX”.163

Due to the high sampling rate of the EEG recordings relative to the164

low frequency of the P300 potential response, a dimensionality reduction is165

beneficial for the real-time classification (Krusienski et al., 2008). In order166

to extract the most relevant features of the EEG signal, a sub-sampling of167

20 Hz is applied on the first 800 ms from the stimulus onset (i.e., 16 samples168

per stimulus and channel). Then, channels are concatenated, returning a169

vector of 128 features per stimulus (Corralejo et al., 2014; Mart́ınez-Cagigal170

et al., 2017a). Afterwards, the extracted feature vectors of each stimulus are171

processed by a linear classifier, which determines the presence (i.e., positive172

class) or the absence (i.e., negative class) of a P300 evoked potential. Step-173

wise linear discriminant analysis (SWLDA) was used in this study, with pin =174

0.10 and pout = 0.15 as selection/elimination criteria and a maximum of 60175
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selected features for each input vector (Krusienski et al., 2006, 2008; Corralejo176

et al., 2014; Mart́ınez-Cagigal et al., 2017a; Mart́ınez-Cagigal and Hornero,177

2017). Even though SWLDA has a simple implementation, it delivers similar178

performances and lower computational cost in comparison with more complex179

methods, which makes it a popular algorithm for the P300 classification180

problem (Krusienski et al., 2006, 2008; Blankertz et al., 2011; Zhang et al.,181

2016; Mart́ınez-Cagigal et al., 2017b). This method calculates a projection of182

the input data that simultaneously minimizes the within-class and maximizes183

the between-class covariances (Keinosuke, 1990). Thus, the probability score184

of finding a P300 in the i-th illumination is computed using the Euclidean185

distance between the projected data and the projected mean of the positive186

class (Narsky and Porter, 2013), as follows:187

li = 1− ‖〈w,xi〉 − 〈w, µi〉‖ (1)

where w is the weight vector, computed in a calibration session; xi denotes188

the feature vector, and µi the mean of the positive class. The probability of189

selecting a certain command j is computed as the average of the scores of all190

the stimuli that belong to its row and column, as indicated in (2). Therefore,191

the output selected command is the one that provides the maximum average192

probability (i.e., ps = maxp) (Mart́ınez-Cagigal et al., 2017a).193

pj =
1

N

∑
li∈row∪col (2)

RCP-based matrices are synchronous processes, which means that the194

system will deliver a selection even if the user is not paying attention to the195

visual stimulation (Aloise et al., 2011; Pinegger et al., 2015; Mart́ınez-Cagigal196

et al., 2017a). This fact severely restricts the autonomy of the application,197

needing an external supervisor or implementing a read-mode command that198

could pause the system for a fixed number of seconds. In our application, we199

have implemented a dynamic asynchronous control management by monitor-200

ing the user’s attention (Mart́ınez-Cagigal et al., 2017a). The method works201

as follows: (i) EEG signals of the user paying attention (i.e., control state)202

and ignoring (i.e., non-control state) the stimuli are recorded in a calibration203

session; (ii) the signals are processed and the final selected command proba-204

bilities ps are stored in both control and non-control arrays; (iii) the arrays205

are fed into a receiver operating characteristic (ROC) curve for determining206

the optimum threshold that maximizes the sensitivity-specificity pair; (iv)207

the custom threshold value T for each user is then used online. In the online208
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Figure 3: Snapshots of the BCI social networking application: (a) Twitter’s profile time-
line, (b) dialog for writing tweets, (c) tweet view, (d) Telegram’s conversation list, (e)
Telegram’s group, and (f) contact list.

sessions, the selected command probability is compared with the threshold209

in real-time. If ps > T , the selection is accepted and the command is sent210

via Bluetooth to the mobile device; otherwise, the selection is rejected and211

the system encourages the user to try to select the command again.212

3.3. Application213

It has been recently reported that 98.8% of the smartphones that are sold214

these days either use Android or iOS (International Data Corporation, 2017).215

In fact, Android has an 83.4% of the worldwide smartphone market share,216

while iOS has a 15.4% (International Data Corporation, 2017). For this217

reason, and taking into account that Android is a free open platform, we have218

developed our application for this operating system. Whether the application219

is used for the first time, the user is asked to login the Twitter account and to220

register the telephone number to Telegram. Switching between both services221

is also handled by a toggle command that can be selected by the user. Fig.222

3 shows several snapshots of the final application, whose main functionalities223

are described below.224

Twitter. Defined as a popular free social networking service that allows225

users to broadcast public small messages (up to 280 characters), known as226

tweets. Although it was originally developed as an online service, its mobile227

activity reaches more than 317 million of active users, which makes Twitter228

one of the most installed social networking services in smartphones or tablets229

nowadays (Kemp, 2017). Our BCI application implements the entire set of230

Twitter functionalities, including both the possibility of interacting with: (i)231
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“tweets”, writing, answering, “retweeting”, or making them as favorite; and232

(ii) accounts, surfing among profiles, or sending direct messages.233

Telegram. Defined as a non-profit cloud-based instant messaging service234

that allows users to send encrypted messages and exchange files of any type235

in real-time. Even though it has a desktop version, its popularity is extended236

thanks to the mobile application, which has more than 100 million of active237

users and has become the most popular instant messaging app in several238

countries (Kemp, 2017). Our BCI application covers its main functionalities,239

including the possibility of interacting with individual chats, groups and240

channels through real-time messages, or creating new chats with any contact241

that is stored in the device.242

3.4. Evaluation procedure243

The evaluation setup is depicted in Fig. 2. During the assessment, par-244

ticipants were sat on a comfortable chair or on their own wheelchair, in front245

of a panoramic screen, as well as in front of a smartphone on a small tri-246

pod. The screen was connected to a laptop (Intel Core i7 @ 2.6 GHz, 16 GB247

RAM, Windows 10), which executed the signal processing stage and sent the248

commands to the mobile device (Samsung Galaxy S7, 4GB RAM, Android249

7.0) via Bluetooth. The assessment was composed by three different sessions:250

the first two intended to calibrate the system, and the last one intended to251

evaluate the BCI application.252

Calibration 1. The first session was intended to compute the optimal pa-253

rameters for each user, such as the number of sequences (i.e., repetitions of254

the stimuli), the classifier’s weight vector, and the asynchronous threshold255

value. Firstly, users were asked to pay attention to 6 items in 4 different256

trials (i.e., to spell 4 words composed of 6 characters). Due to its larger size,257

the keyboard matrix was used and the number of sequences was fixed in 15.258

During this calibration, users were encouraged to count how many times the259

target character was being flashed, in order to keep attention to the task.260

After these runs, SWLDA was trained, returning the weight vector and the261

most appropriate number of sequences for each user. The latter is computed262

as the minimal number of repetitions that reaches a 100% of accuracy using263

the training data. Hereinafter, the trained SWLDA model and the optimal264

number of sequences for each user were used in the online sessions. Note that265

training data was composed of 5400 observations per subject (6 items × 4266
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trials × 15 seq. × [7 rows + 8 columns]). Then, the first stage of threshold267

calibration was performed. Composed of 8 trials with 6 items, the calibration268

was intended to record signals of both control and non-control states. Thus,269

users were asked to pay attention to 4 trials, and to ignore the flashings of270

the remaining 4 (e.g., by reading a text).271

Calibration 2. The second session was intended to finish the threshold cal-272

ibration for increasing the overall performance. The objective was to record273

additional data in order to create a most robust asynchronous threshold that274

could be adapted to the inter-session variability of the participants (Picton,275

1992; Mart́ınez-Cagigal et al., 2017a). Hence, users were asked to spell 4276

trials and ignore 4 trials more, all of them composed by 6 items. It is note-277

worthy that both stages of the threshold calibration were performed using278

the main matrix, aiming to reduce the task time due to its smaller size.279

Then, thresholds for both sessions were calculated as the optimal points of280

the ROC curves using control and non-control classes. Finally, the optimal281

threshold value was computed as the average of them.282

Evaluation. The third session was intended to assess the performance and283

the quality of the developed BCI system. The evaluation session, strictly284

online, was made up of 6 different tasks, whose difficulty increased progres-285

sively. It is worthy to mention that the duration of each task varied among286

users due to their different optimal number of sequences. These tasks are de-287

scribed below, together with the ideal number of selections and the matrices288

that are required to finish them.289

i) Toggling between Twitter and Telegram. Using Twitter, users had to290

scroll down and up the timeline and toggle to Telegram (3 items, main291

matrix).292

ii) Retweeting a tweet. Using Twitter, users had to scroll down the time-293

line, select one tweet and retweet it (4 items, main matrix).294

iii) Writing a new tweet. Using Twitter, users had to open the form to write295

a new tweet and spell “hello” (7 items, both matrices).296

iv) Checking the profile and answering a tweet. Using Twitter, users had297

to visit their own profile, select the last tweet and answer “great!” (11298

items, both matrices).299

v) Creating a new chat. Using Telegram, users had to select one contact,300

create a new chat, and spell “how are you?” (11 items, both matrices).301

vi) Chatting with someone. Using Telegram, users had to select one chat302

12



from the conversations list, in which the interlocutor had said: “hi! how303

are you?”, and reply with “fine, and you?” (12 items, both matrices).304

During the evaluation session, both quantitative and qualitative metrics305

have been registered. With regard to the quantitative measures, the number306

of correct selections, errors, sequences and the time that it takes to accom-307

plish each task have been noted down. As a result, accuracies and output308

characters per minute (OCM) for each task have been calculated. Accuracy309

is defined as the percentage of correct selections to the total number of se-310

lections. It is worthy to note that the selections that have not overcome the311

asynchronous threshold have not been considered errors, since they have not312

been sent to the final device. OCM, calculated by dividing the total number313

of selections by the duration of the task, is an online metric that estimates314

the true communication rate of the system (Speier et al., 2013). Although315

information transfer rate (ITR) has traditionally been used in this respect,316

several authors pointed out that ITR makes assumptions that are usually317

incorrect in online BCI systems (Speier et al., 2013; Yuan et al., 2013). ITR318

assumes that: (i) all possible selections are equally probable, (ii) the system319

is memoryless, and (iii) a synchronous paradigm is used. In online systems320

where users are allowed to correct selection errors, ITR may return counter-321

intuitive results when two different users type the same word and one shows322

lower speed, but returns a higher ITR. Since correcting an error implies to323

successfully spell two or more commands, the ITR increases because the de-324

crease in accuracy weighs less than the increase in extra selections. Moreover,325

ITR requires the number of possible selections (i.e., n), as well as the reached326

accuracy. Despite that the latter is a global metric, n varies if more than one327

RCP matrix is used, hindering the generalization of ITR values. In addition,328

ITR assumes that commands are sequentially selected following a constant329

speed, without pauses. Therefore, the estimation is biased in asynchronous-330

based BCI systems. It is also noteworthy that the ITR estimation is incorrect331

if the subject did not perform any error, returning an infinite value. Accord-332

ing to this rationale, ITR is replaced by OCM considering the nature of the333

proposed BCI system.334

Regarding the qualitative testing, users were asked to fulfill a question-335

naire at the end of the session. The survey was composed of 20 items that had336

to be ranked in a 7-point Likert scale (Likert, 1932). These items assessed the337

subjective opinions of the users in regard to the application speed, interface,338

accessibility, the duration of the sessions, the users’ motivation and their ex-339
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pectations, among others. Moreover, an additional open-ended question was340

included to collect their personal suggestions for further improvements. It is341

noteworthy that optimal number of sequences and trained SWLDA models,342

previously computed in the calibration sessions for each subject, were used343

thereinafter in the online evaluation session.344

4. Results345

Results of the calibration sessions are depicted in Table 2, where training346

accuracies, optimal number of sequences, and percentage of error selections in347

control-state recordings are detailed for each user. As can be noticed, 4 MDS348

could not obtain training accuracies higher than 70%. Since 70% is usually349

considered as the minimal acceptable accuracy in the BCI literature, they350

were discarded from the subsequent assessment (Kübler et al., 2001; Kleih351

et al., 2010; Corralejo et al., 2014; Mart́ınez-Cagigal et al., 2017a). Quanti-352

tative results of the evaluation sessions are shown in the Table 3, including353

the duration, the final accuracy and the OCM of each task. Moreover, their354

averages and the number of sequences of each user are also detailed. Ques-355

tionnaire results are finally depicted in Table 4, which specifies the statements356

and the ranks provided by the users. Values range from 1 (i.e., totally dis-357

agree), to 7 (i.e., totally agree), where 4 means a neutral response. Note that358

positive and negative statements are alternated in order to reduce the acqui-359

escence bias (Likert, 1932). With regard to the final open-ended question,360

two users demanded to get rid of the conductive gel, and one user demanded361

more speed.362

5. Discussion363

Four MDS were discarded from the assessment due to their low training364

accuracy (<70%) (Kübler et al., 2001; Kleih et al., 2010; Corralejo et al.,365

2014; Mart́ınez-Cagigal et al., 2017a), probably because their P300 potentials366

were too attenuated or their latencies were too variable (Table 2). Since367

there are subjects with the same diseases that do not show this effect, the368

rationale behind it lies in indirect problems related to attention capability369

or gaze control. In particular, M01 exhibited lack of sustained attention370

capability; M07 suffered from essential tremors; M11 was unable to open his371

eyes properly; and M13 reported nystagmus, which causes involuntary eye372

movements, resulting in limited vision and lack of control over gaze. Fig. 4373
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Table 2: Calibration sessions results

User
Classifier Threshold

TA Ns A1 A2

M01 67.0% 15 - -
M02 89.0% 10 41.7% 83.3%
M03 92.0% 14 50.0% 50.0%
M04 100% 9 95.8% 95.8%
M05 100% 7 95.8% 70.8%
M06 100% 7 83.3% 77.8%
M07 8.0% 15 - -
M08 100% 10 87.5% 68.2%
M09 100% 13 100% 72.2%
M10 100% 13 79.2% 79.2%
M11 57.0% 15 - -
M12 100% 12 83.3% 87.5%
M13 56.0% 15 - -
M14 100% 9 66.7% 58.3%
M15 100% 13 83.3% 87.5%
M16 100% 14 95.8% 87.5%
M17 89.0% 15 50.0% 33.3%
M18 100% 7 95.8% 91.7%

C01 100% 11 100% 91.7%
C02 100% 6 100% 97.2%
C03 100% 13 95.8% 95.8%
C04 100% 7 100% 95.8%
C05 100% 5 87.5% 91.7%
C06 100% 8 91.7% 91.7%
C07 100% 8 95.8% 100%
C08 100% 4 77.8% 91.7%
C09 100% 8 100% 100%
C10 100% 7 100% 95.8%

The prefix “M” stands for motor-disabled subjects, whereas “C” indicates the control
subjects; “TA” stands for training accuracy; Ns indicates the number of sequences of each
user; and “A1” and “A2” indicate the accuracy in the first and second threshold sessions,
respectively.

depicts two sample ERPs recorded over channels Pz and Cz, one from M16,374

who could finish all tasks; and the other one from M07, who was discarded375

from the assessment. In contrast to the response of M16, the P300 potential376

of M07 is quite noisy and unrecognizable, which would explain the poor377

performance of his classifier in the training stage.378
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Table 3: Evaluation session results

User
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Ns
Average Average

Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM accuracy OCM

M02 01:52 66.7% 1.61 04:55 60.0% 2.04 06:09 66.7% 1.46 06:09 63.6% 1.79 08:59 63.6% 1.22 01:02 100% 1.94 10 65.2% 1.58
M03 03:06 100% 1.29 04:42 57.1% 1.49 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 14 72.7% 1.41
M04 01:05 100% 2.76 02:29 100% 2.42 04:36 100% 1.52 06:32 100% 1.68 09:12 77.8% 0.98 03:11 100% 1.57 9 95.1% 1.51
M05 01:05 100% 2.76 01:27 100% 2.76 03:35 85.7% 1.95 05:05 90.9% 2.16 04:31 100% 1.99 05:39 100% 1.94 7 95.6% 2.11
M06 01:33 100% 1.94 03:37 85.7% 1.94 03:04 100% 2.28 04:40 100% 2.36 05:31 100% 2.17 05:50 84.6% 2.23 7 94.3% 2.18
M08 01:33 100% 1.94 02:04 100% 1.94 05:07 85.7% 1.37 08:18 58.3% 1.45 03:29 40.0% 1.44 04:49 71.4% 1.45 10 71.1% 1.50
M09 02:01 100% 1.49 03:22 100% 1.49 06:39 100% 1.05 10:07 81.8% 1.09 05:35 50.0% 1.07 n.c. n.c. n.c. 13 84.4% 1.15
M10 02:01 66.7% 1.49 03:22 40.0% 1.49 07:43 75.0% 1.04 09:20 63.6% 1.18 n.c. n.c. n.c. n.c. n.c. n.c. 13 63.0% 1.20
M12 01:52 66.7% 1.61 03:43 100% 1.61 07:07 75.0% 1.12 09:20 81.8% 1.18 11:02 60.0% 0.91 n.c. n.c. n.c. 12 76.3% 1.15
M14 01:05 66.7% 2.76 02:16 100% 1.76 05:38 85.7% 1.24 09:08 58.3% 1.31 06:26 66.7% 1.86 05:05 60.0% 1.97 9 68.8% 1.62
M15 02:01 100% 1.49 04:02 66.7% 1.49 07:02 87.5% 1.14 10:07 72.7% 1.09 11:58 100% 1.00 10:30 100% 1.05 13 88.2% 1.12
M16 02:10 66.7% 1.38 02:54 100% 1.38 07:75 75.0% 1.01 10:54 90.9% 1.01 12:53 91.7% 0.93 11:19 100% 0.97 14 89.8% 1.02
M17 02:20 100% 1.29 04:39 83.3% 1.29 10:08 66.7% 0.89 11:40 45.5% 0.94 n.c. n.c. n.c. n.c. n.c. n.c. 15 65.5% 1.01
M18 01:05 100% 2.76 01:27 100% 2.76 03:35 100% 1.95 05:27 100% 2.02 06:26 100% 1.86 06:48 92.3% 1.91 7 98.0% 2.02

Mean 01:46 88.1% 1.90 03:13 85.2% 1.85 06:01 84.8% 1.39 08:13 77.5% 1.48 07:31 77.2% 1.40 07:49 89.8% 1.67 10.93 80.6% 1.47
SD 00:35 16.6% 0.60 01:09 20.7% 0.49 02:02 12.5% 0.43 02:22 18.4% 0.47 03:10 22.4% 0.48 03:15 14.9% 0.44 2.84 12.9% 0.40

C01 01:42 100% 1.76 02:16 100% 1.76 05:38 100% 1.24 07:47 90.9% 1.41 08:05 90.9% 1.30 09:12 91.7% 1.36 11 93.8% 1.38
C02 00:56 100% 3.23 01:14 100% 3.23 03:04 85.7% 2.28 04:40 100% 2.36 04:51 100% 2.17 05:31 100% 2.27 6 97.9% 2.37
C03 02:01 100% 1.49 04:02 83.3% 1.49 07:43 85.7% 0.908 10:07 100% 1.09 10:30 100% 1.00 13:01 92.3% 1.14 13 94.2% 1.10
C04 01:05 100% 2.76 02:10 66.7% 2.77 03:35 100% 1.95 05:27 81.8% 2.02 05:39 100% 1.55 09:43 73.3% 2.12 7 85.2% 1.95
C05 00:47 100% 3.87 01:02 100% 3.87 02:33 100% 2.74 03:54 90.9% 2.83 04:03 100% 2.61 04:36 100% 2.97 5 98.0% 2.90
C06 00:56 100% 4.30 01:14 100% 3.23 03:04 71.4% 2.28 06:14 100% 1.12 08:05 100% 1.30 09:12 66.7% 1.36 8 86.7% 1.57
C07 01:14 100% 2.42 02:04 60.0% 2.42 03:35 57.1% 1.95 05:27 81.8% 2.02 06:53 91.7% 1.50 07:22 81.8% 1.74 8 79.6% 1.84
C08 00:37 100% 4.84 00:50 100% 4.84 02:03 100% 3.42 03:07 100% 3.53 03:14 90.9% 3.26 03:41 91.7% 3.40 4 95.8% 3.55
C09 01:14 100% 2.42 01:39 100% 2.42 04:06 100% 1.71 06:38 91.7% 1.81 05:39 100% 1.86 06:26 100% 1.94 8 98.0% 1.90
C10 01:05 100% 2.76 01:49 80.0% 2.77 03:35 100% 1.95 05:27 100% 2.02 05:27 90.9% 1.86 06:26 91.7% 2.02 7 93.9% 2.06

Mean 01:10 100% 2.99 01:50 89.0% 2.88 03:54 90.0% 2.04 05:53 93.7% 2.02 06:15 96.4% 1.84 07:31 89.0% 2.03 7.7 92.3% 2.06
SD 00:25 0.0% 1.08 00:55 15.6% 0.98 01:39 15.1% 0.71 02:00 7.5% 0.76 02:10 4.6% 0.68 02:48 11.5% 0.72 2.7 6.3% 0.73

The prefix “M” stands for motor-disabled subjects, whereas “C” indicates the control subjects; “Dur.” indicates the task duration;
“Acc.” indicates the task accuracy for each user; “OCM” stands for Output Characters per Minute; Ns indicates the number of
sequences of each user; and “n.c.” stands for “not completed”, which means that the user could not finish the task and thus, durations,
accuracies and OCM are not defined. Note that users M01, M07, M11 and M13 were discarded from the assessment because they could
not obtain a minimum accuracy of 70% in the calibration sessions.

Unsurprisingly, quantitative results of the evaluation session (Table 3)379

show that CS obtained higher overall accuracies (92.3% ± 6.3%) than MDS380

(80.6% ± 12.9%). In fact, this difference in performance was demonstrated to381

be significant (Wilcoxon Signed-rank Test, p-value = 0.0375). Furthermore,382

the required number of sequences for CS was significantly lower (Wilcoxon383

Signed-rank Test, p-value = 0.0155) than for MDS, which used 7.7 ± 2.7 and384

10.93 ± 2.84 sequences, respectively. Consequently, the bits per minute rate385

for CS (2.06 ± 0.73) was also higher than for MDS (1.47 ± 0.40), producing386

also significant differences (Wilcoxon Signed-rank Test, p-value = 0.0498).387

The less number of sequences, the higher output bits per minute. This assures388

a faster navigation through the application and thus, CS took less time than389

MDS to finish the tasks. These findings reinforce the necessity of assessing390

the reliability of BCI systems with end users.391

With regard to the complexity of these tasks, the average durations of392
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Table 4: Questionnaire results

No. Statement
MDS CS

Mean SD Mean SD

1 I found interesting to use the BCI social networking application 6.07 1.07 6.00 0.94
2 I found it difficult to control the system 2.86 1.79 2.70 1.34
3 My expectations for the application were completely met 5.29 1.64 5.90 0.99
4 I was bored during the assessment sessions 2.14 1.56 3.50 1.96
5 I found the assessment sessions entertaining 5.57 1.65 4.80 1.40
6 I can imagine myself using this BCI application in my daily life 4.29 2.34 2.60 1.84
7 It was stressful to concentrate when it was required 3.00 1.75 2.60 1.71
8 The application works smoothly 4.71 1.44 5.80 1.03
9 The duration of the calibration sessions was too long 2.43 1.74 3.70 1.89
10 User interface is intuitive and easy to understand 4.79 1.76 5.70 1.16
11 It takes much too long to control the BCI application 4.14 1.83 4.20 1.40
12 I would love to participate in other similar studies 6.43 0.76 5.20 1.62
13 I found it difficult to select the desired commands 2.93 1.90 2.80 1.23
14 I would gladly carry out more testing sessions with the BCI application 6.00 1.47 4.80 1.62
15 I did not find the flickering effect annoying 4.07 1.59 5.10 1.85
16 The duration of the evaluation session was too long 2.14 1.56 3.60 1.51
17 I would not need a manual for controlling Twitter and Telegram with this system 4.93 1.77 5.90 1.73
18 I am happy that the sessions are over 4.07 1.59 4.90 1.29
19 I think that this system could improve the social media accessibility 5.86 1.41 6.40 0.70
20 I became impatient during the sessions 2.07 1.69 3.40 1.51

Statements were ranked in a 7-point Likert scale, where 1 means a complete disagreement, 4 a neutral response, and 7 a complete
agreement.

the Table 3 show a clear increase as the users advance through the tasks,393

especially for CS. However, the average accuracies for each of them does not394

show a constant decreasing, which could be expected at first glance. The first395

task was easily completed by all the participants (CS: 100% ± 0.0%; MDS:396

88.1% ± 16.6%). The second task was also completed by all the participants,397

even though they reached lower accuracies (CS: 85.2% ± 20.7%; MDS: 89.0%398

± 15.6%) and took three times more to finish than the first one. The third399

task was a struggle for M03, which could not finish it, probably because it400

was the first task that involved the use of both RCP matrices (CS: 90.0%401

± 15.1%; MDS: 84.8% ± 12.5%). Like the previous one, the fourth task402

only was a problem for the same user, even though the duration increased403

appreciably (CS: 93.7% ± 7.5%; MDS: 77.5% ± 18.4%). The fifth task began404
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Figure 4: Event-related responses recorded in the first calibration session of two motor-
disabled subjects: (a) M16, who could finish all tasks; and (b) M07, who was discarded
due to its low classifier accuracy (<70%). Average curves of target stimuli (solid lines)
and non-target stimuli (dashed lines) are depicted over the channel Pz (blue and yellow).
Shaded areas indicate the 95% confidence interval of the aforementioned stimuli. Average
curves over the channel Cz are also shown (grey). Note that a band-pass filter between
1–15 Hz has been applied for visualization purposes.

to be challenging, and three MDS were not able to complete it (CS: 96.4%405

± 4.6%; MDS: 77.2% ± 22.4%). Finally, the sixth task was by far the most406

difficult one, causing that five MDS could not finish it (CS: 89.0% ± 11.5%;407

MDS: 89.8% ± 14.9%). Note that, despite of the highest presumed difficulty408

of the latter, MDS accuracies in the sixth task are higher than that obtained409

in the fifth one. This is because the metrics are only computed for the users410

that could finish the task, reducing the performance variability, as indicated411

by the standard deviation. As revealed above, although all CS were able to412

finish all tasks, there were several MDS who faced problems to finish them. In413

particular, the two most challenging tasks involved the use of both matrices414

and spelling long sentences in order to communicate via Telegram chats. It415

was observed that a selection error often causes more mistakes thereafter,416

probably due to despondency. This issue could be solved by integrating a417

spelling dictionary or processing error-related potentials (ErrP) (Schalk et al.,418

2000).419

Concerning the qualitative analysis, questionnaire results show that par-420

ticipants were quite satisfied with the BCI application. All the positive state-421

ments were valued above the neutral response (i.e., 4), and all the negative422

statements but two were valued below it. These statements were the 11th,423

which concerns the required time to control the application; and the 18th,424

which means that some users were slightly happy that the assessment sessions425

were over. The former discloses a request to increase the speed of the system.426

18



Nevertheless, the speed is directly related to the classifier performance, which427

depends on the user’s calibration sessions. A more robust classifier, either428

because it would be based on a more sophisticated processing framework or429

because it would be trained with more data, could reach higher accuracies430

with fewer number of sequences, providing a faster navigation (Zhang et al.,431

2016). The latter reveals that the participation of several users implied an ef-432

fort, a fact that should be taken into consideration when designing the tasks,433

their duration and the structure of the assessment sessions. However, users434

reported that they were willing to carry more sessions and to participate in435

further similar studies. Moreover, results show that these users did not ex-436

perienced impatience, boredom, fatigue or stress. In addition, it is worthy to437

mention that the 6th statement was also valued below the neutral response438

for CS. This fact reveals that CS cannot imagine themselves using the BCI439

application in their daily life, which was expected because of their full physi-440

cal and cognitive capabilities. Conversely, MDS do imagine themselves using441

the developed application as a daily tool, which reinforces the practicality of442

the system.443

As pointed earlier, notwithstanding the growing popularity of smart-444

phones, there are very few studies that have attempted to control their func-445

tionalities by integrating a BCI system. Table 5 shows these studies, which446

have been focused to dial numbers (Wang et al., 2011; Chi et al., 2012),447

accept incoming calls (Katona et al., 2014), call contacts (Campbell et al.,448

2010; Wang et al., 2011), play simple games (Wu et al., 2014), spell words449

(Obeidat et al., 2017; Elsawy et al., 2017) or open pre-installed apps and vi-450

sualize the gallery (Elsawy and Eldawlatly, 2015). It is noteworthy that none451

of them has been focused on providing a high-level control of a smartphone,452

nor controlling social network functionalities. Moreover, the table 5 exposes453

one of the main drawbacks of the BCI literature, whose studies usually fail454

to prove the usability of their systems with end users. In fact, none of the455

aforementioned applications has been tested with motor-disabled users, who456

are the ones that would presumably benefit from them. It is also worthy to457

mention that none of these studies provides an asynchronous control, which458

implies that, in a real situation, an external supervisor should be present to459

pause the application when required. For this reason, one of the main objec-460

tives of this study is to evaluate our proposal with a population of 18 MDS461

in order to assess its usefulness to meet their daily communication needs.462

Among the studies depicted in Table 5, P300 evoked potentials are the463

most prevalent control signals (Campbell et al., 2010; Elsawy and Eldawlatly,464
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Table 5: Comparison among state-of-the-art studies

Study
Control

EEG cap Target SO Processing
Main

N Sub. Accuracy(1)
signal functionalities

Campbell et al. (2010) P300
EPOC

iOS Mobile Call contacts 3 CS 88.89%
(Emotiv)

Wang et al. (2011) SSVEP
Custom

Cell phone Computer Dial numbers 10 CS 95.90%
headband

Chi et al. (2012) SSVEP
Custom dry

Cell phone Cell phone Dial numbers 2 CS 89.00%
electrode

Katona et al. (2014) Conc.
Mindset Windows

Headset Accept/reject incoming calls 5 CS 75.00%
(Neurosky) phone

Wu et al. (2014) Conc.
Mindset

Android Headset Play a simple racing game 5 CS -
(Neurosky)

Elsawy and Eldawlatly (2015) P300
EPOC

Android Mobile
Open pre-installed apps and 6 CS 79.17%(2)

(Emotiv) visualize the gallery 6 CS 87.5%

Elsawy et al. (2017) P300
EPOC

Android Mobile Spell words 6 CS 64.17%
(Emotiv)

Obeidat et al. (2017) P300
EPOC

Android Mobile Spell words 14 CS 90.00%
(Emotiv)

Present study P300
g.USBamp

Android Computer
Full asynchronous control 10 CS 92.30%

(g.Tec) of Twitter and Telegram 18 MDS 80.60%

“P300” refers to the P300 evoked potentials, “SSVEP” stands for steady-state visual evoked potentials, and “Conc.” denotes a
Neurosky concentration signal; “N ” indicates the number of subjects; “CS” stands for control subjects, and “MDS” stands for
motor-disabled subjects.
(1) Whether the study provides several accuracies for different experiments, the table shows the highest online reached performance.
If accuracy is not provided directly, it is estimated from other data.
(2) The first accuracy belongs to the opening pre-intalled apps functionality, whereas the second one belongs to the visualizing
application.

2015; Obeidat et al., 2017; Elsawy et al., 2017). However, the customized465

Neurosky concentration metric is also used as an endogenous control signal466

(Katona et al., 2014; Wu et al., 2014), and steady-state visual evoked po-467

tentials (SSVEP) as exogenous ones (Wang et al., 2011; Chi et al., 2012).468

Even though the signal processing of the former is simple and can be han-469

dled by the headset itself, the Neurosky concentration signal can only be470

used to make dichotomous decisions. In other words, the systems of Katona471

et al. (2014) and Wu et al. (2014) could only discriminate two different EEG472

states, hindering the use of this signal for providing a high-level control of a473

complex system, such as the smartphones. Regarding the latter, it is worthy474

to mention that the SSVEP-based studies were both focused to dial numbers475

in cell phones (Wang et al., 2011; Chi et al., 2012). SSVEP signals are based476

on a mimetic mechanism: when the retina is excited by a visual stimulus that477

flickers at a constant frequency, the brain generates an oscillatory response478

at the same frequency (Wolpaw et al., 2002; Pastor et al., 2003; Capilla et al.,479
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2011; Luck, 2014). The main advantage of the SSVEP signal is its exoge-480

nous nature, which makes a training phase unnecessary. Moreover, the signal481

also provides high performances, as the results show (Wang et al., 2011; Chi482

et al., 2012). However, the most reliable flickering frequencies belongs to483

the low beta band (i.e., 13–19 Hz) (Volosyak et al., 2011), which maximize484

the risk of epileptic seizures and visual fatigue (Pastor et al., 2003). Further-485

more, the standardization of vertical refresh rate of LCD screens also restricts486

the number of simultaneously displayed frequencies (Volosyak et al., 2009).487

Therefore, the number of possible commands is limited. With regard to the488

P300-based studies, the use of a wireless headset with saline electrodes allows489

them to integrate a simple signal processing stage in the final devices (i.e., iOS490

or Android). However, although this solution favors the users’ comfort and491

the practicality of the system, it also sets up a trade-off between portability492

and performance. In fact, the CS average accuracy of our study (92.30%) is493

higher than the ones reported in all these previous approaches, probably due494

to the use of: (i) gel-based active electrodes, (ii) a more complex signal pro-495

cessing module, and (iii) a larger stimulation screen. Significant differences496

have been found between our study outcomes and the results of the opening497

apps system of Elsawy and Eldawlatly (2015) (Wilcoxon Signed-rank Test,498

p-value = 0.0088); and the mobile speller of Elsawy et al. (2017) (Wilcoxon499

Signed-rank Test, p-value = 0.0007). The remaining P300-based studies do500

not provide unfolded accuracy results for each user and thus, statistical anal-501

ysis could not be performed. Furthermore, it is worthy to mention that no502

comparison with disabled subjects could have been made because of their503

lack of assessment with end users.504

From the experimental outcomes, several insightful implications can be505

derived. On the one hand, this study may be considered as one of the first506

precursors of smartphone-based BCIs. As aforementioned, there are very507

few studies that have attempted to control mobile devices with BCI systems,508

and none of them was focused on providing a high-level control of a certain509

application. Our system provides a comprehensive control of two different510

social networks, covering all their functionalities and simultaneously reaching511

high accuracy results. To this end, users can select 72 different commands,512

arranged in two different RCP matrices. On the other hand, the present513

study has been tested with a population of both motor-disabled and control514

subjects and thus, the viability of the system has been demonstrated. Unfor-515

tunately, BCI-based studies usually fail to test their systems with real users,516

making it impossible to infer their reliability in a real context. Therefore, to517
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the best of our knowledge, the present study is the first approach that has518

been proved its practicality to control a mobile BCI system by real users.519

These outcomes suggest that the developed system would be extended, in520

the near future, to assist individuals, companies or institutions that could be521

benefited from it. Consequently, personal autonomy and social integration of522

motor-disabled users could be improved, making an impact in their quality523

of life. To sum up, the main strengths of our proposal are:524

i) Comprehensive control of Twitter and Telegram in Android platforms525

using brain signals.526

ii) Ability to discriminate among a total of 72 different commands, ar-527

ranged in two RCP matrices.528

iii) Asynchronous control management by means of attention monitoring.529

iv) Suitable performance accuracies.530

v) Robustness, due to the evaluation with both control and motor-disabled531

populations.532

Despite the results show that our BCI application allow users to success-533

fully control Twitter and Telegram in an Android device, we can point out534

the following weaknesses:535

i) Signal processing stage requires a laptop to be executed, which favors536

the reliability of the system, but impairs portability. Further research537

can overcome this limitation by using a wireless headset and integrating538

the processing stage into the final device.539

ii) Asynchronous management is based on a wrapper method that depends540

on the LDA classifier and consequently, on the training performance of541

each user. Future endeavors must be focused on developing new asyn-542

chrony filter methods, such as SSVEP-based approaches independent543

of inter-session effects (Aloise et al., 2011; Pinegger et al., 2015; Wang544

et al., 2016; Jiao et al., 2017).545

iii) Lack of despondency bypassing, causing a mistake to occasionally result546

in more errors in the following selections. A future research line could547

be aimed to implement a spelling dictionary or processing ErrPs to548

avoid extra selection errors (Cruz et al., 2018).549

iv) Heterogeneous motor-disabled population. Although the application550

was tested with 18 MDS, and all of them can be considered end users551

of BCI systems, a future homogenization could be suitable for charac-552

terizing the performance of the system within a certain disease.553
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6. Conclusion554

An asynchronous P300-based BCI system to control social networking ap-555

plications of smartphones or tablets has been designed, developed and tested556

with both healthy and motor-disabled users. The system monitors the EEG557

signal of the user, while a RCP matrix containing the application commands558

flashes its rows and columns in order to generate P300 evoked potentials on559

the user’s scalp. The selected commands are sent in real-time to the final560

Android device via Bluetooth, which interprets them and provides visual561

feedback to the user. The system has been tested with 10 CS and 18 MDS.562

The assessment was composed of two calibration stages and one evaluation563

session, where the users had to complete 6 different tasks, sorted by dif-564

ficulty. Both quantitative and qualitative metrics were obtained, reaching565

average accuracies of 92.3% for CS and 80.6% for MDS. To the best of our566

knowledge, this is the first BCI study aimed to control social networking567

applications in a comprehensive way. Significant differences have been found568

among our accuracy results and that reported in other related studies, which569

obtained lower performances. Therefore, our P300-based BCI socializing sys-570

tem proves to be a suitable solution for motor-disabled users, allowing them571

to meet their daily communication needs.572

In spite of the positive results, future research work can be suggested.573

Future endeavors should be aimed to: (i) embed the signal processing stage574

in the final device, (ii) design an asynchronous management independent of575

the classifier, (iii) implement a dictionary that suggests common words to576

the users based on their previous selections, (iv) process ErrPs to identify577

prediction errors and avoid wrong selections in real-time, and (v) test the578

application with a homogenized disabled population in order to study the579

performance within a certain disease.580

Acknowledgments581

This study was partially funded by projects TEC2014-53196-R and DPI2017-84280-R582

of ‘Ministerio of Economı́a y Competitividad’ and FEDER, the project “Análisis583

y correlación entre el genoma completo y la actividad cerebral para la ayuda584
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