IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 8, 2022, accepted February 14, 2022, date of publication February 16, 2022, date of current version March 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152224

Cross Validation Voting for Improving CNN
Classification in Grocery Products

JAIME DUQUE DOMINGO -, ROBERTO MEDINA APARICIO -,

AND LUIS MIGUEL GONZALEZ RODRIGO

CARTIF Foundation, Divisién de Sistemas Industriales y Digitales, Parque Tecnolégico de Boecillo, 47151 Valladolid, Spain

Corresponding author: Jaime Duque Domingo (jaiduq@cartif.es)

This work was supported in part by “The Centre for the Development of Industrial Technology (CDTI)”, under the “Centros Tecnolégicos
de Excelencia Cervera” Program, through the Project “SR-Cervera Network in Robotic Technologies for Smart Manufacturing”, under
Contract CER-20211007; and in part by the “Fondo Europeo de Desarrollo Regional (FEDER)”* of the European Union and the “Junta de
Castilla y Le6n” through the “Instituto para la Competitividad Empresarial de Castilla y Leén (ICE)” through the line ‘2020 Proyectos
I+D Orientados a la Excelencia y Mejora Competitiva de los Centros Tecnolégicos”, under Project CCTT3/20/VA/0003.

ABSTRACT The development of deep neural networks that has been carried out in recent years allows
solving highly complex computer vision classification problems. Often, although the results obtained with
these classifiers are high, there are certain sectors that seek greater accuracy from these systems. Increasing
the accuracy of neural networks can be achieved through ensemble learning, which combines different
classifiers with the aim of selecting a winner based on different criteria about them. These techniques have
traditionally shown good results although they involve training models of different nature and can even
produce an overfitting with respect to the training data, so datasets must be chosen to correctly evaluate
the result. In this paper, a Cross-Validation-Voting (CVV) technique for grocery product classification is
presented. This technique improves several single state-of-the-art classifiers without combining different
ones and avoids the problems of overfitting with respect to the training set. The single classifiers are trained
multiple times against distributed sets to show how the results obtained to date from the classification of a
well-known dataset are improved. In this dataset, an extensive test set was previously selected by the authors
to show comparable results with other papers in the literature. The technique is valid not only for vision nets
and can be used to solve numerous problems with different kinds of neural networks and classifiers.

INDEX TERMS Cross-validation-voting, CVV, voting, boosting, ResNeXt, EfficientNet, Wide ResNet,

CNN, grocery image classification.

I. INTRODUCTION
In recent years, there has been a significant development in
the field of deep learning. Advances in hardware have made
it possible to train complex models, such as neural networks
with hundreds of hidden layers. These models are capable
of learning to solve numerous classification problems but
may have overfitting problems when the training data set is
not sufficiently well structured and sized. The models are so
sophisticated that they can achieve very high accuracy against
training data but may not respond well to new test data.

In many classical methods, such as Support Vector
Machines (SVMs) [1], models are trained against a dataset
although no validation data are used to perform an early stop-
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ping in a simple way. These methods are usually evaluated
against a test set or by cross-validation. A grid search is
usually used to find the optimal model parameters, selecting
the ones that give the best results in the cross-validation.
Neural networks require the division of data into three sets.
A training set allows the model weights to be configured
over different epochs. A validation set allows the model to
be evaluated every few epochs, detecting the best performer
on the validation data and stopping the training. In this way,
although the model is trained with training data, we can keep
the one that performs best with data not used directly in
the adjustment of weights. This allows the model to gen-
eralize better to new cases. Finally, the model is evaluated
with a test set. This step is necessary because when we stop
the training depending on the validation evaluation, we can
make the model tend to behave favorably to validation. For
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an overall evaluation of the model, some authors often use
cross-validation to test how it behaves on different choices of
dataset elements.

The early stopping approach followed to train neural net-
works makes the model favorable to the validation data,
something known as validation overfitting. Although the
evaluation of the model with respect to the test set is realistic,
being totally independent unknown data, it may not be the
best generalizing model. In this article, we propose to use a
technique called Cross-Validation-Voting (CVV) that allows
better generalization to unknown cases. To do so, we use the
models trained by CVV in an ensemble voting technique.
This technique allows each of the models participating in the
voting to be trained with a different training and validation
set. It allows that, although each selected model is favorable
to a different validation set, as these sets are different, the
result is a model that generalizes better to test.

To test the CVV method, we have used a well-known
dataset of supermarket products. In the Grocery Store
Dataset [2], the authors established a prior separation of train-
ing and test data, which allows realistic comparisons between
different authors. Our technique has shown that, with a single
classifier, it is possible to outperform the best results obtained
to date. When we ensemble different models using CVYV,
the results improve even more. In addition to the tests using
only neural networks, we also present results using other
techniques, such as boosting with trees or SVM classifiers.
Another important aspect to note about our technique is that
individual classifiers in the CVV model can be trained for
fewer epochs than a single classifier, so the training time is
not substantially altered.

Although cross-validation and ensemble model techniques
are well known and have been widely used, to our knowledge,
no other paper has combined them to improve model gener-
alization. More specifically, no similar work has been carried
out in the agrifood sector [9]. There are authors who have
used both techniques, such asin [3] or [4]. However, in both
cases, they have created an ensemble model that has been
evaluated using cross-validation. In these works, classifiers
of different nature have been used. The main difference with
our approach is that we integrate the two techniques to train
the model, and the evaluation of the model is carried out with
a fully independent test set. In addition, our method works
with a single type of classifier. These previously mentioned
methods together with other related works have been evalu-
ated and compared with our method, showing how it achieves
a remarkable improvement in the results.

The present paper is structured as follows: Section II
explores the state-of-art of the technologies considered in this
paper. Section III describes the procedure that has been car-
ried out. In Section IV, the different experiments and results
obtained with the proposed method are reported. An overall
discussion on the obtained results is set out. Finally, Section V
notes the advantages and limitations of the presented system
and suggests future developments.
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Il. OVERVIEW OF RELATED WORK

One of the common problems in the neural network training
is the lack of generalization capability [5]. This may be due to
overfitting with respect to the training data but also to over-
fitting with respect to the validation data. Neural networks
are usually trained in epochs with respect to a set of training
data, periodically evaluating the behavior of the network on a
validation set and detecting a worsening of certain metrics on
the validation. This mechanism, called early-stopping, makes
it possible to choose the model that best fits the validation
data. The model is then evaluated against a test set. How-
ever, as the model chosen is the one that performed best
with the validation data, these data indirectly influence the
model, so that we may be faced with an overfitting respect to
validation. Although the model may obtain good results with
test, it is probably not optimal due to such a tendency to a
specific validation.

The cross-validation mechanism [6] adds an additional step
to the training mechanism. Traditionally used with SVM-type
classifiers [1], it divides the training set into k validation slots
and trains £ models using the training data that do not belong
to their respective slots. Then, the models are evaluated with
respect to their particular validation slot and the average
accuracy of the k models is calculated. In a grid search of
the model hyperparameters, e.g. C, gamma or the kernel in
SVM, a cross-validation is performed for each combination
of the parameters in the grid. Finally, the parameters that best
respond to the cross-validation are selected and a new model
is trained with all data from the training set.

In the case of neural networks, cross-validation is mainly
used as a method of model evaluation. It has been used for
the evaluation of very different problems, such as medical
applications [7] or the classification of grocery products [8].
It is important to mention that most of the methods used in the
grocery product classification problem only use one training
and validation set but not three sets (training, validation and
test) [9]. The cross-validation evaluation allows selecting
certain hyperparameters to improve the model. Most of the
literature applying cross-validation is limited to using this
method to provide an evaluation of the proposed architec-
tures. However, in a real scenario, the selected model must be
usable. When the hyperparameters have been chosen, there
are different possibilities to use the model: we can select
one of the k models, usually the one that offers the best
results; we can also re-train the model with certain validation
data randomly selected from the original data; or we can
directly train the model with all data and stop at a certain
number of epochs estimated during the training of the dif-
ferent k models. This last case is valid considering that an
early-stopping mechanism has not been used. Early stopping
is not commonly used for cross validation except for the
training of the final model. In our article, the cross-validation
mechanism allows the model to be trained using all data
from the training set but maintaining the generalization by
using different validations to choose the optimal parameters.
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This avoids choosing parameters that overfit the model with
respect to a particular validation and respond to different
types of data.

On the other hand, the techniques known as ensemble
learning [10]-[12] allow training different classifiers with the
same dataset and combine them. Thus, for example, we could
combine SVM, decision trees or neural networks. There are
four types of ensemble methods: voting, bagging, boosting
and stacking. In most situations, these techniques have been
shown to improve the performance of individual classifiers.

Voting [13] can be carried out in two ways in classification
problems. In hard voting, each model produces a vote for a
class. As a final prediction, the class voted by the majority
of the models is chosen. On the other hand, in soft voting,
probabilities are used. If a model is not totally sure of a class
but that class is a winner, for example with a probability of
0.6, instead of a vote for that class, its probability is taken
into account. This allows the model to value more highly
those outcomes of which it is truly certain. This is recom-
mended for an ensemble of well-calibrated classifiers. The
voting technique has been widely used in conjunction with
Convolutional Neural Networks (CNN) for a variety of prob-
lems: signal modulation [14], coronavirus diagnosis [15],
human action classification [16], multimodal emotion recog-
nition [17] and even detection of the camera used in forensic
imaging [18]. Regarding groceries, a systematic investigation
on end-to-end deep recognition of grocery products using
voting was presented in [19]. The authors presented the inte-
gration of different CNN classifiers using voting, showing the
effectiveness of the method.

In bagging [20], several models, similar or different, are
trained with a subset of the original data usually chosen ran-
domly. This data may be repeated among the different trained
models. Once all the models have been trained, they are
all combined using soft or hard voting techniques. Random
forest is a classifier based on this method.

Boosting techniques [21] aim at repeatedly training a
model by correcting the errors of the previously trained mod-
els. To do this, a model is trained with some samples. The
model is then re-trained with the same samples but assigned
a weight depending on whether it was correct in the previous
step or not. At the end of training, the models are combined
by weighting them in a certain way. One of the most widely
used classical methods has been AdaBoost [22], method also
used in grocery product recognition in conjunction with CNN
networks [23]. However, over the last few years, new boosting
techniques have been developed and applied in this line, such
as XGBoost [24], CatBoost [25] or LightGBM [26].

Finally, the stacking problem [27] consists of stacking
the output of one or more models on others, which in turn
can be stacked on other models. An example of this tech-
nique was used in [28] for the grocery classification prob-
lem. In [29], the authors conducted a multistage training
procedure, in which they first trained with a large class-level
dataset with a single view image per category, followed by an
auxiliary dataset of multiple views, which allowed the model

VOLUME 10, 2022

to be robust to viewpoint changes. Finally, they trained with
the objects they wanted to recognize from a single image.

Grocery product recognition offers many applications,
such as the control of eating habits [30]. Over the past
few years, several datasets have been created for grocery
store products, such as the Grocery Store Dataset [2], the
MVTec D2S dataset [31], the Retail Product Checkout dataset
(RPC) [32] or the Freiburg groceries dataset [33]. Among
them, the MVTec D2S, RPC and Freiburg datasets focus on
the problem of object detection rather than classification. The
Grocery Store Dataset [2] contains image data of grocery
items categorized into fine and coarse classes. It consists of
5,125 images of 81 different types of fruits, vegetables, and
carton items (e.g., juice, milk or yogurt). All images were
taken with a smartphone in different grocery stores. There
are 81 fine classes, grouped into 43 coarse categories. As an
example, fine classes Royal Gala and Granny Smith belong
to the same coarse class Apple. The authors separated the test
set so that it is possible to correctly compare different models
and architectures. A classification baseline was also provided,
where the authors connected the CNN-feature vector before
the classification layer to an SVM classifier. Testing differ-
ent CNNs: AlexNet [34], VGG16 [35] or DenseNet [36],
the authors obtained 72.5% test accuracy, directly using a
model trained with ImageNet [37], and 85% test accuracy
performing fine-tuning. In these winning cases, the authors
used a DenseNet-169. They also evaluated a DenseNet-169
without SVM, obtaining 84% test accuracy. In addition to
the data, this dataset provides iconic images which represent
the product taken in controlled lighting conditions and with-
out the supermarket background. The authors of [19] have
obtained the best classification results for this dataset to date,
using voting techniques on different CNNs. In the following,
we will show how the CVV technique can improve their
results with a single classifier.

IIl. ANALYSIS OF THE SYSTEM
In our training method, we wanted to improve the current
training results of a known dataset of grocery products. Tra-
ditional bagging methods select random groups of data to
train different models. Each selected set of items includes
different samples. Bagging methods usually do not take into
account validation sets, something that has gained special
interest in neural networks, where early-stopping mecha-
nisms allow stopping training before overfitting occurs. In the
CVV method, the training dataset is distributed in different
training and validation slots so that we use all the data for
training the ensemble model. Each individual model uses a
part of the general training dataset as training and another part
as validation. In this way, we do not lose samples during the
training process. Although the method is valid for different
types of classifiers, it has been evaluated with different cur-
rent neural networks, SVM and boosting methods.

Figure 1 shows the approach taken to solve this problem.
In the CVV approach, the data are previously randomized and
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FIGURE 1. Scheme of CVV with ResNeXt-101.

k different validation slots are selected. The rest of the data
from each slot are used for training.

Let t be the set that includes all the samples of the complete
training dataset. Be 7; and V; the training and validation
sets corresponding to the slot i. These sets must verify the
equations 1 to 6.

k
T = U T 1)
i=1
k
N7 =2 @
i=1
k
T = U 4 3)
i=1
k
(Vi=2 )
i=1
[t =T;UV]Vi € [1,k] (5)
[T;NV; = a]Vi € [1,k] (6)

Therefore, the elements of a training slot i are those used
by all the other slots in validation, as shown in 7.

k
Ti = Vi | Vi€ [1.K] )
Jj=1
In the same way, the elements of a validation slot i are the
intersection of all other training sets, as shown in 8.

k
Vi=(")Tjjzi | Viell. k] (8)
j=1

Then, kK models of the same nature are trained with each of
the training and validation slots. Finally, prediction is carried
out using voting techniques on the selected models. Our
idea was to distribute the data into different validation slots,
as cross-validation does. This allowed us to train the model
with different training sets but, more importantly, to allow
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the model to be able to generalize to different situations.
Once the models were trained with each set of validation
and training slots, all methods were combined using classical
voting techniques.

Let k be the number of classifiers, each one associated
m its respective validation slot. For an input sample, x,
pi(x) is the vector of output probabilities given by classifier i.
This vector is composed of the probabilities, p;j(x), which
represent that a sample x belongs to class j according to
classifier i. ¢ represents the vector of labels, one for each
possible class: {cy, c2, ..., cy}. In (9), soft voting is obtained
by accumulating the output probabilities of each class j. w;
is a weight associated with each classifier 7, in our case %
The argmax function returns the position of the class with
the highest cumulative probability.

S(x) = ©))

C k
argimax y_;_, wi-pij(x)

Hard voting requires prior binarization of the probability,
as shown in (10). For this purpose, we set only the class with
the highest probability to 1 and the rest to 0.

—
1 if pyi(x) = max(pi(x))

10
0 otherwise (10)

bij(x) = {
In (11), the output is obtained by accumulating the binary
values of each class j. As in soft voting, w; is % in our case.

Hx)=c (11

argjmax Zle wi-bij(x)

The CVV approach can also be used with classifiers of
different nature. Figure 2 shows how three different classifiers
can be integrated: ResNeXt-101, EfficientNet B7 and Wide
ResNet-101. In this case, the data partitioning into k slots is
carried out in the same way as in the case of a single classifier.
Each classifier of a different nature is trained with the similar
slots used with the others, taking advantage of the goodness
that each model offers against the same data partitioning.
Finally, all classifiers are combined using voting techniques.
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FIGURE 2. Scheme of CVV with ResNeXt-101, Efficient-B7 and
WideResNet-101.
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FIGURE 3. Scheme of CVV combining CNN and SVM or boosting type classifiers.

In terms of modern neural network-based classification
techniques, deep learning has brought considerable progress
to image classification problems using computer vision. Deep
neural networks use many successive convolutional layers
that attempt to capture the salient elements of images, from
the most general to the most specific. Until a few years
ago, most CNN networks used for food classification, such
as AlexNet [34] or VGG [35], had problems with gradient
fading. The accuracy started to saturate at a certain point
and eventually decreased. In addition, the model did not
converge because the gradients disappeared. These problems
were partially solved by using residual blocks, which connect
the input of a block to the output of that block through
aggregation. Networks such as Inception [38] or ResNet [39]
began to be used, models that are still widely used today.
Another problem with deep convolutional networks was the
rapidly increasing number of parameters as the number of
layers increased. The ResNet architecture included residual
bottleneck blocks. This model was a variant of the residual
block that used 1 x 1 convolutions to create a bottleneck.
These bottleneck blocks reduce the number of parameters and
matrix multiplications without noticeably changing the result.
The idea was to make the residual blocks as thin as possible
to increase depth and have fewer parameters.

Among the networks used in our experiments we can find
ResNeXt-101 [40], EfficientNet-B7 [41] or Wide Residual
Networks (WRNs) [42]. The ResNeXt-101 [40] model is
based on a ResNet model, but replaces the 3 x 3 convolutions
within the ResNet model with clustered 3 x 3 convolutions.
The ResNeXt bottleneck block divides a single convolution
into multiple smaller parallel convolutions. A notable differ-
ence from ResNet is that ResNeXt uses aggregation instead

VOLUME 10, 2022

of concatenation in the original Inception-ResNet block. This
state-of-the-art network, as well as the two presented below,
has been considered in our experiments as it generally gives
better results than previous CNNs.

EfficientNet-BO [41] is a novel network that seeks a
balance between the number of parameters and accuracy.
For this purpose, they defined this model by leveraging
a multi-objective neural architecture search that optimized
both accuracy and FLOPS, similarly to MNAS-Net [43].
EfficientNet-B7 [41], scaled from EfficientNet-B0, is based
on a new scaling method that uniformly scales all dimensions
of depth/width/resolution using a simple yet highly effective
compound coefficient.

Wide Residual Networks (WRNSs) [42] consider the prob-
lem that each fraction of a percent of improved accuracy costs
nearly doubling the number of layers. In addition, the training
of very deep residual networks is very slow because they have
a problem of diminishing feature reuse. To solve this prob-
lem, the authors proposed a novel architecture where they
decreased depth and increased width of residual networks.

Another approach we have analyzed consists of using the
CVYV model together with the features obtained by means of
a CNN and different types of classifiers, such as SVM or
boosting-based classifiers. For this method, we start from the
same previously split dataset and train each of the CNN esti-
mators, such as ResNeXt-101. Then, the features of the model
are extracted for each estimator and for each dataset, and
another SVM or boosting-type classifier is trained. Figure 3
shows the process. The blue and gray arrows show training
and inference, respectively. During inference, the test data
is passed through the CNN to obtain its features and subse-
quently passed through the SVM or boosting model to obtain

20917



IEEE Access

J. D. Domingo et al.: Cross Validation Voting for Improving CNN Classification in Grocery Products

TABLE 1. Improvement of ResNeXt-101 with CVV (% except for loss).

Metric

Training | Training | Validation | Validation Test Bal;lsltc e Precision | Recall | F1-Score
accuracy loss accuracy loss accuracy
Model accuracy
Model with
a single ResNeXt-101 0.9929 0.0560 0.9848 0.0657 0.9040 09112 0.9210 0.9110 0.9160
Hard CVV with
ensemble of 5 ResNeXt-101 0.9352 0.9446 0.9490 0.9450 0.9470
classifiers (ours)
Soft CVV with
ensemble of 5 ResNeXt-101 0.9368 0.9472 0.9510 0.9470 0.9490
classifiers (ours)
TABLE 2. Improvement of EfficientNet-B7 with CVV (% except for loss).
Metric .. .. S Lo Balanced
Trainin; Trainin Validation | Validation Test 5.
accuracff loss ¢ accuracy loss accuracy (st EEsion | Rl | IR
Model accuracy
Model with
a single EfficientNet-B7 0.9962 0.0377 0.9981 0.0233 0.9070 0.9243 0.9210 0.9240 0.9230
Hard CVV with
ensemble of 5 EfficientNet B7 0.9252 0.9383 0.9360 0.9380 0.9370
classifiers (ours)
Soft CVV with
ensemble of 5 EfficientNet B7 0.9320 0.9447 0.9430 0.9450 0.9440
classifiers (ours)

the prediction of the k estimator. Finally, voting is applied as
in the previous cases to take advantage of all classifiers. This
technique seeks to see if methods such as SVM or boosting
allow to better refining the classification results.

Deep neural networks often have generalization problems
if they have not been properly trained. Although ResNeXt-
101 is one of the models with the best generalization capacity,
we wanted to use a technique that could improve the classi-
fication results on a known dataset of grocery products [2].
In addition, we wanted a technique that used a single type of
classifier. The authors of [19] had managed to significantly
outperform the baseline results established by [2], using dif-
ferent classifiers independently trained on the same training
data. We set out to find some technique that would allow us
to improve their results without using different classifiers.
Based on ResNeXt-101, we analyzed cascade classification
in a previous paper [28]. That paper showed that the stack-
ing technique worked well to improve the classifier results.
However, we were not able to surpass the results of [19] with
that technique. The novel CVV technique generalizes better,
achieving an improvement in the results obtained by all the
previous methods. It requires a single type of classifier and
fewer epochs than other methods.

IV. EXPERIMENTS AND RESULTS DISCUSSION

In a first experiment, we have evaluated how the CVV
training technique improves three different current models:
ResNeXt-101 [40], EfficientNet B7 [41] and Wide ResNet-
101 [42]. In all the defined models, apart from the con-
volution and pooling layers, a 0.2 dropout layer has been
added between the features and the output classes. These
models work with a single full connected layer connected
between the feature vector, with the dropout, and the output
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classification vector. The network has been adapted to work
with 600 x 600 input images. After several tests, we found
that this size offered slightly better results than with other
sizes, both larger and smaller. The interior architecture of
the models has not been modified from the original, with
the exception of the last connection layer. The cross entropy
error function and Adam optimizer, with an initial learning
rate of 5 x 107>, have been used during training. As we have
used transfer learning of the models previously trained with
ImageNet [37], we have used image normalization using the
mean and standard deviation calculated per channel on it.
This normalization method is usually applied with transfer
learning and images with a histogram distribution similar
to ImageNet. Beyond the normalization and use of transfer
learning on all trained models, we did not use any additional
image preprocessing technique.

Tables 1, 2 and 3 show the results of how the mod-
els improve by applying CVV training with 5 classi-
fiers ResNeXt-101, EfficientNet B7 and Wide ResNet-101,
respectively. Some values such as loss are not shown in this
table as these values cannot be calculated in the ensemble
model.

The results clearly show that the ensemble model using soft
voting obtains the best results. In soft voting, the probabilities
of each class are accumulated among the different models and
the one with the highest probability is the winner. The number
of estimators also influences the result. Table 4 shows the
result of soft voting for different number of estimators applied
on ResNeXt-101. Above 6 estimators, the results of the joint
model start to decrease.

Table 5 shows the comparison of the models trained with
our technique with other current models working on the same
dataset. The authors of the Grocery Store Dataset [2] trained a
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TABLE 3. Improvement of Wide ResNet-101 with CVV (% except for loss).

Metric

ensemble of 5 Wide ResNet-101
classifiers (ours)

qq - s I Balanced
Training | Training | Validation | Validation Test test Precision | Recall | F1-Score
accuracy loss accuracy loss accuracy
Model accuracy
Model with
a single Wide ResNet-101 0.9962 0.0452 0.9924 0.0401 0.9000 0.9205 0.9210 0.9200 0.9210
Hard CVV with

0.9243 0.9358 0.9400 0.9360 0.9380

Soft CVV with
ensemble of 5 Wide ResNet-101
classifiers (ours)

0.9296 0.9414 0.9450 0.9410 0.9430

TABLE 4. Ensemble of ResNeXt-101 CVV with different number of classifiers.

Metric

Test Balanced
test Precision | Recall | F1-Score
accuracy
Model accuracy
Model with
a single ResNeX-101 0.9040 0.9112 0.9210 0.9110 0.9160
Soft CVV with
ensemble of 2 ResNeXt-101 0.9220 0.9297 0.9360 0.9300 0.9330
classifiers
Soft CVV with
ensemble of 3 ResNeXt-101 0.9300 0.9379 0.9430 0.9380 0.9400
classifiers
Soft CVV with
ensemble of 4 ResNeXt-101 0.9330 0.9416 0.9448 0.9420 0.9450
classifiers
Soft CVV with
ensemble of 5 ResNeXt-101 0.9368 0.9472 0.9510 0.9470 0.9490
classifiers
Soft CVV with
ensemble of 6 ResNeXt-101 0.9333 0.9433 0.9490 0.9430 0.9460
classifiers

DenseNet-169 that combined the feature vector with an SVM
classifier. They achieved 85% test accuracy with a model
they fine-tuned. Similarly, they evaluated a DenseNet-169
classifier network without SVM. In that case, they achieved
84% accuracy.

Regarding the ensemble models, in [3], the authors
presented an application of transfer and ensemble learning
techniques (ETL) for cervical histopathology image classi-
fication. They used ResNet-50, Inception v3 [44], VGGI16
and XCeption [45]. We have evaluated this technique and
have seen that, although it improves the base classification
results (87.8% accuracy), it obtains worse results than other
existing methods and the one presented in our article. In [4],
the authors presented a fuzzy rank-based ensemble of CNN
models for classification of cervical cytology. They used
DenseNet-169, Inception v3 and XCeption. This method
achieves an accuracy of 88.45%, although also below than
ours and other existing methods.

In [28], a ResNeXt-101 [40], a ResNet-152 [39] and a
stacking model of two ResNeXt-101 were evaluated. For the
ResNeXt-101, the test accuracy was 90.80%, with a precision
of 92.50%, recall of 92.10%, balanced accuracy of 92.09%,
and F1-Score of 92.30%. The same experiment was carried
out with a ResNet-152. The test accuracy was 89.90%, with a
precision of 91.60%, recall of 91.10%, balanced accuracy of
91.09%, and F1-Score of 91.30%. During the experiments,
oranges and satsumas got very confused. To overcome that
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problem, a cascade classifier was proposed. The models were
trained with early-stopping and 140 epochs. The validation
data were split using 30% of the data, using a balanced
split. In the stacking model, the result of the first classifier
had 81 classes while the second classifier only 2 outputs
(oranges and satsumas). That stacking model improved the
test accuracy up to 92.0%.

It deserves special attention that in the experiments we
have developed with CVV, we are training the models only
10 epochs and also using early-stopping. This is important
since a training of 5 estimators takes even less time than a
single training of a model for 140 epochs, provided that the
early-stopping stops after 50 epochs.

In [19], the authors used a hard voting ensemble approach.
They evaluated different cases, with the “C” and “D”
ensemble models producing the best results. The ensem-
ble “C” consisted of the models: ResNet-50, ResNet-101,
ResNet-152, EfficientNet-B1, DenseNet-121, DenseNet-169
and DenseNet-201. The ensemble “D’* consisted of the mod-
els: ResNet-101, ResNet-152, DenseNet-121, DenseNet-169
and DenseNet-201. These authors achieved the best classifi-
cation results for this dataset to date.

The results show how of a single type of classifier trained
with CVV, ResNeXt-101, in its soft voting mode, is able to
outperform the results obtained by the best ensemble “C”
of [19] (93.68% vs 93.48% test accuracy and 94.90% vs
94.46% F1-score).
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TABLE 5. Comparison of different classification models (% except for loss).

Metric
Training | Training
accuracy loss

Model

Validation
accuracy

Balanced
test Precision
accuracy

Validation Test

Recall
loss accuracy

F1-Score

Model with
a single ResNeXt-101
(10 epochs)

0.9929 0.0560 0.9848

0.0657 0.9040 0.9112 0.9210 0.9110 0.9160

Model with
ResNeXt-101 [28]
(140 epochs)

0.9978 0.015 0.9976

0.014 0.9080 0.9209 0.9250 0.9210 0.9230

Model with
ResNet-152 [28] 1.00
(140 epochs)

0.006 0.9963

0.017 0.8990 0.9109 0.9160 0.9110 0.9130

Cascade Model with

ResNeXt-101 [28] 1200 0:005

0.9988

0.009 0.9200 0.9306 0.9350 0.9310 0.9330

DenseNet-169 with
SVM [2] (baseline)

0.8500

ETL model with ResNet-50,
Inception v3, VGG16 and
XCeption [3]

0.8780 0.8864 0.9000 0.8860 0.8930

Fuzzy rank-based ensemble
of CNN models: DenseNet-169,
Inception v3 and XCeption [4]

0.8845 0.8960 0.9100 0.8960 0.9030

Ensemble "C" of different
classifiers [19]

0.9348 0.9498 0.9452 0.9446

Ensemble "D" of different
classifiers [19]

0.9314 0.9488 0.9442 0.9441

Soft CVV with
ensemble of 5 ResNeXt-101
classifiers (ours)

0.9368 0.9472 0.9510 0.9470 0.9490

Soft CVV with
ensemble of 5 EfficientNet B7
classifiers (ours)

0.9320 0.9447 0.9430 0.9450 0.9440

Soft CVV with
ensemble of 5 Wide ResNet-101
classifiers (ours)

0.9296 0.9414 0.9450 0.9410 0.9430

Hard CVV with
ensemble of 5 ResNeXt-101
and 5 EfficientNet B7 (ours)

0.9380 0.9478 0.9520 0.9480 0.9500

Soft CVV with
ensemble of 5 ResNeXt-101
and 5 EfficientNet B7 (ours)

0.9408 0.9520 0.9550 0.9520 0.9540

Hard CVV with
ensemble of 5 ResNeXt-101,
5 EfficientNet B7
and 5 Wide ResNet-101 (ours)

0.9440 0.9542 0.9570 0.9540 0.9560

Soft CVV with
ensemble of 5 ResNeXt-101,
5 EfficientNet B7
and 5 Wide ResNet-101 (ours)

0.9441 0.9555 0.9580 0.9560 0.9570

Unlike other models, in our case we have trained each indi-
vidual classifier for 10 epochs, which significantly reduces
the training time. At the end of the table, more complex
models that make a CVV of different classifiers are also
shown. So for example, in the model using 5 ResNeXt-
101, 5 EfficientNet B7 and 5 Wide ResNet-101, we train
each of the individual classifiers using the CVV technique
(spreading over 5 training/validation sets), and all the models
are integrated using soft voting. The results clearly show
an improvement over all other methods evaluated with this
dataset, obtaining 94.41% test accuracy, 95.55% balanced test
accuracy and 95.70% F1-score.

The training sessions have been carried out on an
i9-10900K server with 128GB RAM and 2 GPU RTX-3090
with 24GB GDDR6X. As a guideline, this server
required 60 minutes to train each of the ResNeXt-101
classifiers.

Another set of experiments have been performed to see
how the model behaved using a different classification
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algorithm. Instead of connecting the output features of the
convolutional part of the neural network to a classification
layer, the features have been extracted to evaluate other
models. Using the features provided by ResNeXt-101, the
CVYV technique has been applied for 5 estimators. Then,
the ResNeXt-101 models have been trained and the image
features have been extracted for each estimator. Next, several
SVM classifiers have been trained, one per estimator. In the
case of SVM, hard voting has been performed. Each of the
SVM estimators has been trained by means of a grid-search,
and each estimator could have different kernel, or C and
gamma values (e.g., for the first estimator: [C: 0.1, gamma: 1,
kernel: linear], for the second: [C: 1, gamma: 0.001, ker-
nel: rbf]). The basis of this experiment has been to analyze
whether this algorithm could improve the results obtained by
classifying directly with the neural network or not, as they did
in [2]. However, this experiment has shown that, in our case,
the classification has worked better using the whole neural
model with 5 estimators.
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TABLE 6. CVV with SVM and Boosting over ResNeXt-101 features.

Metric

Model

Test
accuracy

Balanced

accuracy

test Precision | Recall | F1-Score

Model with
a single
ResNeXt-101

0.9040

0.9112 0.9210 0.9110 0.9160

Hard CVV with
ensemble of
5 ResNeXt-101 classifiers

0.9352

0.9446 0.9490 0.9450 0.9470

Model with
a single SVM
(ResNeXt-101 features)

0.8930

0.8984 0.9130 0.8980 0.9060

Hard CVV with
ensemble of 5 SVM
(ResNeXt-101 features)

0.9220

0.9315 0.9390 0.9320 0.9350

Model with a
single AdaBoost (Decision Trees)
(ResNeXt-101 features)

0.8730

0.8787 0.8990 0.8790 0.8890

Hard CVV with
ensemble of 5 AdaBoost (Decision Trees)
(ResNeXt-101 features)

0.9090

0.9173 0.9300 0.9170 0.9240

Model with a
single XGBoost
(ResNeXt-101 features)

0.8980

0.9110 0.914 0.9110 0.9120

Hard CVV with
ensemble of 5 XGBoost
(ResNeXt-101 features)

0.9300

0.9406 0.9430 0.9410 0.9420

Model with
a single LightGBM
(ResNeXt-101 features)

0.8890

0.8998 0.9070 0.9000 0.9040

Hard CVV with
ensemble of 5 LightGBM
(ResNeXt-101 features)

0.9230

0.9345 0.9400 0.9350 0.9370

Model with a
single CatBoost
(ResNeXt-101 features)

0.9030

0.9107 0.9220 0.9110 0.9160

Hard CVV with
ensemble of 5 CatBoost
(ResNeXt-101 features)

0.9300

0.9382 0.9500 0.9380 0.9440

Following the same procedure, different boosting algo-
rithms have been evaluated on the basis of the features.
The training of these algorithms is very computationally
expensive if the whole convolutional part is trained in each
estimator, so the approach using only the features is more
convenient. Among the boosting algorithms, both individu-

ally and using CVV, we have evaluated:

o AdaBoost [22], the classic boosting method that consists

Precision

{-\\6erage precision score, micro-averaged over all classes: AP=0.98

0.8
0.6 -

0.4

of creating several simple predictors in sequence, so that
the second one adjusts the errors of the first classifier, the
third one the errors of the second one and so on. Finally,
all classifiers are merged into a strong classifier. The
classifier used has been a decision tree and the search
for parameters has been carried out using a grid search,
obtaining the best results with 1, 000 estimators, a depth
per tree of 40 and a learning rate of 1.5.

XGBoost [24] is an extreme gradient boosting method
inspired in [46], a method that built an additive model
in a forward stage-wise fashion, optimizing arbitrary
differentiable loss functions. XGBoost adds different
features such as clever penalization of trees, Newton
boosting, proportional shrinking of leaf nodes, extra ran-
domization parameter, distributed computing and auto-
matic feature selection. After a grid search, the best
results have been obtained using trees based on the
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FIGURE 4. PR curve for the Soft CVV with 5 estimators of each type, with
the average precision score, micro-averaged over all classes.

faster histogram optimized approximate greedy algo-
rithm, with a learning rate of 0.01, a number of estima-
tors equal to 4, 000 and a maximum number of discrete
bins to bucket continuous features equals 2. For this
method, early-stopping has been used during training.
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FIGURE 5. Multi-Class PR curve for the Soft CVV with 5 estimators of each type.

o LightGBM [26] is a method that implements the
growing of the tree using leaf-wise, a technique that
chooses the leaf it believes will yield the largest
decrease in loss. LightGBM implements a highly opti-
mized histogram-based decision tree learning algorithm,
improving efficiency and reducing memory consump-
tion. In addition, it uses Gradient-Based One-Side Sam-
pling (GOSS) and Exclusive Feature Bundling (EFB)
that allow the algorithm to keep the accuracy while
running faster. After a grid search, the best results have
been obtained using DART trees [47], 200 estimators,
a learning rate of 0.09 and a maximum number of dis-
crete bins equals 3.

o CatBoost [25], a gradient boosting method that handles
categorical features, uses ordered boosting to overcome
overfitting and oblivious or symmetric trees for faster
execution. After a grid search, the best results have been
obtained with 2,000 iterations, a maximum depth per
tree of 5 and a learning rate of 0.1. For this method,
early-stopping has also been used during training.
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These methods are some of the most up-to-date methods
using boosting techniques. Again, this experiment has shown
that, in our case, the classification has worked better using
the whole neural model with 5 estimators. Table 6 shows the
results of this experiment.

Both CatBoost and XGBoost have given the best results
combined with the CVV technique using the ResNeXt-101
features. SVM has obtained close but slightly inferior results.
However, none of these techniques has been able to over-
come the final connection layer of classification of the neural
network itself. This allows us to affirm that each individual
model is trained in an optimal way directly with the neural
network. Although other authors, such as in [2], had obtained
good results by connecting SVM to the features, it is clear
from our experimentation that it is not necessary to extract
the features and we simply have to let the model be trained
directly using the classification layer itself.

As seen previously, the best model has been obtained by
Soft CVV with 5 estimators of each type: ResNeXt-101,
EfficientNet B7 and Wide ResNet-101. A Precision-Recall
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TABLE 7. Confusion Matrix of the Soft CVV with 5 estimators of each type (ResNeXt-101, EfficientNet B7 and Wide ResNet-101).
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curve with the average precision score, micro-averaged over
all classes, is shown in Figure 4. In addition, a Multi-Class
Precision-Recall curve, with all classes, is shown in Figure 5.
The evaluation of the model shows a good performance,
leading to 98% AUC (Area Under the Curve). The confusion
matrix of this model is shown in Table 7. To show the results
clearly, instead of showing the 81 fine classes, we present
the 43 coarse categories into which the results have been
grouped.

Among the limitations of the presented method are the
need to train multiple models and the need for parallel infer-
ence in order to operate in real time. However, we have shown
how individual models can be trained in a smaller number of
epochs than in a normal training. Furthermore, at the real-
time execution level it would be sufficient to size the GPU
memory to be able to load all models simultaneously. Since
the size that the models have during inference is usually
quite smaller than during training (approximately 2.2GB for a
ResNeXt-101 during inference), it is possible to load several
models and infer in parallel without significantly reducing the
total runtime with respect to when we use a single classifier.
So this method, despite requiring the training of several mod-
els, can be used for real-time applications of various kinds,
such as industrial applications. Beyond its use in the problem
of grocery product classification, in industry and other sectors
high accuracy is sought, so this technique allows to overcome
the results that individual classifiers offer.

V. CONCLUSION
In recent years, there has been significant progress in
deep learning methods to solve classification problems of
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considerable complexity, such as the recognition of grocery
products by means of computer vision. The training of these
models is usually performed by dividing the data into train-
ing, validation and test. One of the problems with this tech-
nique is that the model is trained with the training data and
periodically evaluated with validation until the accuracy of
this starts to decrease. Using early-stopping, we can stop
training when this happens, ensuring that the model is optimal
on data not used directly in training. Subsequently, the model
is evaluated against the test data. The problem with this
approach is that by using validation to block training we are
making the model optimal against that set of validation, but it
may not be optimal against other different validation samples.
There are cross-validation techniques that allow the model
to be evaluated with different validation sets, but they do
not allow us to obtain a model that takes into account all of
these sets. All these problems lead to a lack of generalization
that we find in many models used in various fields, such as
industry.

Traditionally used in classical algorithms, bagging, stack-
ing, boosting or voting techniques, allow to integrate multiple
models to obtain a more powerful classifier. However, these
techniques are mainly designed to benefit from classifiers of
different nature to obtain an overall result that improves all of
them. Among all these techniques, bagging selects subsets of
elements to train the same or different classifiers. Originally,
when there were practically no validation sets in use, this
method made it possible to make a model that generalized
better in the face of unknown situations.

Our paper applies a method, named Cross Validation Vot-
ing (CVYV), to the grocery product classification problem.
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It allows benefiting from the advantages of cross validation
to be integrated into the training scheme itself. The data are
partitioned as in the k-fold validation technique, but each pair
of slots is used to train a classifier of the same type. In this
way, each classifier stops at the point where it performs best
against its corresponding validation. As all validations are
different, each model is optimal for its respective validation.
Subsequently, by grouping all the models using voting tech-
niques, we manage to improve the results obtained by the
model at the individual level in all the current neural net-
works evaluated. The resulting model significantly improves
the results and the generalization capacity of the individual
models.

Numerous experiments have been carried out and we have
shown how the best results obtained to date on a well-known
dataset of grocery products have been improved. In addition,
we have shown that, when classifiers of different nature are
integrated into the model, the results improve even more.

We are currently applying this method to the improvement
of classification systems used in other fields, such as industry,
activity recognition and robotics. In industry, for example,
the applications require very high precision. Beyond being
used for classification models using computer vision, this
technique can also be used for any other type of neural net-
work or algorithm that allows a stop to be made on the basis
of validation data. It is a method that offers very promising
results and makes it possible to advance in the classification
methods for products in the agrifood and supermarket sector.
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