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Abstract: Exercise-induced muscle damage results in decreased physical performance that is ac-
companied by an inflammatory response in muscle tissue. The inflammation process occurs with
the infiltration of phagocytes (neutrophils and macrophages) that play a key role in the repair and
regeneration of muscle tissue. In this context, high intensity or long-lasting exercise results in the
breakdown of cell structures. The removal of cellular debris is performed by infiltrated phagocytes,
but with the release of free radicals as collateral products. L-carnitine is a key metabolite in cellular
energy metabolism, but at the same time, it exerts antioxidant actions in the neuromuscular sys-
tem. L-carnitine eliminates reactive oxygen and nitrogen species that, in excess, alter DNA, lipids
and proteins, disturbing cell function. Supplementation using L-carnitine results in an increase in
serum L-carnitine levels that correlates positively with the decrease in cell alterations induced by
oxidative stress situations, such as hypoxia. The present narrative scoping review focuses on the
critical evaluation of the efficacy of L-carnitine supplementation on exercise-induced muscle damage,
particularly in postexercise inflammatory and oxidative damage. Although both concepts appear
associated, only in two studies were evaluated together. In addition, other studies explored the
effect of L-carnitine in perception of fatigue and delayed onset of muscle soreness. In view of the
studies analyzed and considering the role of L-carnitine in muscle bioenergetics and its antioxidant
potential, this supplement could help in postexercise recovery. However, further studies are needed
to conclusively clarify the mechanisms underlying these protective effects.

Keywords: L-carnitine; muscle damage; oxidative stress

1. Introduction

Supplementation using nutritional products is largely widespread in sports prac-
tice. Supplements and sport diets help to prevent nutritional deficiencies, to improve
performance and lead to better postexercise recovery [1].

The muscular damage produced by exercise includes structural and functional aspects,
which are reflected in a loss of strength, fatigue, myalgia and cramps. Currently, the idea
that nutritional supplements, such as L-carnitine, could have beneficial effects in the treat-
ment of muscle damage has been established using different experimental approaches [2].
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On the other hand, it is known that exercise produces oxidative stress. This process is
associated with the increase in the production of free radicals from mitochondrial activity
and the postexercise increase in muscle inflammation [3].

1.1. Muscle Damage and Exercise

It is accepted that exercise (endurance or resistance, isometric, eccentric or concentric)
is an effective mechanism to increase strength, muscle mass and function. The objective,
ultimately, is to improve the quality of life of practitioners (for health purposes) or to
improve performance (in sport competition). However, exercise-induced muscle damage
(EIMD) and soreness can limit performance [4,5].

During exercise, oxygen demand increases, especially in skeletal muscle, causing
a change in blood flow from various organs and systems. These physiological changes
produce an increase in oxygen consumption. This results in production of free radicals
during and immediately after exercise, leading to an oxidative stress situation. EIMD
decreases physical performance [6] and is accompanied by an inflammatory response
with infiltration of phagocytes (neutrophils and macrophages). These cells play a key
role in the repair and regeneration of tissues. The starting point is the breakdown of
damaged proteins and the removal of cellular debris. The release of reactive oxygen
species (ROS) occurs during the repair process [7]. Likewise, EIMD is associated with an
increase in muscle proteins in blood such as creatine kinase (CK), lactate dehydrogenase
(LDH) and myoglobin (Mb). Inflammatory markers such as C-reactive protein (CRP) and
inflammatory interleukins (IL), such as IL-1β, IL-6 and tumor necrosis factor-α (TNF-α),
increase as well [8–11]. In addition, EIMD promotes the migration of transcription factors
such as nuclear factor-kB (NF-kB) as a response to inflammatory messengers and ROS
production [12].

ROS include superoxide, hydroxyl, alkoxyl and peroxyl radicals, but also nonradicals,
such as hydrogen peroxide (H2O2). ROS are closely related to other families of free radicals,
such as reactive nitrogen species or RNS (nitric oxide or NO, nitrogen dioxide, peroxynitrite).
For this reason, reactive oxygen and nitrogen species (RONS) is a most appropriated
terminology. Oxidative stress was initially defined as “an alteration of the prooxidant-
antioxidant balance in favor of prooxidants” [13]. This definition is completed with the
results of such oxidant unbalance: “oxidative stress leads to an alteration of redox signaling
and control and/or to molecular damage” [14]. Inadequate regulation of oxidative stress is
correlated with certain physiological and pathological conditions [15,16].

Endogenous sources of RONS are from oxidase activities, such as nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase, myeloperoxidase (MPO), lipoxygenase,
xanthine oxidase (XO), among others. In addition, RONS are produced as collateral prod-
ucts of mitochondrial electron transport chain [17]. Excessive production of RONS can
cause damage to biological molecules such as proteins, carbohydrates, lipids, RNA, and
DNA, leading to oxidative tissue damage [18].

There are enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT)
and glutathione peroxidase (GSH-Px). Nonenzymatic antioxidants include vitamin E,
vitamin C, glutathione (GSH) and carotenoids, among others. Antioxidants act to reduce
the oxidation potential of RONS, removing or activating redox reactions to inactivate
them [19]. In addition, inflammatory processes are linked to oxidative stress. Therefore,
the modulation and prevention of these situations during muscle damage and stress could
be regulated by taking oral anti-inflammatory or antioxidant supplements [20].

Many nutritional strategies in sports focus on maximizing postexercise recovery and
preparing individuals for the next exercise session. Therefore, the potential of certain
nutrients and functional foods to decrease EIMD lies in RONS modulation. Actually, this is
a very active topic of research.
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1.2. L-Carnitine

In the human body, L-carnitine (3-hydroxy-4-N-trimethylammonium-butyrate) is pro-
duced from the amino acids lysine and methionine. Therefore, this compound comes from
endogenous synthesis as well as from dietary sources, including ergogenic supplements.
Regarding endogenous synthesis, a modified form of the amino acid lysine 6-N-trimethyl-
lysine (TML) is the starting substrate for carnitine biosynthesis. TML is the product of
lysosomal or proteasomal degradation of N-trimethylated lysine-containing proteins. In
mammals, certain proteins such as calmodulin, myosin, actin, cytochrome c and histones
contain N-trimethylated lysine residues. These proteins provide TML after proteolytic
degradation for carnitine biosynthesis. L-Carnitine is synthesized in the brain, liver and
kidney, with muscle being the main tissue reservoir [21–23].

L-Carnitine is an essential molecule in cellular energy metabolism due to the acylation
of its β-hydroxyl group. The complex carnitine-acyl-CoA is recognized by mitochon-
drial inner membrane-associated transporters, delivering long-chain fatty acids into the
mitochondrial matrix, where they undergo β-oxidation [24]. In mammals, carnitine is
considered a “conditionally essential” nutrient, because it can be synthesized by the body,
but the main source for the organism comes from diet. It has been estimated that 75% of
total body carnitine levels come from diet and only 25% from endogenous synthesis [25].
The main sources of dietary L-carnitine are animal-derived foods, such as red meat, fish and
dairy products, as well as nutritional supplements containing highly pure L-carnitine [26].
In addition, the amount of L-carnitine in tissues is conditioned by factors other than diet
availability and endogenous synthesis. One of them is renal excretion. In this line, choline
supplementation seems to decrease urinary L-carnitine excretion [27]. Moreover, sex dif-
ferences have been documented, indicating that women have lower circulating levels of
carnitine than men [28]. L-Carnitine deficiency is considered when plasma levels are below
20 µmol/L in all age groups. In plasma, 90% of L-carnitine is presented in free form [29]. In
normal healthy individuals, skeletal muscle carnitine stores account for 97% of all carnitine
in the body with a slow estimated turnover of 105 h [30].

L-carnitine is essential for intermediary metabolism in eukaryotic cells. As mentioned
before, the main function is to act as a carrier for the transport of activated long-chain
fatty acids from the cytosol to the mitochondrial matrix where β-oxidation takes place.
The process is carried out under the control of at least three different proteins: carnitine-
palmitoyl-transferase I, acylcarnitine translocase and carnitine-palmitoyl-transferase II. An
additional function of L-carnitine is the elimination of RONS [31,32]. As a result, from these
functions, L-carnitine modulates acyl-CoA/CoA ratio through the storage of energy in the
form of acetylcarnitine and peroxisomal elimination of poorly metabolizable/oxidized acyl
groups [33]. The antioxidant action of L-carnitine occurs mainly in the neuromuscular tissue.
For this reason, dietary L-carnitine has been used as an essential quaternary ammonium
nutrient, exerting favorable effects on energy metabolism and on processes of skeletal
muscle remodeling [2,34,35].

In addition, supplementation with L-carnitine produces an increase in serum L-carnitine
levels [36]. In this context, there is a significant positive correlation between the increase in
serum L-carnitine concentrations and the decrease in the biochemical alteration induced
by hypoxia [34,37]. This is explained because increased serum L-carnitine concentrations
increase L-carnitine transport across skeletal muscle membrane and the neuromuscular
junction. This increase seems to alleviate hypoxia and stimulate acetylcholine synthesis.
Consequently, data from recent studies have indicated that sports practitioners may benefit
from L-carnitine intake due to increased blood flow and oxygen delivery to muscle tissue,
thus reducing hypoxia-related disturbances [34,38]. In this sense, Karlic and Lohninger [26]
observed that treatment with L-carnitine modulates the adverse effects of high intensity
training by reducing hypoxic damage and accelerating recovery after the stress caused
by exercise.
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2. Objective

The present review focuses on the critical evaluation of the efficacy of L-carnitine sup-
plementation on EIMD, inflammatory and oxidative stress in physically active populations.

3. Materials and Methods

This review is focused on the analysis of carnitine supplementation to help in the
treatment of postexercise muscular damage. The PICOS question model was used to
develop the search and define the inclusion criteria [39].

Study Analysis and Search Strategy

To conduct the present review, a structured search of SCOPUS, Medline (PubMed) and
Web of Science (WOS) databases was performed. The search used related to “Carnitine”
AND “muscle damage” OR” muscular damage”, and “Carnitine” AND “exercise stress”
OR “Oxidative stress” OR “inflammation”. All search titles and abstracts were separated
to identify duplicates and possible missing studies. The inclusion criteria for this review
were studies with the aim of identifying a beneficial effect of L-carnitine as a supplement in
recovery muscular damage after exercise. We have analyzed studies that were randomized,
double-blind controlled, parallel design studies in animal samples or human beings, all in
English or Spanish. The “Full search strategy” is presented below.

Titles and abstracts were separated from the search to identify duplicates and missing
articles. The suitability of the articles was assessed according to the GRADE concept [40]
and the level of evidence [41]. All articles were selected if they had “Moderate” or “High”
scientific quality and a gradable grade of evidence from 2 to 2++. Inclusion criteria included
studies that aimed to identify a beneficial effect of any form of L-carnitine used alone or as
an adjuvant with other products in the recovery from EIMD.

The search was performed according to the Cochrane guidelines for systematic re-
views [42]. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed [43]. The evaluation was conducted as a scoping
review to examine the extent (size), range (variety), and nature (characteristics) of the evi-
dence of the possible effect of L-carnitine on recovery from EIMD. The scoping review also
serves to summarize findings from a body of knowledge that is heterogeneous in methods
or discipline or identify gaps in the literature to aid the planning and commissioning for
future research [44,45]. To analyze the risk of bias, we also used Cochrane guidelines [46].
In view of the domains provided by the tool, we scored those studies satisfying four or
more low-risk bias domains as low risk and the remainder as high risk. Two investigators
(FD and DC N-G) evaluated the risk of biases independently, with no discrepancies found
by a third researcher (AC).

4. Results

From the bibliographic search, 78 articles were related to the select descriptors, but
only 15 articles met all inclusion criteria (Figure 1). The data of the selected articles
are summarized in Table 1. All the evaluated studies contrasted the use of the studied
supplement (L-carnitine) vs. placebo, always through oral administration. Five studies
evaluated the acute effect on the same day of administration. For the rest, 10 studied the
effect of supplement after at least 2 weeks of treatment, the average time being 26 days. In
addition, from the 15 studies selected, the impact of L-carnitine supplementation on muscle
injury prevention or alteration of myofibrillar structure was observed in 9 studies [37,47–54].
On the other hand, the mitigation of oxidative stress was carried out in five studies [55–59].
Since the response to oxidative stress and muscle injury is a highly associated process, there
are only two studies where the improvement from oxidative damage and the decrease
in muscle disruption are evaluated in a complementary way. Both studies evaluated L-
carnitine administration in healthy individuals of both sexes after muscle-building and
power work [59,60]. Altogether, studies on subjects performing a sports activity on a
regular basis, competitive or not, are focused on exploring the effect of L-carnitine on
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the perception of fatigue or delayed onset muscle soreness (DOMS) [49,51,52], muscle
injury [37,47–52,54] and even intracellular oxygenation levels [37]. Risk of bias of selected
articles is shown in Figure 2.
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Table 1. Studies evaluating the effect of L-carnitine on muscle damage and oxidative stress related
to exercise.

Reference Molecule/s Daily Dosage Route Days Placebo/Control n Type of Subjects Age
(Years) Tests Impact on Resolution

Arenas J et al.,
(1994) [47] L-carnitine 2 g Orally 28 P and C 8P/8S/

22 C
High level male

athletes 28 ± 7 Histology (muscle
biopsies)

⊕ ↑ pyruvate dehydrogenase, ⊕ ↑
in the activities of complexes I, III
and IV of the respiratory chain.

Colombani P
et al., (1996) [48] L-carnitine 4 g (2 + 2) Orally 1 P 10 High level male

athletes 36 ± 3 Blood analysis after
marathon race

↔marathon running time,↔
plasma concentrations of
carbohydrate metabolites;↔ fat
metabolites,↔ hormones
(insulin, glucagon, cortisol),↔
enzyme activities (CK).

Giamberardino
MA et al.,
(1996)

[49] L-carnitine 3 g Orally 21 P 6 Healthy males 26 ± 4 Blood analysis after
eccentric effort, VAS

⊕ ↓ pain, ↓ tenderness and ↓ CK
release.

Kraemer WJ
et al., (2003) [50] L-carnitine +

L-tartrate 2 g Orally 21 P 10 Resistance-trained
males 26 ± 2

Blood analysis after
resistance effort,
MRI

⊕ ↓ exercise-induced muscle
tissue damage, ↑ IGFBP-3.

Naclerio F
et al., (2014) [51]

L-carnitine +
L-tartrate +
MI

3 g Orally 1 P 16 Amateur soccer
male players 24 ± 4

Blood analysis after
intermittent
repeated sprint test,
RPE

⊕ perception of fatigue, ↓
myoglobin,↔ intermittent
performance,↔ inflammatory or
immune function.
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Table 1. Cont.

Reference Molecule/s Daily Dosage Route Days Placebo/Control n Type of Subjects Age
(Years) Tests Impact on Resolution

Naclerio F
et al., (2015) [52]

L-carnitine +
L-tartrate +
MI

3 g Orally 1 P 10 Team sport male
players 25 ± 4

Blood analysis after
intermittent
repeated sprint test,
RPE

⊕ ↓myoglobin, ↓ CK,↔
perception of fatigue,↔ sprint
performance,↔ inflammatory or
immune function.

Spiering BA
et al., (2007) [37] L-carnitine +

L-tartrate 1 or 2 g Orally 21 P 8 Resistance-trained
male 22 ± 3 Blood analysis after

resistance effort.

⊕ ↓ hypoxanthine, xanthine
oxidase, myoglobin, and
perceived muscle soreness.

Spiering BA
et al., (2008) [53] L-carnitine +

L-tartrate 2 g Orally 23 P 9 Resistance-trained
male 25 ± 6 Blood analysis after

resistance effort.

⊕ ↓muscle oxygenation during
upper arm occlusion and
following each set of resistance
exercise.

Volek JS et al.,
(2002) [54] L-carnitine

tartrate 2 g Orally 21 P 10 Resistance-trained
male 24 ± 2

Blood analysis after
resistance effort,
MRI

⊕ ↓markers of purine catabolism
(hypoxanthine, xanthine oxidase,
and serum uric acid) and ↓
circulating muscle proteins
(myoglobin, fatty acid-binding
protein, and creatine kinase). ↓
muscle disruption from MRI
scans.

Atalay Guzel
N et al., (2014) [55] L-carnitine 3 or 4 g or P Orally 1 P 13 Healthy males 17–19 Maximal exercise

test ⊕ ↑ GSH and NO, ↓ TBARs

Bloomer RJ
et al., (2009) [56] Propionyl

L-carnitine 1 or 3 g or P Orally 56 P 32 Healthy males and
females

27 ± 2, P
26 ± 2, 1 g
27 ± 2, 3 g

Aerobic–anaerobic
exercise testing

Both aerobic and anaerobic power
testing increase oxidative stress to
a similar extent. ⊕ ↓MDA, but
little impact on exercise-induced
oxidative stress biomarkers.

Cao Y et al.,
(2011) [57] L-carnitine 2 g Orally 1 U 12 Healthy males and

females 28 ± 5 Blood analysis
⊕ ↑ SOD, ↑ GSH-Px, ↑ catalase
and ↑ TAC following the first 3,5
h post-administration.

Parandak K
et al., (2014) [58] L-carnitine 2 g Orally 14 P 21 Healthy males 22 ± 1 Blood analysis after

endurance exercise
⊕ ↑ TAC, ↓MDA-TBARS, CK,
and LDH 24 h after exercise.

Ho JY et al.,
(2010) [59] L-carnitine 2 g Orally 24 P 18 Healthy males and

females
45 ± 5, m
52 ± 5, f

Blood analysis after
resistance effort

⊕ ↓ biochemical markers of
purine metabolism, ↓MDA, ↓
muscle tissue disruption
(myoglobin, CK), ↓muscle
soreness.

Stefan M
et al., (2021) [60] L-carnitine

tartrate 2 g Orally 35 P 73 Healthy males and
females

39 ± 1, m
41 ± 2, f

Blood salivary
analysis, soreness
scale

⊕ ↑ SOD, ↓ perceived recovery
and soreness, ↓ CK.

⊕: effective; ↑: higher or improved; ↓: lower;↔: similar than the control group; C: control/inactive group; CK:
creatine kinase; GSH: glutathione; GSH-Px: glutathione peroxidase; IGFBP-3: insulin-like growth factor-binding
protein-3; LDH: lactate dehydrogenase; MDA: malondialdehyde; MI: multi-ingredient (106 g carbohydrates,
14.5 g whey protein, 5 g glutamine); MRI: magnetic resonance imaging; NO: nitric oxide; P: placebo group; RPE:
rate of perceived exertion; S: supplemented group; SOD: superoxide dismutase; TAC: total antioxidant capacity;
TBARs: thiobarbituric acid-reactive substances; U: unknown; VAS: visual analogue scale for pain.

Limitations of the studies are indicated in Table 2.

Table 2. Some limitations of studies referred in Table 1.

Reference Limitations

Arenas et al. [47]
Colombani et al. [48]
Giamberardino et al. [49]
Parandak et al. [58]

Small sample size conducted in endurance athletes,
limiting the extension to other populations.

Spiering et al. [37]
Kraemer et al. [50]
Spiering et al. [53]
Volek et al. [54]

Small sample size conducted in resistance male athletes,
limiting the extension to other populations.

Nacleiro et al. [51]
Nacleiro et al. [52]
Atalay Guzel et al. [55]

Small sample size conducted in intervallic athletes,
limiting the extension to other populations.

Cao et al. [57] Small sample size conducted in healthy individuals, no
representative of a broader population.

Ho et al. [59] Small sample size conducted in middle-aged
individuals, no representative of a broader population.
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Table 2. Cont.

Reference Limitations

Cao et al. [57]
Parandak et al. [58]
Ho et al. [59]

No control group.

Arenas et al. [47]
Colombani et al. [48]
Kraemer et al. [50]
Nacleiro et al. [51]
Bloomer et al. [56]

The study does not investigate the role of L-carnitine
supplementation on postexercise recovery.

Spiering et al. [37]
Arenas et al. [47]
Colombani et al. [48]
Kraemer et al. [50]
Nacleiro et al. [51]

The study does not investigate the role of L-carnitine
supplementation on postexercise oxidative stress.

Colombani et al. [48] The study was conducted in a field setting, limiting the
control of other variables.

Giamberardino et al. [49]
Stefan et al. [60]

Only data from CK release, but no data from other
markers of postexercise muscle damage or oxidative
stress were presented.

Atalay Guzel et al. [55]
Bloomer et al. [56] The study did not provide data on muscle damage.

Cao et al. [57] Short duration and single dose administration. This
limits the possibility to draw long-term conclusions.

Abbreviations used: CK—creatine kinase.

5. Discussion

Acetyl-CoA generation exceeds the capacity of the Krebs cycle when exercise intensity
overpasses anaerobic threshold, leading to increased acetyl-CoA, lactate and acetylcarnitine
content in skeletal muscle [61–63]. These metabolic changes can limit the work capacity
of skeletal muscle, since the accumulated acetyl-CoA inhibits the activity of pyruvate
dehydrogenase [64]. Under these conditions, the acetyl-CoA/CoA ratio shows a linear
correlation with the acetylcarnitine/carnitine ratio [65,66]. Therefore, if the skeletal muscle-
free carnitine pool can be increased, the CoA pool should also be increased, which could
lead to increased work capacity. Consistent with this concept, Brass et al. [67] described
increased force generation and decreased fatigability of skeletal muscle isolated from rat
soleus incubated in a buffer containing 10 mmol/L L-carnitine.

Nevertheless, the results of studies trying to assess long-term effects from administra-
tion of L-carnitine are somewhat contradictory [68]. In patients undergoing hemodialysis,
the administration of L-carnitine for several months shows improved physical performance
and trophic effect on skeletal muscle [69]. Similarly, in endurance athletes treated with 2–4 g
of L-Carnitine for 4 weeks, similar results were obtained. This observation was associated
with an increase in the activity of mitochondrial enzymes, compatible with mitochondrial
proliferation [47,70]. However, in a study carried out by Arenas et al. [71] in endurance
athletes and sprinters, supplemented with 2 g of oral L-carnitine/day for 4 months, no
changes in L-carnitine contents in skeletal muscle at rest were noticed. Nevertheless, a
decrease in L-carnitine levels associated with intense muscular exercise was not observed.
Therefore, it is important to consider the effects of carnitine supplementation on physical
performance, likely acting as a regulator of fuel supply in skeletal muscle, facilitating
long-chain fatty acid transport into mitochondria [24,72].

5.1. Oxidative Stress in Different Types of Exercise

Actually, it is well established that exercise increases oxidative stress. In this context,
in 1988, Gohil et al. [73] observed in trained subjects that cellular GSH levels (nonenzymatic
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antioxidant) decreased, meanwhile oxidized GSH (GSSG) levels increased concomitantly.
From this observation, the presence of oxidative stress was associated with many sport
disciplines. In this context, intense aerobic exercise stimulates ROS production [74]. The
oxidative stress resulting from aerobic exercise was manifested through increased levels
of oxidative damage in lipids, proteins and DNA [75–77]. Although it is estimated that
aerobic exercise increases oxygen consumption and oxidative stress production during
muscle contraction, mitochondria represent only a small fraction of this. The main cause
seems to be contractile activity that changes the redox state in muscles to a more oxidative
state, reducing the NADH/NAD ratio in mitochondria [78]. However, the oxidative stress
that initially occurs postexercise is instrumental to reducing ROS production through the
activation of endogenous antioxidant enzymes, such as SOD, GSH-Px and CAT [79,80].
This occurs with moderate exercise intensities, because very demanding exercises with
increased ROS formation can impair cellular antioxidant response, provoking infiltration
of macrophages and other phagocytes, leading to tissue damage and impaired muscle
function [81,82]. Therefore, ROS formation in active skeletal muscle through modulated
contractions play an essential role in adaptation to exercise. This adaptation includes an
increase in myocellular antioxidant capacity, which helps to reduce ROS levels [79,80,83,84].

Exercise-induced oxidative stress has also been observed following anaerobic exercise.
In this sense, several authors [56,85–88] observed an increase in blood levels of free radicals
and oxidative stress markers in subjects performing series of 150 m sprints. In a study
carried out by Ammar et al. [89] in which they performed aerobic, anaerobic and combined
training, the authors observed that both types of exercise can cause oxidative stress through
determination of malondialdehyde (MDA), a marker of lipid peroxidation. They stated
that, in both aerobic and anaerobic exercises, a faster response occurs after training, with
higher levels of MDA after aerobic training, and with higher levels of SOD and GPX after
anaerobic training. These authors concluded that the response to oxidative stress depends
on the type of activity, considering intensity and length as main variables [90] of the activity.
This observation was supported by Parker et al. [91], who stated that the increase in the
intensity of exercise generates more endogenous antioxidant defenses. In this context, the
evaluation of oxidative stress using blood tests was confirmed in studies that used muscle
biopsies [92,93]. In this context, excessive oxidative stress can lead to impaired physical
performance and inadequate recovery of skeletal muscle [94].

5.2. Oxidative Stress and L-Carnitine Supplementation

Recently, more studies are being carried out regarding the administration of nutritional
supplements in reducing muscle damage and enhancing recovery. In this research area,
L-carnitine could act as a regulator of fuel selection in active skeletal muscle leading to an
improved contractile function. This might limit potential injury associated with exercise.
For this reason, we think that L-carnitine could be considered, not only as an ergogenic aid,
but also as a pharmacological treatment in the recovery of athletes suffering from significant
muscle damage, depending on the type and length of exercise. However, scarce number of
publications directly address this issue. In this review, 15 studies seem to directly explore
the response of L-carnitine supplementation to an intense exercise. Only one report was
carried out in endurance [58] while the rest were basically resistance exercises. All studies
presented a favorable response to the oral administration of 2 g L-carnitine.

As mentioned before, skeletal muscle has several sources of ROS, but mitochondria
and cell oxidases appear to be the most relevant sources during exercise [95]. As mentioned
before, moderated ROS production can act as mediator of signal transduction pathways,
leading to activation of antioxidant muscle response [96]. However, high ROS doses led
to imbalance between oxidants and antioxidants favoring oxidants, leading to impaired
signaling and redox control and resulting in molecular damage [97]. In vitro studies have
demonstrated that increased levels of muscle L-carnitine can modulate oxidative stress
by regulating protein synthesis [2]. In this line, Kita et al. [98] showed that L-carnitine
supplementation increased plasma concentrations of IGF-1 (insulin-like growth factor-1),
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activating the corresponding signaling pathway. This increase in IGF-1 seems to be me-
diated by intramuscular microRNA levels in an animal model [99]. Various studies have
reported that IGF-1 not only influences muscle hypertrophy, but also inhibits muscle protein
breakdown, responsible for skeletal muscle atrophy [100,101].

In addition, Montesano et al. found that L-carnitine increases key proteins involved
in the antioxidant process. This is in line with other studies about the antioxidant activity
of L-carnitine [102]. These authors have reported that there is an inverse relationship
between efficient β-oxidation of muscle fatty acids and the production of ROS. Through
this antioxidant action, L-carnitine could be a good supplement for the prevention and
treatment of muscle damage.

5.3. Oxidative Stress, Muscle Damage and L-Carnitine Supplementation

As previously discussed, muscle damage is largely the result of the production of
ROS, which can cause inflammation and alter cellular functions [103]. High intensity or
long duration exercises cause muscle damage, regardless of the eccentric or concentric
component of execution. Nevertheless, it is known that eccentric muscle contractions are
more impactful on the muscle structure [4,104]. Both in vivo [105] and in vitro [106] studies
have shown that mitochondria produce ROS during exercise. A minimal amount of ROS is
required for muscle adaptation [107,108]. However, oxidative stress, which results from an
increase in muscle ROS concentration, is associated with muscle fatigue during contraction
and with postexercise muscle damage [109–112].

Inflammation produced by exercise due to overstretching of muscle fibers causes
damage to the sarcoplasmic reticulum membrane, transverse tubules, or sarcolemma [113].
Both excessive oxidative stress and inflammation can cause damage to DNA, proteins
and lipids [114], and an accumulation of advanced glycation end products [115]. The
combination of excessive free radical production and the inability of the endogenous
antioxidant system to remove them results in delayed recovery and impaired exercise
performance. In addition, proinflammatory cytokines such as IL-6 play a key role in the
skeletal muscle response, connecting inflammation and oxidative stress [116–120].

When the ROS concentration is too high or sustained over time, a decrease in muscle
strength is observed accompanied by muscle fatigue [121]. Therefore, the inflammatory
response derived from muscle damage after intense exercise is largely the result of an
increase in ROS production [122]. This is confirmed by an increase in the production of
proinflammatory cytokines IL-1β, IL-6 and TNF-α, through migration of the transcription
factor NF-κβ, the activating protein (AP-1) and cyclooxygenase 2 (COX2) activation [123].
From the point of view of sports performance, the most important effect of muscle damage
is decreased muscle function, reducing the ability to generate force [104] and thereby
leading to fatigue. However, and despite this, the level of training plays an instrumental
role in preventing skeletal muscle damage caused by free radicals [112,124].

An excess of ROS production leads to a reduction in muscle resistance capacity that
contributes to fatigue [125]. In this sense, published data are not conclusive and sometimes
contradictory. Ohno et al. [126] indicated that SOD levels and activity increased after acute
and chronic exercise. Other authors [127,128] presented similar data for changes in CAT
activity. Skeletal muscle also produces heat shock or stress proteins (HSP) in response
to some forms of contractile activity [129]. These proteins act to prevent tissue damage
induced by oxidative stress. In this line, L-carnitine supplementation has been shown to
be effective in preventing and attenuating signs of exercise-induced tissue damage [130],
likely due to the antioxidant activity of the supplement [131].

5.4. L-Carnitine Supplementation and Recovery from Exercise

L-carnitine supplementation seems to improve lipid oxidation, spare muscle glycogen,
decrease inflammation and improve exercise performance. The last property seems to occur
because L-carnitine supplementation may accelerate recovery from exercise-induced muscle
injury [24,132]. In this sense, Dutta et al. [125] observed that the L-carnitine supplement is
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effective in attenuating the signs of tissue damage induced by exercise. Animal and clinical
studies have shown that treatment using L-carnitine positively influences many different
mechanisms involved in the pathological loss of skeletal muscle [133].

It is relevant to note that muscle is unable to synthesize L-carnitine due to the lack of
γ-butyrobetaine hydroxylase. L-Carnitine is synthesized in the liver, kidney and brain. For
this reason, L-carnitine must be transported from plasma to muscle cells. Although there
are studies that have shown an increase in plasma L-carnitine after supplementation, only
few studies have shown a subsequent increase in muscle [134,135]. Muscle uptake seems
to be a long process, as observed by Wall et al. [136], who obtained increases in muscle
L-carnitine after long-term supplementation in subjects with hyperinsulinemia.

The beneficial effects of L-carnitine in exercise recovery have been observed in healthy
subjects and in others suffering certain pathologies [137]. However, results have been
contradictory. In this line, Swart et al. [138] measured exercise performance in marathon
runners after 6 weeks of L-carnitine supplementation and found a positive impact on
maximum treadmill running speed, as well as maximum oxygen consumption (VO2max).
Vecchiet et al. [139] also observed that L-carnitine supplementation significantly increased
VO2max and starting power. In contrast, Krähenbühl [140] analyzed the impact of 3 months
of L-carnitine supplementation on physical performance and found no improvement.

On the other hand, Dubelaar et al. [141] observed that the administration of L-carnitine
increased muscle contractile force by 30% accompanied by an increase in blood flow in a
dog model. These changes were associated to an increase in L-carnitine levels in plasma, but
with no significant increase in muscle. These authors hypothesized that L-carnitine exerts
the effect on the vascular cells surrounding muscle and thereby increasing oxygen delivery.

In this line, Giamberadino et al. [49] proposed an alternative mechanism to explain
the effect of L-carnitine in exercise recovery. They observed, following L-carnitine sup-
plementation (3 g/day for 3 weeks) in healthy untrained men, a reduction in circulating
CK and DOMS compared to placebo. The authors stated that the effect was due to the
vasodilatory effect of L-carnitine which, according to their hypothesis, reduces hypoxic
stress, an action similar to some vasodilators. Recently, we observed that supplementation
with NO precursors favors vasodilation, allowing for high bioavailability of nutrients and
hormones to the muscles, thus helping physical performance [142].

6. Conclusions

The presented studies analyzed the role of L-carnitine supplementation in muscle
bioenergetics and its antioxidant potential in physically active individuals. In this context,
L-carnitine supplementation could be an ergogenic aid, helping in muscle damage and
recovery, particularly in conditions of L-carnitine deficiency. However, further studies are
needed to conclusively clarify the mechanisms underlying these protective effects.
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