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Abstract

Atherosclerosis is responsible for a large proportion of cardiovascular diseases
(CVD), which are the leading cause of death in the world. The atherosclerotic
process is a complex degenerative condition mainly affecting the medium- and
large-size arteries, which begins in childhood and may remain unnoticed during
decades. It causes thickening and the reduction of elasticity in the blood vessels.
An early diagnosis of this condition is crucial to prevent patients from suffering
more serious pathologies (heart attacks and strokes). The evaluation of the Intima-
Media Thickness (IMT) of the Common Carotid Artery (CCA) in B-mode ultra-
sound images is considered the most useful tool for the investigation of preclinical
atherosclerosis. Usually, it is manually measured by the radiologists. This paper
proposes a fully automatic segmentation technique based on Machine Learning
and Statistical Pattern Recognition to measure IMT from ultrasound CCA images.
The pixels are classified by means of artificial neural networks to identify the IMT
boundaries. Moreover, the concepts of Auto-Encoders (AE) and Deep Learning
have been included in the classification strategy. The suggested approach is tested
on a set of 55 longitudinal ultrasound images of the CCA by comparing the auto-
matic segmentation with four manual tracings.
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1. Introduction1

Cardiovascular diseases (CVD) represent the major cause of death and disabil-2

ity worldwide. Atherosclerosis is responsible for a large proportion of CVD [1].3

It is a chronic degenerative disease characterized by the accumulation of fatty ma-4

terial and cholesterol at the arterial walls. Therefore, atherosclerosis causes thick-5

ening and the reduction of elasticity in the arterial walls. Although this pathology6

may remain unnoticed for decades, atherosclerotic lesions (plaques) could even7

lead to a total occlusion of the blood vessels. This is the major underlying cause8

of heart attacks and strokes. For this reason, an early diagnosis and follow up of9

the atherosclerosis is crucial for preventive purposes. In this sense, the Intima-10

Media Thickness (IMT) of the Common Carotid Artery (CCA) is considered as11

an early and reliable indicator of this condition [2].12

The IMT is measured by means of a B-mode ultrasound scan, which is a non-13

invasive , relatively inexpensive, and widely available technique that allows a short14

time examination. However, resolution and contrast of ultrasound images are gen-15

erally poor. These images are affected by the multiplicative speckle noise, which16

tends to reduce the image quality, obscuring and blurring diagnostically important17

details. The use of different protocols and the variability between observers are18

recurrent problems in the IMT measurement procedure. Repeatability and repro-19

ducibility of the process are of great significance to study the IMT [3, 4]. For20

these reasons, IMT should be measured preferably on the far wall of the CCA21

within a region free of plaque [2]. The optimal measurement section (1-cm-long)22

is located at least 5 mm below the carotid bifurcation, where a double-line pat-23

tern corresponding to the intima-media-adventitia layers can be clearly observed.24

As can be seen in Fig. 1, the IMT is the distance between the lumen-intima (LI)25

interface and the media-adventitia (MA) interface.26

Usually, delineations of the CCA are manually performed by medical experts.27

By means of image segmentation algorithms it is possible to reduce the subjectiv-28

ity and variability of manual approaches and detect the IMT throughout the artery29

length. In the last two decades, several solutions have been developed to perform30

the carotid wall segmentation in ultrasound images [5]. Most of the proposed31

methods are not completely automatic and they require user interaction to start32

the algorithm, such as [6, 7, 8, 9, 10]. However, some fully automatic approaches33

were recently published [11, 12, 13, 14, 15]. It is possible to make a classification34

of techniques according to the used methodology. In this sense, we can find al-35

gorithms based on edge detection and gradient-based techniques [6, 8, 9, 16], and36

other proposals based on dynamic programming [17, 18, 19, 20, 21, 22], active37
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contours [7, 12, 23, 24, 25, 26, 27, 28], neural networks [11] or in a combination38

of techniques [10, 29, 14]. There are also highlight techniques based in statistical39

modeling [30, 31] or in Hough transform [13, 32].40

In this work, a fully automatic segmentation technique based on Machine41

Learning and Statistical Pattern Recognition is proposed to measure IMT from42

ultrasound CCA images. Firstly, a given image is pre-processed to detect the re-43

gion of interest (ROI). Then, pixels belonging to the ROI are classified by means44

of artificial neural networks to identify the LI and MA interfaces. The concepts of45

Auto-Encoders (AE) and Deep Learning have been included in this classification46

stage. Finally, the obtained results are post-processed to extract the final con-47

tours for the IMT measurement. The automatic measures of the IMT have been48

compared with the values obtained from different manual segmentations and the49

statistical analysis of this comparison shows the accuracy of the proposed method.50

The remainder of this paper is structured as follows: Sect. 2.1 describes the51

dataset of ultrasound CCA images and the manual segmentations. In Sect. 2.2,52

the proposed segmentation method is explained in detail. The obtained results are53

shown in Sect. 3. Finally, the main extracted conclusions close the paper.54
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Figure 1: Diagram of the artery wall (left) and longitudinal view of the CCA in a B-mode ultra-
sound image (right)

2. Materials and Methods55

2.1. Ultrasound Image Acquisition and Manual Segmentations56

A set of 55 longitudinal B-mode ultrasound images of the CCA have been used57

in this work. All of them were provided by the Radiology Department of Hospi-58

tal Universitario Virgen de la Arrixaca (Murcia, Spain). Fig. 1 (right) shows an59
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example of the tested ultrasound images. Ultrasound scans were acquired using a60

Philips iU22 Ultrasound System by means of three different ultrasound transduc-61

ers (L12-5, L9-3 and L17-5) and recorded digitally with 256 gray levels. The spa-62

tial resolution of the images ranges from 0.033 to 0.066 mm/pixel, with mean and63

standard deviation equal to 0.051 and 0.015 mm/pixel, respectively. The param-64

eters of the scanner were adjusted in each case by the radiologist. Some blurred65

and noisy images, affected by intraluminal artifacts, and some others with partially66

visible boundaries are included in the studied set.67

To assess the performance of the proposed segmentation method and the accu-68

racy of the obtained IMT measurements, it is necessary to compare the automatic69

results with some indication of reference values (ground-truth, GT). In this case,70

the GT corresponds with the average of four different manual segmentations for71

each ultrasound image. In particular, two experienced radiologists delineated the72

55 images twice, with a mean period of two months between tracings. Each man-73

ual segmentation of a given ultrasound image includes tracings for the LI and MA74

interfaces on the far carotid wall.75

2.2. Carotid Ultrasounds Segmentation76

Fig. 2 shows an overview of the proposed IMT segmentation methodology.77

Firstly, a given ultrasound CCA image is pre-processed to automatically detect78

the region of interest (ROI), which is the far wall of the blood vessel. As result79

of this stage, a cropping of the input ultrasound image is obtained (ROI image).80

Then, a windowing process takes place on the ROI image in order to construct the81

intensity pattern corresponding to each pixel (intensity values from a neighbour-82

hood). After this, different auto-encoders provide compressed representations of83

these intensity patterns in a lower dimensional feature space. The new features84

are classified by means of artificial neural networks to separately detect the LI85

and MA interfaces. Finally, classification results are post-processed to extract the86

final contours on which the IMT is measured.87
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Figure 2: Overview of the proposed method for carotid wall segmentation and IMT measurement
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2.2.1. Pre-processing of ultrasound CCA images88

In the carotid ultrasound images (see Fig. 1), the lumen corresponds to a dark89

region (low echogenicity) delimited by the arterial walls. Over the lumen in the90

picture, at less depth, it is observed the echo corresponding to the near wall. The91

far wall, where the IMT is measured, is located below the lumen, and it constitutes92

the region of interest (ROI).93

The aim of the pre-processing stage is the location of the carotid far wall in a94

completely automatic way. In particular, a binary mask is built using morphologi-95

cal operations [33] to locate the carotid lumen. Once the lumen has been located,96

we focus on its lower limit corresponding to the far wall of the CCA and the97

boundaries of the ROI are established. The superior boundary is fixed to 0.6 mm98

above the upper point of the far wall detected in the binary mask, whereas the bot-99

tom boundary is fixed to 1.5 mm below the lower point. As result of this stage, a100

cropping of the input ultrasound image is obtained (ROI image). For more details101

about this stage consult [11].102

2.2.2. Segmentation by means of Pattern Recognition with Neural Networks103

Segmentation is one of the most difficult tasks in nontrivial image process-104

ing. Since segmentation can be considered as a classification of pixels, it is often105

treated as a pattern recognition problem and addressed with related techniques106

[34]. This section describes the main stage of the proposed method, in which ar-107

tificial Neural Networks (NN) carry out the segmentation of the ultrasound CCA108

images. The NN used in this work are standard Multi-Layer Perceptrons (MLP),109

with a single hidden layer, trained under the Scaled Conjugate Gradient (SCG)110

learning rule [35].111

The initial idea consists of training NN to classify the pixels from the ultra-112

sound images by considering the intensity values of a neighbourhood of the pixel113

to classify [11]. The neighbourhoods considered in this study are vertically ori-114

ented rectangular windows (13 × 3 pixels), since the ‘bright-dark-bright’ inten-115

sity pattern corresponding to the IMT can be found in the vertical direction of the116

images. The reason for choosing a window height of 13 pixels is that for the used117

set of 55 ultrasound CCA images, the mean IMT is about 13 pixels. Therefore,118

this neighbourhood will provide the best contextual information about the pixel119

to be classified. After the appropriate learning process, a given network will be120

able to recognize the pixels belonging to the IMT boundaries (i.e., LI and MA121

interfaces). Furthermore, in this paper, the concepts of Auto-Encoders (AE) and122

Deep Learning have been incorporated to the original scheme. Fig. 3 shows the123

proposed configuration. As can be seen in the scheme, the processing of each IMT124
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boundary (LI and MA interfaces) is separately performed.125
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Figure 3: Strategy adopted to solve the segmentation task

Auto-Encoders 1 and 2 are artificial NN used for learning efficient codifica-126

tions. AE learns to represent features in a dataset meaningfully, typically for the127

purpose of dimensionality reduction [36]. It was shown that those are more effi-128

cient that other methodologies such as Principal Component Analysis (PCA) [37].129

The AE proposed here are MLP performing unsupervised learning, in which input130

data is used as output data (see Fig. 4). Then, in the hidden layer of the AE take131

place a feature mapping. In our particular case, M < d (number of hidden neurons132

< input data dimension, see Fig. 4), and a compressed representation of the data133

is obtained at the output of the AE hidden layer. These outputs of the hidden layer134

are then used as input data to another MLP (NN1 or NN2 in 2) for its classification.135

A dataset is needed to perform the training of the different NN. To ensure a136

good generalization capability of the networks, five heterogeneous images were137

carefully chosen (with different orientations of the CCA, spatial resolutions, IMT138

measures, etc.) to assemble a representative and consistent dataset. It is necessary139

to emphasize that using all the pixels/patterns in a selected image for training is140
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Figure 4: Structure of a generic Auto-Encoder
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inappropriate, since the dataset would be extremely large and highly imbalanced.141

In our case, the dataset was assembled by taking samples from the five manually142

segmented images selected for this purpose. Finally, it consists of 12,900 patterns:143

3,100 of them (24%) are from class ‘LII-pixels’; 3,350 (26%) are from class ‘MAI-144

pixels’; and the remaining (50%) are from class ‘non-IMT-boundary’. During145

the learning process, the dataset was randomly divided into three subsets: 50%146

of samples for training, 20% for validation (stopping criterion and network size147

selection) and 30% for testing.148

As commented above, the LI and MA interfaces are separately detected. For149

the LI interface, AE1 is trained to obtain compressed representations of the pat-150

terns corresponding to pixels belonging to the LI interface (3,100 patterns with151

a dimension of 13 × 3 = 39 features). The learning process is repeated vary-152

ing the number of hidden neurons of the AE1 from 2 to 39. Then, the whole153

dataset (12,900 patterns) is passed through the AE 1 and the hidden layer outputs154

are used to train NN1, which performs a binary classification between ‘LII-pixels’155

and ‘non-LII-pixels’. On the other hand, AE2 performs a feature mapping for pat-156

terns corresponding to pixels belonging to the MA interface (3,350 patterns with157

39 features). Once its training is carried out, the 12,900 samples are processed158

with AE2. The transformed features (hidden layer outputs) are used in the learn-159

ing process of the NN2, which performs another binary classification between160

‘MAI-pixels’ and ‘non-MAI-pixels’.161

Moreover, as it shown in Fig. 3, two neighbourhoods have been considered.162

For both AE1 and AE2, the input patterns consist of 39 features (13 × 3 win-163

dow). However, whereas for AE2 the neighbourhood is centred on the pixel to be164

classified, for the AE1 the neighbourhood is vertically displaced until the pixel to165

classify is located at the central position of the window base. This is done with166

the purpose of providing a better characterization of the ‘LII-pixels’ to AE1 (large167

dark area corresponding to the lumen above the pixel).168

As it shown in Sect. 3.1, the use of auto-encoders allows a significant reduc-169

tion in the dimension of the features space (from 39 to 11 for AE1, and from 39 to170

9 for AE2). Fig. 7 (central) shows the final classification results for an ultrasound171

CCA image, according to the proposed classification scheme. As can be seen, the172

LI and MA interfaces are correctly identified in the image. Nevertheless, it is still173

necessary to eliminate some residues and to refine the contours in order to assess174

the IMT. To this end, a post-processing stage has been designed (detailed in Sect.175

2.2.3).176
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2.2.3. Post-processing of Classification Results177

The results of the classification stage should be debugged to extract the final178

LI and MA boundaries, see central image in Fig. 7. It is necessary to iden-179

tify and discard, as far as possible, the mis-classified pixels. In this sense, the180

relative position between pixels classified as ‘LII-pixels’ and those classified as181

‘MAI-pixels’ provides useful information. Moreover, due to the poor resolution182

of the ultrasound images, thick boundaries are obtained instead of one-pixel con-183

tours. This happens because the networks find the searched intensity patterns in184

all these pixels. In order to solve this drawback, a simple non-linear data-fitting185

problem is formulated to find the best polynomial approximation for LI and MA186

interfaces. This is done by minimizing the squared error between the LII-pixels187

(or MAI-pixels) in the image and the approximated contour. The bottom image188

in Fig. 7 (bottom) shows an example of the final boundaries extracted from the189

classification results (central image).190

3. Results191

The suggested segmentation methodology was developed and tested in a PC192

with a core i7-3770 3.4 GHz processor and 12 GB RAM running MATLAB193

2013a. The mean total time per processed image is 1.4 s. The ROI selection194

task (pre-processing stage) shows high computational efficiency by spending 0.37195

s in mean for each case. Once the networks have been trained, classification re-196

sults are provided in a fast way, with an average response time of 0.48 s for all the197

pixel in the selected ROI. On the other hand, the post-processing returns the final198

IMT boundaries in 0.6 seconds.199

3.1. Feature Mapping and Classification Performance200

As commented in Sect. 2.2.2, AE1 and AE2 are trained to obtain a compressed201

representation (M < d, see Fig. 4) of the intensity pattern corresponding to each202

pixel of a given ultrasound CCA image. In each case, the learning process is re-203

peated varying the number of hidden neurons from 2 to 39. For each network204

size (number of hidden nodes), the corresponding NN1 and NN2 (with different205

dimension of input data) were trained and its performance has been analysed. All206

designed networks in this study were retrained 30 times with different initial ran-207

dom values of the connection weights. Moreover, the number of hidden neurons208

in NN1 and NN2 is varied from 5 to 100 and the optimal size of each network is209

selected according to the minimum mean error reached on a validation dataset.210
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Fig. 5 shows the performance of NN1 in each case (from 2 to 39 input fea-211

tures). The mean classification accuracy achieved is depicted in the left graph,212

whereas the mean specificity and sensitivity are shown in the right graphic. NN1213

together with AE1 outperform the classification accuracy of a MLP trained with214

the 39-dimensional data (13 × 3 neighbourhood) to recognize the LI interface215

(dashed line in Fig. 5) when considering a feature mapping to 3 or more dimen-216

sions. Since the specificity remains constant, the optimal configuration has been217

chosen by analysing the sensitivity. Thus, the best performance is obtained with218

11 input features, i.e. when AE1 reduces the dimensionality of data from 39 to219

11. In a similar way, Fig. 6 shows the performance of NN2, which was trained to220

identify ‘MAI-pixels’. In this case, AE2 and NN2 achieve a classification accuracy221

similar to the obtained when considering a 39-dimensional feature space (dashed222

line). The optimal configuration (best sensitivity) is obtained for 9 input features223

(feature mapping from 39 to 9 dimensions).224

3.2. Segmentation Accuracy and IMT Measurements225

The proposed segmentation method has been tested on a set of 55 B-mode.226

Some examples of segmented images are shown in Figs. 7 and 8. The final bound-227

aries corresponding to the LI and MA interfaces detected by our automatic seg-228

mentation method are superimposed on the ultrasounds. As can be seen, our fully229

automatic segmentation approach is robust against the orientation and appearance230

of the CCA in the ultrasound image (slope and curvature).231

Given an ultrasound image and two different segmentations (S1 and S2) to232

compare, the degree of agreement between its IMT measures is assessed by cal-233
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Figure 5: Performance of NN1 (trained to detect LII-pixels) for different dimensions of input data:
mean classification accuracy (left); specificity and sensitivity (right)
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Figure 6: Performance of NN2 (trained to detect MAI-pixels) for different dimensions of input
data: mean classification accuracy (left); specificity and sensitivity (right)

culating the absolute error value:234

εIMTi = |IMT S1
i − IMT S2

i | (1)

being εIMTi the IMT measurement error between the segmentation S1 and the235

segmentation S2 for the i-th image. In each case, the IMT value, i.e. the dis-236

tance between the boundaries corresponding to LI and MA, is evaluated by using237

the Mean Absolute Distance (MAD) metric. The mean and standard deviation238

values (55 processed images) for the intra-observer (E11-E12 and E21-E22), inter-239

observer (E1-E2) and inter-method (A-GT) IMT measurement errors can be seen240

in Table 1. The mean absolute error of the automatic measurements is about 50241

µm, which is a value slightly higher than the intra- and inter-observer errors but it242

is similar to the obtained by other published methods (see Table 2).243

Moreover, Fig. 9 shows the linear regression analysis for the IMT mea-244

sures between manual and automatic segmentations (right graph), and the Bland-245

Altman plots of the differences between the IMT of the corresponding two seg-246

mentations (manual and automatic) against their average (left graph). The regres-247

sion analysis shows a high degree of agreement between manual and automatic248

measurements, with a 93.3 % correlation coefficient. Bland-Altman plot shows249

the following limits of agreement (mean ± 2 × standard deviation): -0.018 ±250

0.137 mm. Therefore, the proposed method tends to slightly underestimate the251

IMT.252
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Figure 7: Example of the results obtained at each stage of the proposed segmentation method:
selected ROI in the pre-processing stage (top); classification results (central); final LI and MA
boundaries after the post-processing stage

Figure 8: Different examples of good segmentation. The proposed method is robust against the
orientation and appearance of the CCA in the ultrasound image

4. Conclusions253

This paper proposes a fully automatic segmentation method of the CCA far254

wall based on Machine Learning in order to measure the IMT. Segmentation is255

treated as a pattern recognition problem. Thus, the main stage of the proposed256

technique is a classification stage, in which different neural networks perform257

a classification of the image pixels to detect the IMT contours (LI and MA in-258

terfaces). Networks take as input information only the intensity values from a259

11



Table 1: IMT measurement errors (mm) between different segmentations

IMT Measurement Error
Mean Std. Dev.

E11-E12 0.025 0.018
E21-E22 0.027 0.021
E1-E2 0.037 0.069
A-GT 0.050 0.050
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Figure 9: Statistical distribution of the IMT measurement errors. BlandAltman plot (left) and
linear regression analysis (right)

neighbourhood (13 × 3) of the pixel to be classified. The suggested architecture260

includes auto-encoders to obtain compressed and efficient representations of the261

input data. These auto-encoders establish the basis for the design of deep net-262

works to identify LII-pixels and MAI-pixels. The system is completed with a263

pre-processing stage in which ROI (far wall of the CCA) is automatically selected264

and with a post-processing stage for the extraction of the final contours on which265

the IMT is assessed.266

The proposed configuration has been tested using a set of 55 ultrasound CCA267

images. The automatic segmentation achieves the correct detection of the LI and268

MA interfaces in all the tested images. Furthermore, the automatic measurements269

of IMT have been compared with the values obtained from manual tracings and270

several quantitative statistical evaluations have shown the accuracy and robustness271

of the suggested approach.272

The main advantage of the CCA segmentation method proposed in this pa-273
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Table 2: Comparison with other techniques for the IMT measurement. The metric adopted to
assess the IMT and the errors is MAD. N is the number of images and the third column shows the
spatial resolution of the images in mm/pixel. FA: Fully Automatic

Author N IMTGT (mm) IMTMethod (mm) εIMT (µm) FA

Liang [18] 50 0.88±0.25 0.93±0.25 42±25 NO
Liguori [6] 20 0.92±0.19 0.92±0.20 15.6±4.2 NO
Gutierrez [24] 30 0.63±0.12 0.72±0.14 90±60 NO
Stein [8] 50 - 0.67±0.12 40±7 NO
Faita [9] 150 0.56±0.14 0.57±0.14 10±35 NO
Molinari [14] 182 0.92±0.30 0.75±0.39 54±35 YES
Xu [32] 50 0.63±0.14 0.65±0.16 38.1±16.4 NO
Petroudi [28] 100 0.67±0.14 0.61±0.15 95.0±61.5 NO
Menchón-Lara [11] 60 0.64±0.19 0.61± 0.19 37.6±25.2 YES

Proposed Method 55 0.62±0.19 0.60±0.19 49.9±49.8 YES

per is its computational efficiency, with a mean total time per processed image of274

1.4 seconds. This fact together with the high agreement between automatic and275

manual segmentations make this method a suitable solution for the clinical eval-276

uation of IMT. Besides, with this average execution time, the method could also277

be used for the segmentation of ultrasound CCA videos. Future works must study278

the use of different learning machines (support vector machines, extreme learning279

machines) to construct the proposed deep networks. However, although the MLP280

solution used in this work seems to be the simplest, it provides quite satisfactory281

results.282
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Sancho-Gómez, Automatic detection of the intima-media thickness in ultra-
sound images of the common carotid artery using neural networks, Medical
& Biological Engineering & Computing 52 (2) (2014) 169–181.

[12] S. Delsanto, F. Molinari, P. Giusetto, W. Liboni, S. Badalamenti, J. Suri,
Characterization of a completely user-independent algorithm for carotid

14



artery segmentation in 2-d ultrasound images, IEEE Transactions on Instru-
mentation and Measurement 56 (4) (2007) 1265–1274.

[13] S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, K. S. Nikita, Using
of the hough transform to segment ultrasound images of longitudinal and
transverse sections of the carotid artery, Ultrasound in Medicine & Biology
33 (12) (2007) 1918–1932.

[14] F. Molinari, G. Zeng, J. Suri, Intima-media thickness: setting a standard
for a completely automated method of ultrasound measurement, Ultrasonics,
Ferroelectrics and Frequency Control, IEEE Transactions on 57 (5) (2010)
1112–1124.

[15] M. C. Bastida-Jumilla, R. M. Menchón-Lara, J. Morales-Sánchez, R. Verdú-
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