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Abstract Atherosclerosis is the leading underlying pathologic pestthat results in cardio-
vascular diseases, which represent the main cause of deattisability in the world. The
atherosclerotic process is a complex degenerative conditiainly affecting the medium-
and large-size arteries, which begins in childhood and mmarmn unnoticed during decades.
The Intima-Media Thickness (IMT) of the Common Carotid Ayt¢CCA) has emerged as
one of the most powerful tool for the evaluation of preclaiiatherosclerosis. IMT is mea-
sured by means of B-mode ultrasound images, which is a n@sive and relatively low
cost technique. This paper proposes an effective imageesggtion method for the IMT
measurement in an automatic way. With this purpose, segtientis posed as a pattern
recognition problem and a combination of artificial neuratworks has been trained to
solve this task. In particular, Multi-Layer Perceptrorairied under the Scaled Conjugate
Gradient algorithm have been used. The suggested appredektéd on a set of 60 lon-
gitudinal ultrasound images of the CCA by comparing the matiic segmentation with
four manual tracings. Moreover, the intra- and inter-obseerrors have also been assessed.
Despite of the simplicity of our approach, several quatitiastatistical evaluations have
shown its accuracy and robustness.
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1 Introduction

CardioVascular Diseases (CVD) are the leading cause ohdewat disability in the world
[33]. In 2008, about 17.3 million people died from CVD remesng 30% of all global
deaths. An important part of these were premature deathsard have largely been pre-
vented. Over 80% of CVD deaths take place in low- and middéeiine countries and occur
almost equally in men and women.

Atherosclerosis is responsible for a large proportion ofBC[33]. It is a chronic de-
generative disease characterized by the accumulationtpifeterial and cholesterol at the
arterial walls. Therefore, atherosclerosis causes thiokeand the reduction of elasticity in
the arterial walls. Although this pathology may remain uiced for decades, atheroscle-
rotic lesions (plaques) could even lead to a total occlusibthe blood vessels. This is
the major underlying cause of heart attacks and strokeshireason, an early diagnosis
and treatment of atherosclerosis are crucial to preveirgatfrom suffering more serious
pathologies. In this sense, the Intima-Media Thicknesd{Ibf the Common Carotid Artery
(CCA) is considered as an early and reliable indicator &f toindition [24,42]. By studying
IMT, a specialist can detect subclinical atherosclerosiésanalyse the drug response.

The IMT is measured by means of a B-mode ultrasound scanhvidia non-invasive
and low cost technique that allows a short time examinafitwe. use of different protocols
and the variability between observers is a recurrent pmlitethe measurement procedure
[43]. The repeatability and reproducibility of the procéssf great significance to analyse
the IMT [3, 14].

The processing proposed in this work intends to improve atehe the manual mea-
surement protocol used by the Radiology Department fromphiisUniversitario Virgen
de la Arrixaca [43]. IMT should be measured on the far (péstewall along a 1-cm-long
section proximal to carotid bifurcation, where a brightidaright pattern corresponding to
the intima-media-adventitia layers of the arterial wakls de observed (see Fig. 1). The
IMT is the distance between the lumen-intima (LI) interfacel the media-adventitia (MA)
interface. The physician manually takes three measureniretiie selected carotid segment,
and the measurement corresponding to the maximum IMT isaeresl the final value [43].
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Fig. 1 Longitudinal view of CCA in an ultrasound B-scan image andesce of the carotid interfaces for
IMT measurement.
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By means of image segmentation algorithms it is possibleetiuce the subjectivity
of manual approaches and detect the IMT throughout theyagagth (not only in a few
points), which leads to more precise results and allows ti@eixstatistics of interest to the
specialists. In the last two decades, several solutions haen developed to perform the
carotid wall segmentation in ultrasound images [30]. Mdghe proposed methods are not
completely automatic and they require user interactiortdda she algorithm, such as [22,
7,40, 10, 35]. However, some fully automatic approache&werently published [8,12,29,
1]. It is possible to make a classification of techniques eting to the used methodology.
In this sense, we can find algorithms based on edge detectibgradient-based techniques
[22,40,10,38], and other proposals based on dynamic progmg [44,21,16,6, 36,20],
active contours [7,8,5,17,25,4,37,28] or in a combinatbrechniques [35,23,29]. We
can also find highlight techniques based in statistical rirglg¢9, 19] and those in which
Hough transform is employed [12,46].

In this work, a segmentation technique based on the use clneetworks is proposed
to extract and measure the IMT from a B-mode ultrasound soage in an automatic way.
Firstly, a given image is pre-processed to detect autoaltithe region of interest (ROI),
which is the far wall of the vessel. Then, a network ensembéléopm a classification of the
pixels belonging to the ROI in eitheiMT-boundary pixels or ‘non-IMT-boundary/pixels,
resulting to a binary output image. Finally, this binary geds post-processed to extract the
final contours corresponding to the LI and MA interfaces ie thost reliable sections for
the IMT measurements.

The remainder of this paper is structured as follows. Sestihl and 2.1 describe the
set of tested ultrasound images and the reference seginantasults. In Sect. 2.3, the
proposed segmentation method is explained in detail. Thaired results are shown in
Sect. 3. Finally, a revision of the proposed method and thie edracted conclusions can
be found in Sect. 4.

2 Materials and methods
2.1 Images Acquisition

A set of 60 longitudinal B-mode ultrasound images of the C&ADICOM format, have
been used in the validation of our segmentation techniqlleofAhem were provided by
the Radiology Department éfospital Universitario Virgen de la ArrixacéMurcia, Spain).
The subjects were 30 patients whose ages ranged from 25 &ar9, yvith a mean age of 57
years, including 15 females and 15 males. Fig. 1 shows anmgashthe tested ultrasound
images.

Ultrasound scans were acquired usinBlalips iU22 Ultrasound Systetmy means of
three different ultrasound transducekd2-5 L9-3 andL17-5 according to the measure-
ment protocol proposed in [43] and recorded digitally wih62gray levels. The spatial
resolution of the images ranges from 0.029 mm/pixel to 0.984/pixel, with mean and
standard deviation equal to 0.052 and 0.015 mm/pixel, mspdy. The parameters of the
scanner (depth of focus, frame rate, gain settings, log gaimpensation) were adjusted in
each case by the radiologist to obtain images with sufficjeatity to correctly visualize the
boundaries of the IMT. Some blurred and noisy images, afteby intraluminal artifacts,
and some others with partially visible boundaries are ietlin the studied set.

The final objective of the proposed segmentation approatthdshieve a reliable auto-
matic measurement of the IMT. The Mannheim consensus [4Bfmenends the performing
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of the IMT measurement preferably on the far wall of the CCAhin a region free of

plaques, which provides increased accuracy, repeajabiid reproducibility [14]. For this

reason, ultrasound images with visible plaques are notidedl in our study. However, our
method could be adapted to detect and characterize theeditfelasses of plaques.

2.2 Manual Delineations

To assess the performance of the proposed segmentatioodretid the accuracy of the
obtained IMT measurements, it is necessary to compare tbenatic results with some in-

dication of reference valueground-truth. Although it is not possible to define the ‘perfect
segmentation’, we use the average of four different manegingntations to perform this
comparison. In particular, two experienced radiologigtkngated each one of the 60 ultra-
sound images twice, with a mean period of two months betwemings. Thus, a total of

240 manual segmentations have been performed. Thesenaderalues allow us the study
of the inter-method differences (manual vs. automatic)l #re intra- and inter-observer
variability. Each manual segmentation of a given ultrasbnmage includes tracings for the
lumen-intima interface and the media-adventitia intexfan the far carotid wall. A simple

routine developed under the Matlab environment assistexperts to do the manual delin-
eations. By means of this application (see Fig. 2) it is giesio mark with the mouse so
many points as it is wished on the image. These points anpilitged later to complete the
required contours.

2.3 Segmentation Method

Fig. 3 shows an overview of the proposed IMT segmentatiorhattiogy. Firstly, a given
ultrasound image of the CCA is pre-processed to autombtidatect the region of interest
(ROI). Then, a windowing process take place in order to cansthe intensity pattern
corresponding to each pixel. After this, a binary classiiicaof the pixels on the ROI is
performed. Finally, classification results are post-psseé to extract the final contours for
the LI and MA interfaces.

Load image Save boundaries

Fig. 2 Appearance of the application implemented in Matlab tosassidoing the manual segmentation of
the carotid wall layers.
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Fig. 3 Overview of the proposed methodology. It consists of thtages: Pre-Processing (detection of ROI),
Segmentation (classification of pixels) and Post-Prongs&xtraction of final contours).
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CCAimage / Gradient N Transform >/ Binary Mask lumen & far wall ROl Image

Fig. 4 Diagram of the pre-processing stage. First, a binary mastemted by means of Mathematical Mor-
phology. Then, the dark area corresponding to the lumereittified and the ROI (far wall) is selected.

Contour
extraction

2.3.1 Pre-processing Stage

In the ultrasound images (see Fig. 1), the lumen corresgoraidark region (low echogenic-
ity) delimited by the arterial walls. Over the lumen in thetpre, at less depth, it is observed
the echo corresponding to the near wall. The far wall, wheedMT is measured, is located
below the lumen, and it constitutes our region of intere®IJRThis section describes a
pre-processing stage in which the carotid far wall is lodédea completely automatic way.
Fig. 4 shows the main steps followed to reach this goal.

First of all, Watershed Transform [26] is applied to the nimipgical gradient of the
image. The transformed image consists of a large numbertefsieed regions. Then, closed
regions are filled by means of morphological operations13h,resulting in a binary im-
age. Only those objects with largest areas are extracted thés image to build a binary
mask. Hereafter, an object in a binary image will refer totao$evhite pixels connected by
considering a 2D 8-connected neighbourhood. In this wayaweéd undesirable intra- and
extra-luminal artifacts which can lead into error.

In the final binary mask, the largest black area connectetiddiggest white object
identifies the carotid lumen in the ultrasound image (see%)igOnce the lumen has been
located, we focus on its lower limit corresponding to thetposr wall of the CCA and the
boundaries of the ROI are established. The superior boynsldixed to 0.6 mm above the
uppermost point of the far wall detected in the binary madkemsas the bottom boundary
is fixed to 1.5 mm below the lowest point. Thus, the size of ttd R related to the carotid
artery appearance in the ultrasound image.
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Fig. 5 ROI selection for the ultrasound image in Fig. 1: (left) Fibaary mask with selected ROI; (right)
Original image with superimposed ROI.

2.3.2 Classification Stage

Since segmentation can be considered as a classificatiomed$ pit is often treated as a
pattern recognition problem and addressed with relatelthtques [34]. Besides, pattern
recognition techniques provide the convenient flexibidityd automation in medical image
processing. This section describes the main step in theopeabapplication to measure the
IMT, in which a neural network ensemble carries out the segat®n of the ultrasound
images of the CCA.

The artificial neural networks used in this work are standdudti-Layer Perceptrons
(MLP), with a single hidden layer, trained under tS8ealed Conjugate GradiefSCG)
learning rule [31]. Fig. 6 shows the configuration of the ML$®d in this approach. The
number of inputs depends on the size of the intensity patténra similar way, the number
of outputs depends on the size of the target vectors whickterhined by the number of
classes contemplated in the classification problem. Homvéwe number of hidden neurons
is a network parameter to be optimized.

The network takes as input information only the intensitjuga of the pixels from a
neighbourhood of the pixel to be classified. Accordinglygaase window (Wx W) must

‘1’ = ‘IMT-boundary’

I

Intensity Pattern

‘0’ = ‘non-IMT-boundary’

Windowing Proces
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_

Ultrasound Image Classification of the center pixel

Fig. 6 Configuration of the MLP used in the segmentation procedure.
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be shifted pixel-by-pixel over the input image (in our cabe, ROl image). This window
provides contextual information about the pattern of isignvalues in the neighbourhood
of the central pixel. The output layer consists of a singléeyavhose activation determines
the class of the central pixel. The network is trained to poeda value of ‘1’ for an input
sub-image with a targetMT-boundary at its central position, and ‘0’ otherwisenon-IMT-
boundary). In our case, the networks were retrained 20 times witfedént initial random
values of the connection weights. Besides, the number afenicheurons is varied from
5 to 40. Thus, to complete the design of a given network, thiaitrg process is repeated
720 times (36:20). The optimal size of each network, i.e. the number of éiddeurons, is
selected according to the minimum mean error reached ondatiah dataset.

To perform the supervised neural network training, a la@etlataset is needed. In our
case, this dataset was assembled by taking samples fronifferedt manually segmented
images. Finally, it consists of 8,000 patterns: 4,000 ofrtH®0%) are from classMT-
boundary, and the remaining (50%) are from clag®h-IMT-boundary During the learn-
ing process, the dataset was randomly divided into thresetsb60% of samples for train-
ing, 20% for validation (stopping criterion and networkesgelection) and 20% for testing.
The test samples have been used in order to infer the netvetr&vimur for new (unseen)
ultrasound images. In this case, the prior probabilitiesawth class are the same in both the
training and test data. Classification of the central piketf an input pattern during test is
simply determined by thresholding the network output. Qftilge network output is greater
than the threshold fixed to 0.5, the input will be classifiegas of IMT (class ‘1’). Thus, a
given input is assigned to the class with highest posteriabatility [2].

In practice, complex classification problems require thetriioution of several neural
networks for achieving an optimal solution [27]. In the fi@flimage processing, experi-
mental results reported in the literature showed that tregerclassification accuracy pro-
vided by a network ensemble can outperform the accuracyeob#st single net [11,18,
45]. However, neural networks ensembles are effective ibhe composing nets produce
different errors. Several methods for the creation of efesof neural networks have been
investigated. Such methods basically lie on varying thapaters related to the design and
to the training of neural networks [11].

Following this idea, we propose a classification strategyimstages to solve the posed
segmentation task (see Fig. 7). Thus, the results from thfieeent networks are combined
by means of another neural network. In the first stage, each Iidlirained using a different
window size to construct the input patterns (W = 3, 7, and @4pectively). However, the
number of inputs is equal to 9 for all these networks (cemital and the eight pixels which
define the limits of the corresponding window, as shown in Bjg The reconstruction of
the whole image (before thresholding) is needed at the bofmach MLP in stage 1. Then,
a new windowing process (with W = 3) is applied to each one e§¢himages. The 2
3 neighbourhoods of corresponding pixels in the three dutpages of the first stage are
assembled to construct the input patterns to the secorsifatation stage. Thus, the single
network in the second stage (MLP 4 in Fig. 7) consist of 27 ia@ from each output
image of the first stage), one output and a number of hiddeeshogtimized by means of
the validation error.

A complete study of the individual response of the networsoeading to the size of
the considered neighbourhood, i.e. depending on W, islddtai Sect. 3.1. Moreover, Sect.
3.1 also includes results from the searching process of ésedombination of MLP and
justifies the selection of the configuration proposed in Fig.

Figs. 10 to 13 show the partial and final classification resfalt the ultrasound image
in Fig. 1, according to the proposed classification scherseah be seen, depending on the
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Fig. 7 Network ensemble strategy adopted to solve the segmeantasé. In Figure, WP denotes ‘Window-
ing Process’.

-
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Fig. 8 Input features selected for each MLP in Fig. 7.

considered window size, the networks in the first stage lealifferent classification errors
(Figs. 10-12). As the value of W increases, the network téagsoduce thicker but more
definite boundaries and to reduce the classification ertgssde the LI and MA interfaces.
The combination of networks in the second stage allows taiokd cleaner image (Fig.
13), in which the classification errors of pixels are greatiguced. Nevertheless, it is still
necessary to eliminate some residues, to refine the corandr$o separate the interfaces.
To this end, a post-processing stage has been designeilie@ateSect. 2.3.3).

2.3.3 Post-processing Stage

The output binary image of the classification stage shoulddireigged and refined to mea-
sure the IMT in order to identify and discard the false pusitilassification errors (see Fig.
13). For this purpose, the post-processing stage showmgirlEiis applied to the classifica-
tion results.

To begin with, it is necessary to identify and separate thend MA interfaces. With this
aim, the image is processed, column by column, looking fiaalske columns. Therefore, we
reject: {) columns in which all the pixels have ‘0’ valugij)(those columns where a single
boundary has been foundii | columns wherein two objects are detected and the separatio
between them is considered atypical. Note that the case ichwhe column is composed
of more than two objects has still not been taken into accodinthis point, we apply a
hard constraint to ensure the location of the optimal sastto measure the IMT. In those
columns which have not been discarded, the distance (nuofipéxels) between the found
objects is assessed. Then, we consider that a change ovaeliie to the average of this
distance is not valid and we discard those columns that dfutibthis condition. This value
has been taken because all the available images providde: inpspital are free of plaques.
Thus, there are not large variations in the separation effextes within the same ultrasound
image. Moreover, in columns with more than two detectedatbjehis constraint helps us to
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Fig. 9 ROI for the ultrasound image in Fig. 1.

Fig. 10 Partial result of the first classification stage correspogdo ‘MLP 1’ for the ROl image in Fig. 9
(‘Output Image 1in Fig. 7).

Fig. 11 Partial result of the first classification stage correspogdo ‘MLP 2’ for the ROl image in Fig. 9
(‘Output Image 2in Fig. 7).

Fig. 12 Partial result of the first classification stage correspogdo ‘MLP 3’ for the ROl image in Fig. 9
(‘Output Image 3in Fig. 7).

Fig. 13 Binary image obtained at the output of the second classditatage.

- I —
_--._.-------"'"'-'---, S
J—

Fig. 14 Final LI and MA boundaries obtained after the post-processtage for the binary image in Fig. 13.
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Fig. 15 Diagram of the post-processing stage. First, the clastificaesults are debugged and, then, the LI
and MA interfaces are identified.

identify the correct ones. The reliable sections for the lividasurement, i.e. groups of not
discarded consecutive columns, are obtained in this waidse sections, pixels belonging
to the LI interface (upper) and MA interface (bottom) arenitliéed.

Once the measurement sections have been located, we musstieroanother aspect
about the classification results. Due to the poor resolubibthe ultrasounds, we obtain
thick boundaries instead of one-pixel contours. This hapgmcause the networks find the
searched intensity patterns, since they have been tragmet in all these pixels. In order
to define the final contours on which the IMT measurement ifopeed, we formulate a
nonlinear least squares problem by fitting a sum of Gaussiadteta (up to 5 models) to
the data and it is solved using the Trust-Region Reflectigerdhm [32]. By that means,
the best model, which minimizes the Root Mean Squared ERMSE) between the white
pixels in the binary image and the approximated contourus\d for each interface. Fig.
14 shows the final contours for the LI and MA interfaces exgddrom the binary image in
Fig. 13.

3 Results and discussion

The suggested method was developed and tested under Matlal?C with an Intel Core
i5 processor at 2.8 GHz and a 8 GB RAM. The mean total CPU tim@meessed image
is 3.44 s. The ROI selection task (pre-processing stagesiased a high efficiency by
spending 0.34 s in mean for each case. Once the networks bawerained, classification
results are provided in a fast way, with an average respamsedf 0.72 s for all the pixel in
the selected ROI. On the other hand, given the binary outpagé of an ultrasound image,
the post-processing stage achieves the location of thebtelsections and returns the final
IMT boundaries in 2.4 s (mean time).

In this section, the performance and accuracy of the prapoasethodology from dif-
ferent points of view are characterized. Sect. 3.1 presamtexhaustive analysis of the
networks performance. In Sect. 3.2 a visual validation efibsults for several images is
shown. The degree of agreement between manual and aut@egtientations is included
in Sect. 3.3. Sect. 3.4 closes the analysis of the resultsanétudy of the variability in the
IMT measurements.
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3.1 Networks Performance

In this section, the configuration of neural networks pregbs Sect. 2.3.2 to solve the
segmentation task is justified (see Fig. 7). First, a perfmre study of a single MLP was
realized for different window sizes (W from 3 to 21) by assogjiin each case, the selec-
tion of 9 input features shown in Fig. 8. For this analysig, docuracy(ACC), specificity
(SPEC) anaensitivity(SEN) of the binary classification were assessed on thedest the
following form:

B TP+ TN
ACC(%) =100 X g p (1)
TN
SPEC(%) = 100 X sy @)

TP
SEN(%) = 100 X s ©)

where TP is the number of true positives; TN is the numberg tregatives; FP and FN
are the number of false positives and false negatives, céeply. Thus, ACC represents the
success rate, SPEC relates to the ability to identify negaésults (hon-IMT-boundary
pixels) and SEN relates to the ability to identify positiesults (IMT-boundary pixels).
Since the networks were retrained 20 times with differeittaihconditions, the results are
shown in terms of mean and standard deviation (SD).

Table 1 shows the response of a single network accordingetuatue of W. As can be
seen, the accuracy stagnates for W greater than 11. Mordoval/ > 13 the specificity
drops considerably due to the increase of false positivieis. HP increase is translated into
dirtier images at the network output. Therefore, itis polesio conclude that the best single
MLP is the one that considers the pixel intensities of a 11 neighbourhood of the pixel to
be classified. These results are also shown graphicallyginlféito facilitate its analysis.

Nevertheless, these results can be improved by means obthkimation of different
networks. Thus, a network ensemble is proposed in this wodolve the segmentation of
the ultrasound images of the CCA. In this sense, a study tfi@lpossible combinations of
MLP has been performed to find the best configuration for oaci§ig application. Basing
on the conclusions extracted from Table 1 and Fig. 16, ordyn#éttworks with W from 3 to
11 were considered in this analysis. As commented in Se&&R,2he combination of MLP
is performed by other MLP. Thus, the classification of pixslperformed in two stages.
Once the output images of the networks in the first stage a@nglnl, a new windowing

Table 1 Single MLP performance for different neighbourhood sizddean+ SD values.

ACC (%) SPEC (%) SEN (%)
W=3 87.10£072 83.67£1.06 90.53+ 0.58
W=5 90.28+058 86.62-0.84 93.94- 0.57
W=7 91.59+0.80 88.06:1.08 95.13+ 0.79
W=9 91.91+062 89.10:£1.00 94.71+0.53
W=11 9217-1.00 89.55:1.63 94.7%% 0.57
W=13 92.62-045 88.99:£0.71 96.24+ 0.53
W=15 92.05-051 8815072 9596+ 0.48
W=17 91.93-0.62 87.64£0.72 96.22+ 0.69
W=19 92.19+059 87.69£0.54 96.6%% 0.77
W=21 91.91+054 8698051 96.85: 0.85
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Fig. 16 Network performance for different window sizes (mean vaJu€or W> 13 SPEC drops consider-
ably. Thus, the best configuration corresponds to:all neighbourhood.

process (with W = 3) is carried out to assemble the input pat® the MLP in the second
stage.

Table 2 shows the performance of all the possible combinatid two MLP. The anal-
ysis of all the possible combinations of three MLP is showiiable 3. On the other hand,
Table 4 includes the corresponding results for the comioinaif four MLP and the com-
bination of all the considered MLP. In each case, the greletedlls indicate the combined
networks. The results are sorted from highest to lowestracguObviously, the best results
are obtained when the best single network (W = 11) is included

Fig. 17 graphically shows a comparison of the best configamat The best single net-
work (W = 11), the best combination of two, three and four ML ahe combination of
all the networks (W from 3 to 11) are included. In all the cadies possible to verify how
the combination of MLP overcomes to the best single netwagkcan be observed in the
left graph, there are no significant differences betweerb#ds combinations of networks
in terms of mean ACC, which is about 94.4% in all the cases.tRigrreason, the opti-
mal network ensemble must be chosen according to the batibredhip between SEN and
SPEC for our particular application. In this sense, the doattns of three and five MLP
show a slight improvement. Moreover, the graph on the rigipicts the best cases (highest
ACC from 20 initiations) of the different configurations, ere the case of 3 MLP stands
out again. Thus, it is possible to conclude that the best gortion for our application is
the combination of three MLP with W values equal to 3, 7 and 11.

3.2 Automatic Segmentation Examples

As commented in Sect. 2.1, the proposed segmentation me#sdakeen tested on a set of 60
B-mode ultrasound images of the CCA provided by the Radjo@gpartment of Hospital
Universitario Virgen de la Arrixaca. Some examples of sege images are shown in this
section. The final boundaries corresponding to the LI and Mt&rfaces detected by our
automatic segmentation method are superimposed on tlasalinds.

To ensure an optimal visualization of the interfaces in th@sound, a straight and hor-
izontal appearance of the carotid artery in the image igalelel. However, this projection is
not always possible. Sometimes, the CCA may be tilted orezibecause of the probe po-
sition or the own anatomy of the subject. In the case of algms using human interaction,
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Fig. 17 Performance of the best studied configurations: (left) Medues; (right) Best cases.

the operator can select the optimal area of the image forMerheasurement. Neverthe-
less, totally automatic methods must be robust against tiplmlogy of the artery.

When the visualization of the artery in the image is the ide, i.e. straight and quasi-
horizontal, our segmentation reaches highly accuratdtsesithout major complications
(see Fig. 14). Furthermore, it proves to be robust agaiesbtientation and appearance of
the CCA in the image without being necessary to realize amgction in this sense during
the pre-processing stage. Fig. 18 depicts the good segtoentasults of a CCA that is
inclined with respect to the image edges. The capabilityuwfroethod in dealing arteries
with certain curvature is shown in Fig. 19.

The utilization of different window sizes and the combipatof the corresponding net-
works allow the adaptation of our algorithm to images wittfiedent spatial resolution. Fig.
20, with a substantial variation with respect to the othezsoim the image resolution, is
included as evidence of this fact. Moreover, Fig. 21 showespdrticular case in which the
LI interface is only partially visible, whereas Fig. 22 esittes the good response of our
method even if the carotid bulb appears in the image.

Table 2 Performance of all the possible combinations of two MLP. Maad SD values (%). The results are
sorted from highest to lowest ACC.

3x3
5x5
<7
9x9
11x11
ACCmean || 94.36 | 94.24| 94.12] 93.9% 93.5p 93.28 93.18 92|65 92.65 91.33
ACCgsp 0.23 0.25 0.22 0.28 0.18, 0.26 0.20 0.25 0.30 0.81
SPEGnean || 91.79 | 91.98| 91.33 91.52 90.26 90.25 90.p1 89|86 89.45 88.37
SPEGp 0.43 0.43 0.44 0.38 0.38 0.57 0.39 0.46 0.50 0.66
SENnean || 96.93 | 96.50| 96.90 96.3%§ 96.78 96.31 95.f6 9544 95.84 94.29
SENsp 0.32 0.40 0.34 0.50 0.29 0.55 0.37 0.27 0.30 0.88
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Fig. 18 Example of good segmentation on a tilted carotid artery: RG¥ x 728]. The image resolution is
0.050 mm/pixel and the automatic measure of the \Md is 0.568 mm.

Fig. 19 Example of good segmentation on a curved carotid artery: [ROI x 747]. The image resolution
is 0.047 mm/pixel and the automatic measure of the \)d is 0.619 mm.

Fig. 20 Example of robustness against changes in spatial resellRiOIl [79 x 466]. The image resolution
is 0.081 mm/pixel and the automatic measure of the \)d is 0.456 mm.

Fig. 21 Example of good segmentation when the LI interface is gbrtiasible: ROI [142 x 734]. The
image resolution is 0.033 mm/pixel and the automatic meastithe IMTyap is 0.546 mm.

--.___.

—— = n‘ ’ 2!
Fig. 22 Example of good segmentation when the carotid bulb is \@siRDI [65x 572]. The image resolu-
tion is 0.066 mm/pixel and the automatic measure of the W is 0.758 mm.
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Table 3 Performance of all the possible combinations of three MLBaMand SD values (%). The results
are sorted from highest to lowest ACC.

3x3
5x5
<7
9x9
11x11

ACCmean || 94.38 | 94.31| 94.25 9423 9418 94.16 93[7 93|68 9339 9
ACCsp 0.32 0.26 0.27 0.22 0.26 0.20 0.26 0.19 0.34 0.80
SPEGnean || 92.00 | 91.39] 91.62] 91.83 91.9 91.46 90.66 90{98 90.88 89.97
SPEGp 0.64 0.38 0.50 0.48 0.48 0.37 0.54 0.38 0.48 0.58

9
0.

P.59

[y

SENmnean || 96.77 | 97.23| 96.88 96.63 96.4 96.§ 38 95.90 5.21
SENsp 0.49 0.33 0.36 0.39 0.39 0.37 0.2} 0.44 0.47 B4

=
(o2}
©
o
©
[e°]
©
[e)]

Table 4 Performance of all the possible combinations of four and ¥i\d>. Mean and SD values (%). The
results are sorted from highest to lowest ACC.

3x3
5x5
=7
9x9
11x11

ACCrean || 94.46 | 94.40| 9431 9430 94.290 93.72
ACCsp 0.25 0.23 0.29 0.30 0.29 0.34
SPEGnean || 92.19 | 91.79| 91.95 91.84 91.94 91,00
SPEGp 0.43 0.45 0.61 0.50 0.72 0.49
SENnean || 96.72 | 97.01| 96.66f 96.7¢ 96.64 96.44
SENsp 0.42 0.35 0.38 0.44 0.49 0.43

3.3 Segmentation Accuracy

In order to validate the segmentation results, the aut@aigtiobtained contours have been
compared with four manual tracings performed by two différexpert radiologists. There-

fore, a total of 240 manual segmentations have been pertbrirteese comparisons were
carried out separately for the LI and MA interfaces usindedént metrics: Mean Absolute

Distance (MAD), Poly-Line Distance (PLD) and Center Linesfance (CLD). Hereafter,

we will refer to the different segmentations as follows:

M1,: First manual segmentation from expert no. 1.

M1,: Second manual segmentation from expert no. 1.
M1: Average contour from expert no. 1, i.e. mean (M#1,).
— M2;: First manual segmentation from expert no. 2.

— M2;: Second manual segmentation from expert no. 2.
M2: Average contour from expert no. 2, i.e. mean (M#12,).
GT: (Ground-Truth) Average of the four manual tracings.
— A: Our automatic segmentation.

On the one hand, the intra-observer error is assessed incaaehby comparing two
manual segmentations from the same expert,;(M1, and M2-M2,). Furthermore, the
inter-observer error between the average contours fromegeert was also computed (M1-
M2). By means of these errors, the uncertainty and vartglofi the manual procedure are
characterized. On the other hand, the inter-method errsrevaluated by comparing our
automatic segmentations with those considered as groutid{A-GT).
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MAD is the most used quantitative metric to evaluate IMT dreldccuracy of a segmen-
tation method. It is based on the vertical distance betweeatoars along the longitudinal
axis of an image. Given two boundarie3;(and B2), MAD is defined as:

N
MAD(B1, By) = 3 |Bi(y) ~ Ba(y)| @)
y=1

whereN is the number of points constituting the two boundaries gisdhe index spanning
the columns of the image. Nevertheless, MAD may deviate fiteertrue distance between
two contours when these present certain slope or curvature.

Poly-Line Distance was proposed in [41] as a more robust aehdbte indicator of
the distance between two boundaries. In this case, it is mecassary condition that two
contours have the same number of points. Gikerwith N; points andB2 with N2 points
(see Fig. 23), PLD betweeB; andB: is defined as:

d(Bl7 BQ) + d(B27 Bl)
N1+ N2

PLD(By,Bz2) = 5)

whered(Bi, Bs) is the distance between the vertices®f to the corresponding closest
segments 0B and it is computed as:

d(B1,B3) = > d(v,Bs) (6)

veB;

andd(Baz, B1) is assessed in a similar manner.
PLD fromv € B to By is defined asi(v, Bz) = mingep, d(v, s), wheres is the
segment ofB2 from vy to v2. The distance(v, s) is evaluated as:

_Jldr ], if0< A< dio
d(v,s) = {min(d17d2)7 otherwise ()

whered;, d2 andd; 2 are the Euclidean distances between the pairaadv;, betweenv
andwvs, and between; andvs, respectively:

di =/ (z —21)2 + (y — y1)? 8)
do = /(z — 22)2 + (y — y2)2 )
diz = /(22 — 21)2 + (y2 — y1)2 (10)

As can be seen in Fig. 23, is the normal distance betweerand the segment and ) is
the distance along the vector of the segment

(2 —y) (w1 — )+ (z2 — 1) (y — y1)
= Vi(ze —21)2 + (y2 — y1)2 )

(v —y)(y—y1) + (z2 — z1)(x — 21)
A= V(z2 —21)2 + (y2 — y1)? (12)

CLD [39] is based on the calculation of the center line betwibe two boundaries to
compare. Once this line is found, a segment perpendicutaetoenter line, which intersects
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B, = (x0, Yo)

(x1, Y1) = 1 2 =(x2, ¥2)

Segment s

Fig. 23 Diagram of the Poly-Line Distance metric between two bouieda

with B; and Ba, is considered at each point. Finally, CLD is defined as thamtength of
all the segments:

N
CLD(By, B2) = % >k (13)
=1

wherel; is the length of the-th segment anaV is the number of points of the center line.
CLD, as PLD, takes into account the local orientation of theraaries. However, just like
in the MAD metric, the number of points iB; and B, must be the same.

Once the distance metrics have been defined, we are ablelysattze obtained results.
Tables 5 and 6 show the mean and standard deviation valuestf®/60 tested ultrasound
images) of the segmentation error for the LI and MA inter&aaespectively. The MAD,
PLD and CLD metrics are used to assess the variations betvedogous contours (LI or
MA) from two different segmentations.

Fig. 24 shows the distributions of MAD, PLD and CLD metrics tbe intra-observer
errors, whereas Figs. 25 and 26 depict the inter-obsereketraninter-method error, respec-
tively. The box whiskers extend to the most extreme not exgtlvalues (marked ag. On
each box, the three horizontal lines represent tHe @&rcentile, the median and the!75
percentile of the data. These values are also shown in Table 7

The distributions of the intra-observer segmentationremreveal that a greater variabil-
ity exists for the MA interface. This is due to the fact thatgeneral, transitions from lumen
to intima layer are clearer than transitions from media teeatitia layer. The same trend,
i.e. the major uncertainty for MA, can be seen in the intesevleer segmentation error.
However, when the comparisons are made between our autocoatiours and the GT, the
MA segmentation error is considerably reduced. Thus, tbpgeed method improves the
segmentation of the interface most difficult to recognizenefor the human visual system.

Table 5 Segmentation error for the lumen-intima interface in pmaMand standard deviation for the 60
images using MAD, PLD and CLD metrics.

Mean+ SD LUMEN-INTIMA INTERFACE
n =60 MAD PLD CLD

M1:-M1, 32.28414.51 34.0A 14.85 32.24+ 14.65
M21-M2; 36.294+12.96  39.24+ 13.67  35.85+- 13.02
M1-M2 30.084+ 13.11  33.114-16.86  30.26+ 14.49
A-GT 37.03+ 18.57 39.62+18.14  37.03+ 18.45
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INTRA-OBSERVER ERROR: M1, - M1, (mm)

Fig. 24 Intra-observer segmentation error. Box plots
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Besides, the segmentation error (A-GT) of the LI interfeceamparable to the intra- and
inter-observer errors between manual segmentations.

Despite the greater error and the higher dispersion of ttoe far the MA boundaries,
there is a good agreement between manual tracings. Thug) faterfaces: 26.1 pnx
median (MAD) < 35.5 pm; 27.2 pnK median (PLD)< 38 pm; and 26 pnx median
(CLD) < 34 um. On the other hand, the error between manual MA intesfe 35.4 <
median (MAD)< 43.5 um; 36.5 unx median (PLD)< 48.6 um; and 35.2 pr median
(CLD) < 43.5 um. These values emphasise the goodness of the magomrdrgations.

3.4 IMT Measurements

Given an ultrasound image and two different segmentatiShsatd S2) to compare, the
degree of agreement between its IMT measures is assessalttblating the absolute error
value:

EII\ITi _ |IMTZ-S1 _ [MTiSQ| (14)

beinge’ M7 the IMT measurement error between the segmentaticand the segmentation
S, for thei-th image. In each case, the IMT value, i.e. the distance betifeeboundaries
corresponding to LI and MA, is evaluated by using the aforeiineed metrics: MAD, PLD

and CLD.

The mean and standard deviation values (60 processed ijrfagéise intra-observer,
inter-observer and inter-method IMT measurement errandeaseen in Table 8. The mean
absolute error of the automatic measurements is about 3Amich is a similar value
(slightly lower) to the inter-observer error. In additiadhe correlation coefficients (R) be-
tween the automatic measures and the GT are comparable Bovhkies associated with
the intra-observer variability. Therefore, the precisiothe automatic IMT measurements
is full well justified. Moreover, Table 9 shows the mean absolerror reached by other
methods. However, a complete comparison with other praptsghniques is not possible
because each one is characterized by means of the average wthe error on its own im-
age dataset considering a particular ground-truth. Furtbee, most are not fully automatic
and these methods consider a single image resolution orpamiyit a minimal variation
of this parameter. Thus, the goodness of our method can enlynterstood by comparing
with the intra- and inter-observer errors.

Besides, the statistical distribution of the IMT measuretrerrors between different
segmentations is depicted in the box plot of the Fig. 27. Ashmaseen, there is not mean-
ingful differences in the statistical distribution of theeasurement error when the metric
used in the evaluation of IMT is MAD, PLD or CLD. Because ofstlfiact, only the IMT
measures assessed by PLD metric are considered hereinafter

Table 6 Segmentation error for the media-adventitia interfacenin Mean and standard deviation for the 60
images using MAD, PLD and CLD metrics.

Mean+ SD MEDIA-ADVENTITIA INTERFACE
n =60 MAD PLD CLD

M1:-M1, 47.314+18.29 48.76+- 18.34 47.26+ 18.31
M21-M2; 46.344+19.25 49.0419.05 46.06+ 19.18
M1-M2 41.47+18.47 4353+ 19.44 41.46+ 18.66
A-GT 34.524+10.29 37.02-11.23  34.674 10.68
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Table 7 Segmentation error statistics for the LI and MA interfaceguin.

First Quartile Median Third Quartile

MAD PLD CLD MAD PLD CLD MAD PLD CLD
M1,-M1, - L 2184 2336 2199 3014 3029 2890 3976 4138 39.70
3553 3585 34.74 4353 44.81 4351 56.38 56.69 56.51
M2,-M2, - L 2638 2805 2545 3548 3802 3404 4500 4946 4461
A 30.71 32.36 30.06 40.91 48.61 4250 59.46 63.37 59.06
Mimz L _ 2049 2257 19y2 2609 2718 2600 _ _ 39.74 41.47 39.68
MA  28.63 30.93 28.60 3542 36.54 35.18 51.31 52.16 51.54
AGT .V _ 2182 2446 2203 _ 3432 3763 3399 4456 4947 4453
MA 26.70 28.87 26.49 33.72 3591 33.38 4153 43.77 4164

Figs. 28 to 31 establish the statistical evaluation of IMAth@ manual and the automatic
segmentations. The right figures show the linear regressiatysis for the IMT between
different segmentations; whereas the Bland-Altman plbtiseodifferences between the IMT
of the corresponding two segmentations against their geeran be seen at left figures.

The regression analyses between manual segmentationshifieosame expert (Figs. 28
and 29 (right)) show high correlation coefficients (0.98R < 0.986). Besides, the inter-
observer reproducibility of the IMT measurement is 96.5&e the correlation coefficients
in Table 8 and Fig. 30 (right). Furthermore, when compartmgdutomatic measures with
the GT (Fig. 31 (right)), we also obtain a high degree of agwe® between methods (R
98%). Bland-Altman plots show the following limits of agreent (meart- 2 x standard
deviation): -4+ 66 um between Mland ML, 7 + 71 pum between M2and M2, 11
+ 103 pm for the inter-observer variability, -26 72 um between A and GT. Therefore,
the proposed method tends to slightly underestimate the BW&n so, the lower limit of
agreement between automatic measurements and the GT (398 gimilar to that of the

Table 8 IMT measurement errors (mean and standard deviation vatuesi) and correlation coefficients
(%) between different segmentations.

IMT map IMT pLD IMT cLp
M (um)  R®) | MT(um)  R(%)| M (um) R (%)

M1;-M1,  27.79+19.53 98.52| 27.0%18.92 98.57| 27.1%18.77 98.58
M2:-M2,  28.874+22.08 98.43| 28.674 22.88 98.41| 28.8322.04 98.40
M1-M2 37.84+37.66 96.43| 37.1%36.87 96.49| 37.2x36.71 96.51
A-GT 37.63+25.18 98.17| 36.7&24.29 98.20| 36.8324.50 98.24

Table 9 Performance of other techniques for IMT measurement. rcates the number of tested ultrasound
images. The metric adopted to assess the IMT measurementekAD.

Author Year n  MT (um)  Automatic
Liang et al. [21] 2000 50 4% 25 NO
Gutierrez etal. [17] 2002 30 9860 NO
Stein et al. [40] 2005 50 447 NO
Faita et al. [10] 2008 150 1& 35 NO
Molinari et al. [29] 2010 182 5435 YES

Xu et al. [46] 2012 50 38.% 16.4 NO
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inter-observer error (-92 um). Moreover, the dispersionitierences between A and GT
with respect to the average (SD = 36 um) is comparable to fhedntra-observer error
(SD = 35.5 um) and significantly lower than that of the intbserver error (SD =51.5 pum).

4 Conclusions

This paper proposes a segmentation method of the caroticafbusing neural networks in
order to measure the Intima-Media Thickness (IMT) in a tptalitomatic way. The main
advantage of our method is not only the automation but alsclpability to automatically
identify the most clearer sections on which the IMT measerm@s) are performed. This
ability allows the successful segmentation of noisy andrbtliimages even if the IMT
boundaries are not visible along the whole longitudinagction of the image.

The fundamental part of the proposed method is a classditatage. Segmentation is
treated as a pattern recognition problem in which a MuliydraPerceptrons (MLP) must
perform a binary classification of the pixels to find the IMTntaurs. For this purpose,
different nets were trained under the Scaled Conjugate i@ma@dSCG) learning method.
Input patterns consist of the intensity values from a neiginbood (windowing process) of
the current pixel to be classified and different window sizage been analysed. With the
aim of improving the accuracy of this task, the results frome¢ different MLP have been
combined in a second stage by means of another MLP. This neensemble has proven
to be the best of all possible combinations of MLP for thislegapion in particular. Our
system is completed with a pre-processing stage in whicR@leis automatically selected
and with a post-processing stage that takes charge of thecggh of the final boundaries
starting from the results of the classification stage.

The proposed configuration of the system has been testegl asiat of 60 ultrasound
images of the CCA. Our segmentation method achieves theatatetection of the LI and
MA interfaces in all the tested images. Several quantigativaluations have showed its ac-
curacy and robustness by comparing the obtained resultsfawit manual segmentations.
In this sense, the suggested approach stands out for theleaisy reduction in the seg-
mentation error for the MA interface which, generally, is thost difficult to segment.

MAD: Exp. 1 LE[:FLfA

PLD:Exp.1| -~ { [ F—-——1

CLD:Exp.1| w4 [ F—-—--

MAD:Exp.2| +{ | F—-——H4% *

PLD:Exp.2| —{ [ F———14 %%

CLD:Exp.2| H{ [ F—-———4 % =*

MAD:M1-M2 ~{_ [ }F —-—-—-—--— 1% * ok *
PLDM1-M2| ~{ [ F----~ 1 * % *
clomi-m2| - { [ F - - - - - 1 * % *
MAD:A-GT| +{ | F————+

PLD:A-GT| w4 [ F-—---1

CLD:A-GT | -1 [ F————+

6 0.55 0‘.1 0.15

Fig. 27 Statistical distribution of the IMT measurement error betw different segmentations using MAD,
PLD and CLD metrics (mm).
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Finally, we conclude that the application of pattern recétgm techniques in the form
suggested in this work is suitable for the clinical evaloanf IMT, because of the computa-
tional efficiency of the proposed procedure and the higheagest between automatic and
manual segmentations. Future works could be focussed ordatecting the carotid near
wall by the same strategy in order to measure the lumen danidbreover, an adaptation
of our method for the recognition of plaques may be of gretetrast.
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