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Jośe-Luis Sancho-Ǵomez
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Abstract Atherosclerosis is the leading underlying pathologic process that results in cardio-
vascular diseases, which represent the main cause of death and disability in the world. The
atherosclerotic process is a complex degenerative condition mainly affecting the medium-
and large-size arteries, which begins in childhood and may remain unnoticed during decades.
The Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) has emerged as
one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is mea-
sured by means of B-mode ultrasound images, which is a non-invasive and relatively low
cost technique. This paper proposes an effective image segmentation method for the IMT
measurement in an automatic way. With this purpose, segmentation is posed as a pattern
recognition problem and a combination of artificial neural networks has been trained to
solve this task. In particular, Multi-Layer Perceptrons trained under the Scaled Conjugate
Gradient algorithm have been used. The suggested approach is tested on a set of 60 lon-
gitudinal ultrasound images of the CCA by comparing the automatic segmentation with
four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed.
Despite of the simplicity of our approach, several quantitative statistical evaluations have
shown its accuracy and robustness.
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1 Introduction

CardioVascular Diseases (CVD) are the leading cause of death and disability in the world
[33]. In 2008, about 17.3 million people died from CVD representing 30% of all global
deaths. An important part of these were premature deaths andcould have largely been pre-
vented. Over 80% of CVD deaths take place in low- and middle-income countries and occur
almost equally in men and women.

Atherosclerosis is responsible for a large proportion of CVD [33]. It is a chronic de-
generative disease characterized by the accumulation of fatty material and cholesterol at the
arterial walls. Therefore, atherosclerosis causes thickening and the reduction of elasticity in
the arterial walls. Although this pathology may remain unnoticed for decades, atheroscle-
rotic lesions (plaques) could even lead to a total occlusionof the blood vessels. This is
the major underlying cause of heart attacks and strokes. Forthis reason, an early diagnosis
and treatment of atherosclerosis are crucial to prevent patients from suffering more serious
pathologies. In this sense, the Intima-Media Thickness (IMT) of the Common Carotid Artery
(CCA) is considered as an early and reliable indicator of this condition [24,42]. By studying
IMT, a specialist can detect subclinical atherosclerosis and analyse the drug response.

The IMT is measured by means of a B-mode ultrasound scan, which is a non-invasive
and low cost technique that allows a short time examination.The use of different protocols
and the variability between observers is a recurrent problem in the measurement procedure
[43]. The repeatability and reproducibility of the processis of great significance to analyse
the IMT [3,14].

The processing proposed in this work intends to improve and extend the manual mea-
surement protocol used by the Radiology Department from Hospital Universitario Virgen
de la Arrixaca [43]. IMT should be measured on the far (posterior) wall along a 1-cm-long
section proximal to carotid bifurcation, where a bright-dark-bright pattern corresponding to
the intima-media-adventitia layers of the arterial walls can be observed (see Fig. 1). The
IMT is the distance between the lumen-intima (LI) interfaceand the media-adventitia (MA)
interface. The physician manually takes three measurements in the selected carotid segment,
and the measurement corresponding to the maximum IMT is considered the final value [43].
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Fig. 1 Longitudinal view of CCA in an ultrasound B-scan image and scheme of the carotid interfaces for
IMT measurement.
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By means of image segmentation algorithms it is possible to reduce the subjectivity
of manual approaches and detect the IMT throughout the artery length (not only in a few
points), which leads to more precise results and allows to extract statistics of interest to the
specialists. In the last two decades, several solutions have been developed to perform the
carotid wall segmentation in ultrasound images [30]. Most of the proposed methods are not
completely automatic and they require user interaction to start the algorithm, such as [22,
7,40,10,35]. However, some fully automatic approaches were recently published [8,12,29,
1]. It is possible to make a classification of techniques according to the used methodology.
In this sense, we can find algorithms based on edge detection and gradient-based techniques
[22,40,10,38], and other proposals based on dynamic programming [44,21,16,6,36,20],
active contours [7,8,5,17,25,4,37,28] or in a combinationof techniques [35,23,29]. We
can also find highlight techniques based in statistical modeling [9,19] and those in which
Hough transform is employed [12,46].

In this work, a segmentation technique based on the use of neural networks is proposed
to extract and measure the IMT from a B-mode ultrasound scan image in an automatic way.
Firstly, a given image is pre-processed to detect automatically the region of interest (ROI),
which is the far wall of the vessel. Then, a network ensemble perform a classification of the
pixels belonging to the ROI in either ‘IMT-boundary’ pixels or ‘non-IMT-boundary’ pixels,
resulting to a binary output image. Finally, this binary image is post-processed to extract the
final contours corresponding to the LI and MA interfaces in the most reliable sections for
the IMT measurements.

The remainder of this paper is structured as follows. Sections 2.1 and 2.1 describe the
set of tested ultrasound images and the reference segmentation results. In Sect. 2.3, the
proposed segmentation method is explained in detail. The obtained results are shown in
Sect. 3. Finally, a revision of the proposed method and the main extracted conclusions can
be found in Sect. 4.

2 Materials and methods

2.1 Images Acquisition

A set of 60 longitudinal B-mode ultrasound images of the CCA,in DICOM format, have
been used in the validation of our segmentation technique. All of them were provided by
the Radiology Department ofHospital Universitario Virgen de la Arrixaca(Murcia, Spain).
The subjects were 30 patients whose ages ranged from 25 to 79 years, with a mean age of 57
years, including 15 females and 15 males. Fig. 1 shows an example of the tested ultrasound
images.

Ultrasound scans were acquired using aPhilips iU22 Ultrasound Systemby means of
three different ultrasound transducers (L12-5, L9-3 andL17-5) according to the measure-
ment protocol proposed in [43] and recorded digitally with 256 gray levels. The spatial
resolution of the images ranges from 0.029 mm/pixel to 0.081mm/pixel, with mean and
standard deviation equal to 0.052 and 0.015 mm/pixel, respectively. The parameters of the
scanner (depth of focus, frame rate, gain settings, log gaincompensation) were adjusted in
each case by the radiologist to obtain images with sufficientquality to correctly visualize the
boundaries of the IMT. Some blurred and noisy images, affected by intraluminal artifacts,
and some others with partially visible boundaries are included in the studied set.

The final objective of the proposed segmentation approach isto achieve a reliable auto-
matic measurement of the IMT. The Mannheim consensus [42] recommends the performing
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of the IMT measurement preferably on the far wall of the CCA within a region free of
plaques, which provides increased accuracy, repeatability and reproducibility [14]. For this
reason, ultrasound images with visible plaques are not included in our study. However, our
method could be adapted to detect and characterize the different classes of plaques.

2.2 Manual Delineations

To assess the performance of the proposed segmentation method and the accuracy of the
obtained IMT measurements, it is necessary to compare the automatic results with some in-
dication of reference values (ground-truth). Although it is not possible to define the ‘perfect
segmentation’, we use the average of four different manual segmentations to perform this
comparison. In particular, two experienced radiologists delineated each one of the 60 ultra-
sound images twice, with a mean period of two months between tracings. Thus, a total of
240 manual segmentations have been performed. These reference values allow us the study
of the inter-method differences (manual vs. automatic), and the intra- and inter-observer
variability. Each manual segmentation of a given ultrasound image includes tracings for the
lumen-intima interface and the media-adventitia interface on the far carotid wall. A simple
routine developed under the Matlab environment assists theexperts to do the manual delin-
eations. By means of this application (see Fig. 2) it is possible to mark with the mouse so
many points as it is wished on the image. These points are interpolated later to complete the
required contours.

2.3 Segmentation Method

Fig. 3 shows an overview of the proposed IMT segmentation methodology. Firstly, a given
ultrasound image of the CCA is pre-processed to automatically detect the region of interest
(ROI). Then, a windowing process take place in order to construct the intensity pattern
corresponding to each pixel. After this, a binary classification of the pixels on the ROI is
performed. Finally, classification results are post-processed to extract the final contours for
the LI and MA interfaces.

Fig. 2 Appearance of the application implemented in Matlab to assist in doing the manual segmentation of
the carotid wall layers.
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Fig. 3 Overview of the proposed methodology. It consists of three stages: Pre-Processing (detection of ROI),
Segmentation (classification of pixels) and Post-Processing (extraction of final contours).
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Fig. 4 Diagram of the pre-processing stage. First, a binary mask iscreated by means of Mathematical Mor-
phology. Then, the dark area corresponding to the lumen is identified and the ROI (far wall) is selected.

2.3.1 Pre-processing Stage

In the ultrasound images (see Fig. 1), the lumen correspondsto a dark region (low echogenic-
ity) delimited by the arterial walls. Over the lumen in the picture, at less depth, it is observed
the echo corresponding to the near wall. The far wall, where the IMT is measured, is located
below the lumen, and it constitutes our region of interest (ROI). This section describes a
pre-processing stage in which the carotid far wall is located in a completely automatic way.
Fig. 4 shows the main steps followed to reach this goal.

First of all, Watershed Transform [26] is applied to the morphological gradient of the
image. The transformed image consists of a large number of watershed regions. Then, closed
regions are filled by means of morphological operations [15,13], resulting in a binary im-
age. Only those objects with largest areas are extracted from this image to build a binary
mask. Hereafter, an object in a binary image will refer to a set of white pixels connected by
considering a 2D 8-connected neighbourhood. In this way, weavoid undesirable intra- and
extra-luminal artifacts which can lead into error.

In the final binary mask, the largest black area connected to the biggest white object
identifies the carotid lumen in the ultrasound image (see Fig. 5). Once the lumen has been
located, we focus on its lower limit corresponding to the posterior wall of the CCA and the
boundaries of the ROI are established. The superior boundary is fixed to 0.6 mm above the
uppermost point of the far wall detected in the binary mask, whereas the bottom boundary
is fixed to 1.5 mm below the lowest point. Thus, the size of the ROI is related to the carotid
artery appearance in the ultrasound image.
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Fig. 5 ROI selection for the ultrasound image in Fig. 1: (left) Final binary mask with selected ROI; (right)
Original image with superimposed ROI.

2.3.2 Classification Stage

Since segmentation can be considered as a classification of pixels, it is often treated as a
pattern recognition problem and addressed with related techniques [34]. Besides, pattern
recognition techniques provide the convenient flexibilityand automation in medical image
processing. This section describes the main step in the proposed application to measure the
IMT, in which a neural network ensemble carries out the segmentation of the ultrasound
images of the CCA.

The artificial neural networks used in this work are standardMulti-Layer Perceptrons
(MLP), with a single hidden layer, trained under theScaled Conjugate Gradient(SCG)
learning rule [31]. Fig. 6 shows the configuration of the MLP used in this approach. The
number of inputs depends on the size of the intensity patterns. In a similar way, the number
of outputs depends on the size of the target vectors which is determined by the number of
classes contemplated in the classification problem. However, the number of hidden neurons
is a network parameter to be optimized.

The network takes as input information only the intensity values of the pixels from a
neighbourhood of the pixel to be classified. Accordingly, a square window (W× W) must

Inputs Hidden 
Layer

Output

Ultrasound Image

Windowing Process
Intensity Pattern

������
MLP

������
Classification of the center pixel

‘1’ � ‘IMT-boundary’ 

‘0’ � ‘non-IMT-boundary’ 

Fig. 6 Configuration of the MLP used in the segmentation procedure.
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be shifted pixel-by-pixel over the input image (in our case,the ROI image). This window
provides contextual information about the pattern of intensity values in the neighbourhood
of the central pixel. The output layer consists of a single node, whose activation determines
the class of the central pixel. The network is trained to produce a value of ‘1’ for an input
sub-image with a target ‘IMT-boundary’ at its central position, and ‘0’ otherwise (‘non-IMT-
boundary’). In our case, the networks were retrained 20 times with different initial random
values of the connection weights. Besides, the number of hidden neurons is varied from
5 to 40. Thus, to complete the design of a given network, the training process is repeated
720 times (36×20). The optimal size of each network, i.e. the number of hidden neurons, is
selected according to the minimum mean error reached on a validation dataset.

To perform the supervised neural network training, a labelled dataset is needed. In our
case, this dataset was assembled by taking samples from five different manually segmented
images. Finally, it consists of 8,000 patterns: 4,000 of them (50%) are from class ‘IMT-
boundary’, and the remaining (50%) are from class ‘non-IMT-boundary’. During the learn-
ing process, the dataset was randomly divided into three subsets: 60% of samples for train-
ing, 20% for validation (stopping criterion and network size selection) and 20% for testing.
The test samples have been used in order to infer the network behaviour for new (unseen)
ultrasound images. In this case, the prior probabilities ofeach class are the same in both the
training and test data. Classification of the central pixel from an input pattern during test is
simply determined by thresholding the network output. Onlyif the network output is greater
than the threshold fixed to 0.5, the input will be classified aspart of IMT (class ‘1’). Thus, a
given input is assigned to the class with highest posterior probability [2].

In practice, complex classification problems require the contribution of several neural
networks for achieving an optimal solution [27]. In the fieldof image processing, experi-
mental results reported in the literature showed that the image classification accuracy pro-
vided by a network ensemble can outperform the accuracy of the best single net [11,18,
45]. However, neural networks ensembles are effective onlyif the composing nets produce
different errors. Several methods for the creation of ensembles of neural networks have been
investigated. Such methods basically lie on varying the parameters related to the design and
to the training of neural networks [11].

Following this idea, we propose a classification strategy intwo stages to solve the posed
segmentation task (see Fig. 7). Thus, the results from threedifferent networks are combined
by means of another neural network. In the first stage, each MLP is trained using a different
window size to construct the input patterns (W = 3, 7, and 11, respectively). However, the
number of inputs is equal to 9 for all these networks (centralpixel and the eight pixels which
define the limits of the corresponding window, as shown in Fig. 8). The reconstruction of
the whole image (before thresholding) is needed at the output of each MLP in stage 1. Then,
a new windowing process (with W = 3) is applied to each one of these images. The 3×
3 neighbourhoods of corresponding pixels in the three output images of the first stage are
assembled to construct the input patterns to the second classification stage. Thus, the single
network in the second stage (MLP 4 in Fig. 7) consist of 27 inputs (9 from each output
image of the first stage), one output and a number of hidden nodes optimized by means of
the validation error.

A complete study of the individual response of the networks according to the size of
the considered neighbourhood, i.e. depending on W, is detailed in Sect. 3.1. Moreover, Sect.
3.1 also includes results from the searching process of the best combination of MLP and
justifies the selection of the configuration proposed in Fig.7.

Figs. 10 to 13 show the partial and final classification results for the ultrasound image
in Fig. 1, according to the proposed classification scheme. As can be seen, depending on the
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Fig. 7 Network ensemble strategy adopted to solve the segmentation task. In Figure, WP denotes ‘Window-
ing Process’.
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Fig. 8 Input features selected for each MLP in Fig. 7.

considered window size, the networks in the first stage lead to different classification errors
(Figs. 10-12). As the value of W increases, the network tendsto produce thicker but more
definite boundaries and to reduce the classification errors outside the LI and MA interfaces.
The combination of networks in the second stage allows to obtain a cleaner image (Fig.
13), in which the classification errors of pixels are greatlyreduced. Nevertheless, it is still
necessary to eliminate some residues, to refine the contoursand to separate the interfaces.
To this end, a post-processing stage has been designed (detailed in Sect. 2.3.3).

2.3.3 Post-processing Stage

The output binary image of the classification stage should bedebugged and refined to mea-
sure the IMT in order to identify and discard the false positive classification errors (see Fig.
13). For this purpose, the post-processing stage shown in Fig. 15 is applied to the classifica-
tion results.

To begin with, it is necessary to identify and separate the LIand MA interfaces. With this
aim, the image is processed, column by column, looking for reliable columns. Therefore, we
reject: (i) columns in which all the pixels have ‘0’ value; (ii ) those columns where a single
boundary has been found; (iii ) columns wherein two objects are detected and the separation
between them is considered atypical. Note that the case in which the column is composed
of more than two objects has still not been taken into account. At this point, we apply a
hard constraint to ensure the location of the optimal sections to measure the IMT. In those
columns which have not been discarded, the distance (numberof pixels) between the found
objects is assessed. Then, we consider that a change over 40%relative to the average of this
distance is not valid and we discard those columns that do notfulfil this condition. This value
has been taken because all the available images provided by the hospital are free of plaques.
Thus, there are not large variations in the separation of interfaces within the same ultrasound
image. Moreover, in columns with more than two detected objects, this constraint helps us to
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Fig. 9 ROI for the ultrasound image in Fig. 1.

Fig. 10 Partial result of the first classification stage corresponding to ‘MLP 1’ for the ROI image in Fig. 9
(‘Output Image 1’ in Fig. 7).

Fig. 11 Partial result of the first classification stage corresponding to ‘MLP 2’ for the ROI image in Fig. 9
(‘Output Image 2’ in Fig. 7).

Fig. 12 Partial result of the first classification stage corresponding to ‘MLP 3’ for the ROI image in Fig. 9
(‘Output Image 3’ in Fig. 7).

Fig. 13 Binary image obtained at the output of the second classification stage.

Fig. 14 Final LI and MA boundaries obtained after the post-processing stage for the binary image in Fig. 13.
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Fig. 15 Diagram of the post-processing stage. First, the classification results are debugged and, then, the LI
and MA interfaces are identified.

identify the correct ones. The reliable sections for the IMTmeasurement, i.e. groups of not
discarded consecutive columns, are obtained in this way. Inthese sections, pixels belonging
to the LI interface (upper) and MA interface (bottom) are identified.

Once the measurement sections have been located, we must consider another aspect
about the classification results. Due to the poor resolutionof the ultrasounds, we obtain
thick boundaries instead of one-pixel contours. This happens because the networks find the
searched intensity patterns, since they have been trained for it, in all these pixels. In order
to define the final contours on which the IMT measurement is performed, we formulate a
nonlinear least squares problem by fitting a sum of Gaussian models (up to 5 models) to
the data and it is solved using the Trust-Region Reflective algorithm [32]. By that means,
the best model, which minimizes the Root Mean Squared Error (RMSE) between the white
pixels in the binary image and the approximated contour, is found for each interface. Fig.
14 shows the final contours for the LI and MA interfaces extracted from the binary image in
Fig. 13.

3 Results and discussion

The suggested method was developed and tested under Matlab,on a PC with an Intel Core
i5 processor at 2.8 GHz and a 8 GB RAM. The mean total CPU time per processed image
is 3.44 s. The ROI selection task (pre-processing stage) hasshowed a high efficiency by
spending 0.34 s in mean for each case. Once the networks have been trained, classification
results are provided in a fast way, with an average response time of 0.72 s for all the pixel in
the selected ROI. On the other hand, given the binary output image of an ultrasound image,
the post-processing stage achieves the location of the reliable sections and returns the final
IMT boundaries in 2.4 s (mean time).

In this section, the performance and accuracy of the proposed methodology from dif-
ferent points of view are characterized. Sect. 3.1 presentsan exhaustive analysis of the
networks performance. In Sect. 3.2 a visual validation of the results for several images is
shown. The degree of agreement between manual and automaticsegmentations is included
in Sect. 3.3. Sect. 3.4 closes the analysis of the results with a study of the variability in the
IMT measurements.
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3.1 Networks Performance

In this section, the configuration of neural networks proposed in Sect. 2.3.2 to solve the
segmentation task is justified (see Fig. 7). First, a performance study of a single MLP was
realized for different window sizes (W from 3 to 21) by assuming, in each case, the selec-
tion of 9 input features shown in Fig. 8. For this analysis, the accuracy(ACC), specificity
(SPEC) andsensitivity(SEN) of the binary classification were assessed on the test set in the
following form:

ACC(%) = 100×
TP + TN

TP + TN + FP + FN
(1)

SPEC(%) = 100×
TN

TN + FP
(2)

SEN(%) = 100×
TP

TP + FN
(3)

where TP is the number of true positives; TN is the number of true negatives; FP and FN
are the number of false positives and false negatives, respectively. Thus, ACC represents the
success rate, SPEC relates to the ability to identify negative results (‘non-IMT-boundary’
pixels) and SEN relates to the ability to identify positive results (‘IMT-boundary’ pixels).
Since the networks were retrained 20 times with different initial conditions, the results are
shown in terms of mean and standard deviation (SD).

Table 1 shows the response of a single network according to the value of W. As can be
seen, the accuracy stagnates for W greater than 11. Moreover, for W ≥ 13 the specificity
drops considerably due to the increase of false positives. This FP increase is translated into
dirtier images at the network output. Therefore, it is possible to conclude that the best single
MLP is the one that considers the pixel intensities of a 11×11 neighbourhood of the pixel to
be classified. These results are also shown graphically in Fig. 16 to facilitate its analysis.

Nevertheless, these results can be improved by means of the combination of different
networks. Thus, a network ensemble is proposed in this work to solve the segmentation of
the ultrasound images of the CCA. In this sense, a study of allthe possible combinations of
MLP has been performed to find the best configuration for our specific application. Basing
on the conclusions extracted from Table 1 and Fig. 16, only the networks with W from 3 to
11 were considered in this analysis. As commented in Sect. 2.3.2, the combination of MLP
is performed by other MLP. Thus, the classification of pixelsis performed in two stages.
Once the output images of the networks in the first stage are obtained, a new windowing

Table 1 Single MLP performance for different neighbourhood sizes.Mean± SD values.

ACC (%) SPEC (%) SEN (%)

W = 3 87.10± 0.72 83.67± 1.06 90.53± 0.58
W = 5 90.28± 0.58 86.62± 0.84 93.94± 0.57
W = 7 91.59± 0.80 88.06± 1.08 95.13± 0.79
W = 9 91.91± 0.62 89.10± 1.00 94.71± 0.53
W = 11 92.17± 1.00 89.55± 1.63 94.79± 0.57
W = 13 92.62± 0.45 88.99± 0.71 96.24± 0.53
W = 15 92.05± 0.51 88.15± 0.72 95.96± 0.48
W = 17 91.93± 0.62 87.64± 0.72 96.22± 0.69
W = 19 92.19± 0.59 87.69± 0.54 96.69± 0.77
W = 21 91.91± 0.54 86.98± 0.51 96.85± 0.85
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Fig. 16 Network performance for different window sizes (mean values). For W≥ 13 SPEC drops consider-
ably. Thus, the best configuration corresponds to a 11×11 neighbourhood.

process (with W = 3) is carried out to assemble the input patterns to the MLP in the second
stage.

Table 2 shows the performance of all the possible combinations of two MLP. The anal-
ysis of all the possible combinations of three MLP is shown inTable 3. On the other hand,
Table 4 includes the corresponding results for the combination of four MLP and the com-
bination of all the considered MLP. In each case, the grey table cells indicate the combined
networks. The results are sorted from highest to lowest accuracy. Obviously, the best results
are obtained when the best single network (W = 11) is included.

Fig. 17 graphically shows a comparison of the best configurations. The best single net-
work (W = 11), the best combination of two, three and four MLP and the combination of
all the networks (W from 3 to 11) are included. In all the cases, it is possible to verify how
the combination of MLP overcomes to the best single network.As can be observed in the
left graph, there are no significant differences between thebest combinations of networks
in terms of mean ACC, which is about 94.4% in all the cases. Forthis reason, the opti-
mal network ensemble must be chosen according to the best relationship between SEN and
SPEC for our particular application. In this sense, the combinations of three and five MLP
show a slight improvement. Moreover, the graph on the right depicts the best cases (highest
ACC from 20 initiations) of the different configurations, where the case of 3 MLP stands
out again. Thus, it is possible to conclude that the best configuration for our application is
the combination of three MLP with W values equal to 3, 7 and 11.

3.2 Automatic Segmentation Examples

As commented in Sect. 2.1, the proposed segmentation methodhas been tested on a set of 60
B-mode ultrasound images of the CCA provided by the Radiology Department of Hospital
Universitario Virgen de la Arrixaca. Some examples of segmented images are shown in this
section. The final boundaries corresponding to the LI and MA interfaces detected by our
automatic segmentation method are superimposed on the ultrasounds.

To ensure an optimal visualization of the interfaces in the ultrasound, a straight and hor-
izontal appearance of the carotid artery in the image is desirable. However, this projection is
not always possible. Sometimes, the CCA may be tilted or curved because of the probe po-
sition or the own anatomy of the subject. In the case of algorithms using human interaction,
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Fig. 17 Performance of the best studied configurations: (left) Meanvalues; (right) Best cases.

the operator can select the optimal area of the image for the IMT measurement. Neverthe-
less, totally automatic methods must be robust against the morphology of the artery.

When the visualization of the artery in the image is the idealone, i.e. straight and quasi-
horizontal, our segmentation reaches highly accurate results without major complications
(see Fig. 14). Furthermore, it proves to be robust against the orientation and appearance of
the CCA in the image without being necessary to realize any correction in this sense during
the pre-processing stage. Fig. 18 depicts the good segmentation results of a CCA that is
inclined with respect to the image edges. The capability of our method in dealing arteries
with certain curvature is shown in Fig. 19.

The utilization of different window sizes and the combination of the corresponding net-
works allow the adaptation of our algorithm to images with different spatial resolution. Fig.
20, with a substantial variation with respect to the other ones in the image resolution, is
included as evidence of this fact. Moreover, Fig. 21 shows the particular case in which the
LI interface is only partially visible, whereas Fig. 22 evidences the good response of our
method even if the carotid bulb appears in the image.

Table 2 Performance of all the possible combinations of two MLP. Mean and SD values (%). The results are
sorted from highest to lowest ACC.

3×3
5×5
7×7
9×9

11×11

ACCmean 94.36 94.24 94.12 93.95 93.52 93.28 93.18 92.65 92.65 91.33
ACCSD 0.23 0.25 0.22 0.28 0.18 0.26 0.20 0.25 0.30 0.31

SPECmean 91.79 91.98 91.33 91.52 90.26 90.25 90.61 89.86 89.45 88.37
SPECSD 0.43 0.43 0.44 0.38 0.38 0.52 0.39 0.46 0.50 0.66
SENmean 96.93 96.50 96.90 96.38 96.78 96.31 95.76 95.44 95.84 94.29

SENSD 0.32 0.40 0.34 0.50 0.29 0.55 0.37 0.27 0.30 0.38
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Fig. 18 Example of good segmentation on a tilted carotid artery: ROI[137× 728]. The image resolution is
0.050 mm/pixel and the automatic measure of the IMTMAD is 0.568 mm.

Fig. 19 Example of good segmentation on a curved carotid artery: ROI[111× 747]. The image resolution
is 0.047 mm/pixel and the automatic measure of the IMTMAD is 0.619 mm.

Fig. 20 Example of robustness against changes in spatial resolution: ROI [79× 466]. The image resolution
is 0.081 mm/pixel and the automatic measure of the IMTMAD is 0.456 mm.

Fig. 21 Example of good segmentation when the LI interface is partially visible: ROI [142 × 734]. The
image resolution is 0.033 mm/pixel and the automatic measure of the IMTMAD is 0.546 mm.

Fig. 22 Example of good segmentation when the carotid bulb is visible: ROI [65× 572]. The image resolu-
tion is 0.066 mm/pixel and the automatic measure of the IMTMAD is 0.758 mm.
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Table 3 Performance of all the possible combinations of three MLP. Mean and SD values (%). The results
are sorted from highest to lowest ACC.

3×3
5×5
7×7
9×9

11×11

ACCmean 94.38 94.31 94.25 94.23 94.18 94.16 93.77 93.68 93.39 92.59
ACCSD 0.32 0.26 0.27 0.22 0.26 0.20 0.26 0.19 0.34 0.30

SPECmean 92.00 91.39 91.62 91.83 91.93 91.46 90.56 90.98 90.88 89.97
SPECSD 0.64 0.38 0.50 0.48 0.48 0.37 0.54 0.38 0.48 0.58
SENmean 96.77 97.23 96.88 96.63 96.44 96.86 96.98 96.38 95.90 95.21

SENSD 0.49 0.33 0.36 0.39 0.39 0.32 0.27 0.44 0.47 0.34

Table 4 Performance of all the possible combinations of four and fiveMLP. Mean and SD values (%). The
results are sorted from highest to lowest ACC.

3×3
5×5
7×7
9×9

11×11

ACCmean 94.46 94.40 94.31 94.30 94.29 93.72
ACCSD 0.25 0.23 0.29 0.30 0.29 0.34

SPECmean 92.19 91.79 91.95 91.84 91.94 91,00
SPECSD 0.43 0.45 0.61 0.50 0.72 0.49
SENmean 96.72 97.01 96.66 96.76 96.64 96.44

SENSD 0.42 0.35 0.38 0.44 0.49 0.43

3.3 Segmentation Accuracy

In order to validate the segmentation results, the automatically obtained contours have been
compared with four manual tracings performed by two different expert radiologists. There-
fore, a total of 240 manual segmentations have been performed. These comparisons were
carried out separately for the LI and MA interfaces using different metrics: Mean Absolute
Distance (MAD), Poly-Line Distance (PLD) and Center Line Distance (CLD). Hereafter,
we will refer to the different segmentations as follows:

– M11: First manual segmentation from expert no. 1.
– M12: Second manual segmentation from expert no. 1.
– M1: Average contour from expert no. 1, i.e. mean (M11, M12).
– M21: First manual segmentation from expert no. 2.
– M22: Second manual segmentation from expert no. 2.
– M2: Average contour from expert no. 2, i.e. mean (M21, M22).
– GT: (Ground-Truth) Average of the four manual tracings.
– A: Our automatic segmentation.

On the one hand, the intra-observer error is assessed in eachcase by comparing two
manual segmentations from the same expert (M11-M12 and M21-M22). Furthermore, the
inter-observer error between the average contours from each expert was also computed (M1-
M2). By means of these errors, the uncertainty and variability of the manual procedure are
characterized. On the other hand, the inter-method error was evaluated by comparing our
automatic segmentations with those considered as ground-truth (A-GT).
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MAD is the most used quantitative metric to evaluate IMT and the accuracy of a segmen-
tation method. It is based on the vertical distance between contours along the longitudinal
axis of an image. Given two boundaries (B1 andB2), MAD is defined as:

MAD(B1, B2) =
1

N

N
∑

y=1

|B1(y)−B2(y)| (4)

whereN is the number of points constituting the two boundaries, andy is the index spanning
the columns of the image. Nevertheless, MAD may deviate fromthe true distance between
two contours when these present certain slope or curvature.

Poly-Line Distance was proposed in [41] as a more robust and reliable indicator of
the distance between two boundaries. In this case, it is not anecessary condition that two
contours have the same number of points. GivenB1 with N1 points andB2 with N2 points
(see Fig. 23), PLD betweenB1 andB2 is defined as:

PLD(B1, B2) =
d(B1, B2) + d(B2, B1)

N1 +N2

(5)

whered(B1, B2) is the distance between the vertices ofB1 to the corresponding closest
segments ofB2 and it is computed as:

d(B1, B2) =
∑

v∈B1

d(v,B2) (6)

andd(B2, B1) is assessed in a similar manner.
PLD from v ∈ B1 to B2 is defined asd(v,B2) = mins∈B2

d(v, s), wheres is the
segment ofB2 from v1 to v2. The distanced(v, s) is evaluated as:

d(v, s) =

{

| d⊥ |, if 0 ≤ λ ≤ d12
min(d1, d2), otherwise

(7)

whered1, d2 andd12 are the Euclidean distances between the pointsv andv1, betweenv
andv2, and betweenv1 andv2, respectively:

d1 =
√

(x− x1)2 + (y − y1)2 (8)

d2 =
√

(x− x2)2 + (y − y2)2 (9)

d12 =
√

(x2 − x1)2 + (y2 − y1)2 (10)

As can be seen in Fig. 23,d⊥ is the normal distance betweenv and the segments, andλ is
the distance along the vector of the segments:

d⊥ =
(y2 − y1)(x1 − x) + (x2 − x1)(y − y1)

√

(x2 − x1)2 + (y2 − y1)2
(11)

λ =
(y2 − y1)(y − y1) + (x2 − x1)(x− x1)

√

(x2 − x1)2 + (y2 − y1)2
(12)

CLD [39] is based on the calculation of the center line between the two boundaries to
compare. Once this line is found, a segment perpendicular tothe center line, which intersects
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Fig. 23 Diagram of the Poly-Line Distance metric between two boundaries.

with B1 andB2, is considered at each point. Finally, CLD is defined as the mean length of
all the segments:

CLD(B1, B2) =
1

N

N
∑

i=1

li (13)

whereli is the length of thei-th segment andN is the number of points of the center line.
CLD, as PLD, takes into account the local orientation of the boundaries. However, just like
in the MAD metric, the number of points inB1 andB2 must be the same.

Once the distance metrics have been defined, we are able to analyse the obtained results.
Tables 5 and 6 show the mean and standard deviation values (over the 60 tested ultrasound
images) of the segmentation error for the LI and MA interfaces, respectively. The MAD,
PLD and CLD metrics are used to assess the variations betweenanalogous contours (LI or
MA) from two different segmentations.

Fig. 24 shows the distributions of MAD, PLD and CLD metrics for the intra-observer
errors, whereas Figs. 25 and 26 depict the inter-observer and the inter-method error, respec-
tively. The box whiskers extend to the most extreme not outliers values (marked as∗). On
each box, the three horizontal lines represent the 25th percentile, the median and the 75th

percentile of the data. These values are also shown in Table 7.
The distributions of the intra-observer segmentation errors reveal that a greater variabil-

ity exists for the MA interface. This is due to the fact that, in general, transitions from lumen
to intima layer are clearer than transitions from media to adventitia layer. The same trend,
i.e. the major uncertainty for MA, can be seen in the inter-observer segmentation error.
However, when the comparisons are made between our automatic contours and the GT, the
MA segmentation error is considerably reduced. Thus, the proposed method improves the
segmentation of the interface most difficult to recognize, even for the human visual system.

Table 5 Segmentation error for the lumen-intima interface in µm. Mean and standard deviation for the 60
images using MAD, PLD and CLD metrics.

Mean± SD LUMEN-INTIMA INTERFACE

n = 60 MAD PLD CLD

M11-M12 32.28± 14.51 34.07± 14.85 32.24± 14.65
M21-M22 36.29± 12.96 39.24± 13.67 35.85± 13.02
M1-M2 30.08± 13.11 33.11± 16.86 30.26± 14.49
A-GT 37.03± 18.57 39.62± 18.14 37.03± 18.45
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Fig. 24 Intra-observer segmentation error. Box plots of MAD, PLD and CLD (mm) for LI and MA. (left)
M11-M12; (right) M21-M22.
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Fig. 25 Inter-observer segmentation error (M1-M2). Box plot of MAD, PLD and CLD (mm) for LI and MA.
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Fig. 26 Inter-method segmentation error (A-GT). Box plot of MAD, PLD and CLD (mm) for LI and MA.



Automatic Detection of the IMT in Ultrasound Images of the CCA using NN 19

Besides, the segmentation error (A-GT) of the LI interface is comparable to the intra- and
inter-observer errors between manual segmentations.

Despite the greater error and the higher dispersion of the error for the MA boundaries,
there is a good agreement between manual tracings. Thus, forLI interfaces: 26.1 µm≤
median (MAD)≤ 35.5 µm; 27.2 µm≤ median (PLD)≤ 38 µm; and 26 µm≤ median
(CLD) ≤ 34 µm. On the other hand, the error between manual MA interfaces is: 35.4 µm≤
median (MAD)≤ 43.5 µm; 36.5 µm≤ median (PLD)≤ 48.6 µm; and 35.2 µm≤ median
(CLD) ≤ 43.5 µm. These values emphasise the goodness of the manual segmentations.

3.4 IMT Measurements

Given an ultrasound image and two different segmentations (S1 andS2) to compare, the
degree of agreement between its IMT measures is assessed by calculating the absolute error
value:

ǫ
IMTi = |IMT

S1

i − IMT
S2

i | (14)

beingǫIMTi the IMT measurement error between the segmentationS1 and the segmentation
S2 for the i-th image. In each case, the IMT value, i.e. the distance betweenthe boundaries
corresponding to LI and MA, is evaluated by using the aforementioned metrics: MAD, PLD
and CLD.

The mean and standard deviation values (60 processed images) for the intra-observer,
inter-observer and inter-method IMT measurement errors can be seen in Table 8. The mean
absolute error of the automatic measurements is about 37 µm,which is a similar value
(slightly lower) to the inter-observer error. In addition,the correlation coefficients (R) be-
tween the automatic measures and the GT are comparable to theR values associated with
the intra-observer variability. Therefore, the precisionin the automatic IMT measurements
is full well justified. Moreover, Table 9 shows the mean absolute error reached by other
methods. However, a complete comparison with other proposed techniques is not possible
because each one is characterized by means of the average values of the error on its own im-
age dataset considering a particular ground-truth. Furthermore, most are not fully automatic
and these methods consider a single image resolution or onlypermit a minimal variation
of this parameter. Thus, the goodness of our method can only be understood by comparing
with the intra- and inter-observer errors.

Besides, the statistical distribution of the IMT measurement errors between different
segmentations is depicted in the box plot of the Fig. 27. As can be seen, there is not mean-
ingful differences in the statistical distribution of the measurement error when the metric
used in the evaluation of IMT is MAD, PLD or CLD. Because of this fact, only the IMT
measures assessed by PLD metric are considered hereinafter.

Table 6 Segmentation error for the media-adventitia interface in µm. Mean and standard deviation for the 60
images using MAD, PLD and CLD metrics.

Mean± SD MEDIA-ADVENTITIA INTERFACE

n = 60 MAD PLD CLD

M11-M12 47.31± 18.29 48.76± 18.34 47.26± 18.31
M21-M22 46.34± 19.25 49.01± 19.05 46.06± 19.18
M1-M2 41.47± 18.47 43.53± 19.44 41.46± 18.66
A-GT 34.52± 10.29 37.02± 11.23 34.67± 10.68
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Table 7 Segmentation error statistics for the LI and MA interfaces in µm.

First Quartile Median Third Quartile
MAD PLD CLD MAD PLD CLD MAD PLD CLD

M11-M12
LI 21.84 23.36 21.99 30.14 30.29 28.90 39.76 41.38 39.70

MA 35.53 35.85 34.74 43.53 44.81 43.51 56.38 56.69 56.51

M21-M22
LI 26.38 28.05 25.45 35.48 38.02 34.04 45.00 49.46 44.61

MA 30.71 32.36 30.06 40.91 48.61 42.50 59.46 63.37 59.06

M1-M2
LI 20.49 22.57 19.72 26.09 27.18 26.00 39.74 41.47 39.68

MA 28.63 30.93 28.60 35.42 36.54 35.18 51.31 52.16 51.54

A-GT
LI 21.82 24.46 22.03 34.32 37.63 33.99 44.56 49.47 44.53

MA 26.70 28.87 26.49 33.72 35.91 33.38 41.53 43.77 41.64

Figs. 28 to 31 establish the statistical evaluation of IMT for the manual and the automatic
segmentations. The right figures show the linear regressionanalysis for the IMT between
different segmentations; whereas the Bland-Altman plots of the differences between the IMT
of the corresponding two segmentations against their average can be seen at left figures.

The regression analyses between manual segmentations fromthe same expert (Figs. 28
and 29 (right)) show high correlation coefficients (0.984≤ R ≤ 0.986). Besides, the inter-
observer reproducibility of the IMT measurement is 96.5%, see the correlation coefficients
in Table 8 and Fig. 30 (right). Furthermore, when comparing the automatic measures with
the GT (Fig. 31 (right)), we also obtain a high degree of agreement between methods (R≥
98%). Bland-Altman plots show the following limits of agreement (mean± 2 × standard
deviation): -4± 66 µm between M11 and M12, 7 ± 71 µm between M21 and M22, 11
± 103 µm for the inter-observer variability, -26± 72 µm between A and GT. Therefore,
the proposed method tends to slightly underestimate the IMT. Even so, the lower limit of
agreement between automatic measurements and the GT (-97 µm) is similar to that of the

Table 8 IMT measurement errors (mean and standard deviation valuesin µm) and correlation coefficients
(%) between different segmentations.

IMTMAD IMTPLD IMTCLD
ǫ
IMT (µm) R (%) ǫ

IMT (µm) R (%) ǫ
IMT (µm) R (%)

M11-M12 27.79± 19.53 98.52 27.05± 18.92 98.57 27.11± 18.77 98.58
M21-M22 28.87± 22.08 98.43 28.67± 22.88 98.41 28.83± 22.04 98.40
M1-M2 37.84± 37.66 96.43 37.19± 36.87 96.49 37.23± 36.71 96.51
A-GT 37.63± 25.18 98.17 36.70± 24.29 98.20 36.83± 24.50 98.24

Table 9 Performance of other techniques for IMT measurement. n indicates the number of tested ultrasound
images. The metric adopted to assess the IMT measurement error is MAD.

Author Year n ǫ
IMT (µm) Automatic

Liang et al. [21] 2000 50 42± 25 NO
Gutierrez et al. [17] 2002 30 90± 60 NO
Stein et al. [40] 2005 50 40± 7 NO
Faita et al. [10] 2008 150 10± 35 NO
Molinari et al. [29] 2010 182 54± 35 YES
Xu et al. [46] 2012 50 38.1± 16.4 NO
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inter-observer error (-92 µm). Moreover, the dispersion ofdifferences between A and GT
with respect to the average (SD = 36 µm) is comparable to that of the intra-observer error
(SD = 35.5 µm) and significantly lower than that of the inter-observer error (SD = 51.5 µm).

4 Conclusions

This paper proposes a segmentation method of the carotid farwall using neural networks in
order to measure the Intima-Media Thickness (IMT) in a totally automatic way. The main
advantage of our method is not only the automation but also the capability to automatically
identify the most clearer sections on which the IMT measurements are performed. This
ability allows the successful segmentation of noisy and blurred images even if the IMT
boundaries are not visible along the whole longitudinal direction of the image.

The fundamental part of the proposed method is a classification stage. Segmentation is
treated as a pattern recognition problem in which a Multi-Layer Perceptrons (MLP) must
perform a binary classification of the pixels to find the IMT contours. For this purpose,
different nets were trained under the Scaled Conjugate Gradient (SCG) learning method.
Input patterns consist of the intensity values from a neighbourhood (windowing process) of
the current pixel to be classified and different window sizeshave been analysed. With the
aim of improving the accuracy of this task, the results from three different MLP have been
combined in a second stage by means of another MLP. This network ensemble has proven
to be the best of all possible combinations of MLP for this application in particular. Our
system is completed with a pre-processing stage in which theROI is automatically selected
and with a post-processing stage that takes charge of the extraction of the final boundaries
starting from the results of the classification stage.

The proposed configuration of the system has been tested using a set of 60 ultrasound
images of the CCA. Our segmentation method achieves the correct detection of the LI and
MA interfaces in all the tested images. Several quantitative evaluations have showed its ac-
curacy and robustness by comparing the obtained results with four manual segmentations.
In this sense, the suggested approach stands out for the considerably reduction in the seg-
mentation error for the MA interface which, generally, is the most difficult to segment.
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Fig. 27 Statistical distribution of the IMT measurement error between different segmentations using MAD,
PLD and CLD metrics (mm).
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Fig. 28 Intra-observer measurement error. Statistical evaluation of IMTPLD between M11 and M12: (left)
Bland-Altman plot; (right) Regression analysis.
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Fig. 29 Intra-observer measurement error. Statistical evaluation of IMTPLD between M21 and M22: (left)
Bland-Altman plot; (right) Regression analysis.
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Fig. 30 Inter-observer measurement error. Statistical evaluation of IMTPLD between M1 and M2: (left)
Bland-Altman plot; (right) Regression analysis.
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Finally, we conclude that the application of pattern recognition techniques in the form
suggested in this work is suitable for the clinical evaluation of IMT, because of the computa-
tional efficiency of the proposed procedure and the high agreement between automatic and
manual segmentations. Future works could be focussed on also detecting the carotid near
wall by the same strategy in order to measure the lumen diameter. Moreover, an adaptation
of our method for the recognition of plaques may be of great interest.
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