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Abstract

The intima-media thickness (IMT) of the common carotid artery (CCA) is
being used as a reliable and early detector of atherosclerosis. Atherosclerosis
may be unnoticed fo years before triggering severe illnesses such as stroke,
embolisms or ischemia. Hence, the use of IMT leads to an early atherosclero-
sis diagnosis that can prevent more serious cardiovascular diseases. Usually,
IMT is manually extracted from ultrasound images, which is a non-invasive
technique, but unfortunately its measurement is prone to error.

This paper addresses a fully automatic method to segment the artery lay-
ers of the CCA over ultrasound images. Unlike other methods, the segmenta-
tion is not restricted to IMT, the artery diameter can be extracted too, which
can help to determine cardiovascular risk together with IMT. The proposed
technique is based on a frequency-domain implementation of active contours,
which are computationally faster than the original space-formulation, while
providing soft final contours.

Working with three different probes over a range of spatial resolutions
from 0.029 mm/pixel to 0.081 mm/pixel, the method presents an IMT error
of only 13.8 ± 31.9 µm (in mean ± standard deviation) when tested on an
database containing 46 images. The automatic results were compared to the
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average of 2 manual observations performed by 2 observers (4 observations)
over each image in our database.

Keywords: image segmentation, active contours, ultrasound images,
intima-media thickness
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1. Introduction

Cardiovascular diseases (CVD) are one of the main causes of death in
developed countries [1]. Therefore, it is of paramount importance to prevent
and to monitor patients affected by a CVD. Atherosclerosis is a CVD that
acts as a trigger for more serious conditions, such as stroke, embolism or
ischemia. Thus, an early diagnosis is critical to prevent related pathologies.
Atherosclerosis consists of a progressive thickening of the arterial walls by
fat accumulation, which hinders blood flow and reduces the elasticity of the
affected vessels.

The intima-media thickness (IMT) of the common carotid artery (CCA)
is one of the mostly used indicators of cardiovascular risk [2, 3, 4]. IMT is
extracted from ultrasound images [5] (i.e., a non-invasive technique) and can
diagnose atherosclerosis in its early stages, when the patient is still asymp-
tomatic.

By measuring and monitoring the IMT variations doctors are able to
early detect small thickening of the artery walls and, thus, to prescribe pre-
ventive care. Several manual measurement procedures appear in medical
bibliography [3, 2, 6], but in order to consider IMT as a reliable indicator of
atherosclerosis, the measurement protocol must prove its repeatability and
reproducibility [2, 7]. Particularly, the method here proposed is based on
the repeatable and reproducible protocol used by the Radiology Department
from Hospital Universitario Virgen de la Arrixaca [7], which provided the
images to develop our method.

As can be seen in Figure 1 (left), blood vessels present three different
layers, from innermost to outermost, intima, media and adventitia. These
layers can be seen in a longitudinal cut of the CCA over the near and the far
wall (Fig. 1 (right)). In the middle, the channel where blood flows known as
lumen is appreciated as a dark area corresponding to a liquid medium. The
IMT is defined as the distance from the lumen-intima to the media-adventitia
interface at far wall. The interfaces to be detected present a bright-dark-
bright pattern corresponding to the intima-media-adventitia layers (see Fig.
1).

In the manual procedure [7] an expert observer marks from one to three
pair of points delimiting IMT around 1 cm after the carotid bulb. The carotid
bulb is located on the left of the image in all cases.

This paper addresses a fully automatic method to segment lumen-intima
(LI) and media-adventitia (MA) interfaces along with the near wall-lumen
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interface. IMT measurement is the main objective and more precise, but the
lumen diameter (LD) is provided too. Therefore, with little extra computa-
tional cost the method provides complementary information apart from the
IMT.

Unlike manual procedure, with the proposed method it is posiible to
measure IMT along a certain artery length and to calculate statistics of IMT
and CCA diameter, such as mean, median or maximum. Since the proposed
method applies automatic image processing, the results are reproducible,
subjectivity is avoided and the analysis of IMT over a large population can
be optimized in terms of time.

Lumen

Intima

Adventitia

IMT

Lumen
Lumen-intima 

interface

Media-adventitia

interface

Media

NEAR WALL

FAR WALL

Figure 1: Blood vessel layers in a transverse (left) and longitudinal section (right) of the
vessel.

This work is structured as follows; the present section introduces the need
of automated techniques to measure IMT of the CCA from ultrasound im-
ages and describe the image database used. In the Materials and Methods
section (2), the image database and features of manual observations are pro-
vided, together with the presentation of the developed method. Results are
presented in Section 3 and discussed in Section 4. Finally, the conclusion
section closes the paper.

2. Materials and Methods

2.1. Materials

2.1.1. Image database

Our image database consists of 46 ultrasound images of a longitudinal
cut of the CCA taken with a Philips iU22 Ultrasound System at different
scale resolutions (ranging from 0.029 mm/pixel to 0.081 mm/pixel). Three
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different probes have been used at the discretion of the specialist, with fre-
quency ranges of 9-3 MHz, 12-5 MHz and 17-5 MHz. The radiologist could
manually select the space resolution of the image and the parameters of the
US machine. The images correspond to 27 patients aged from 25 to 71, 12
of them females. The average age was 56.

For the sake of homogeneity, the images were taken following certain
recommendations: CCA preferably horizontal, the carotid bulb should not
appear, CCA should be located approximately in the middle of the image and
without blood turbulences. However, some images in our database do not
obey these guidelines. There are 12 with blood turbulences, 16 sloped CCA,
1 elongated CCA, 6 noisy images and 19 images in which the bulb appears.
Since the carotid bulb is curved, the typical bright-dark-bright pattern is not
always present and active contours may diverge near the bulb.

The inclusion of these images, apparently inconvenient for our purposes,
is used to assess the robustness of the developed method, which demands
less strict requirements in future US image acquisitions.

2.1.2. Ground truth contours

The automatic delineation is compared to 4 manual segmentations from
2 different observers. Each observer made two measurements of every image
spaced at least one month, which implies 184 observations. Thus, each of
the 46 manual results were calculated as the average contours of 4 different
observations.

Hereafter, for every single image, these observations will be referred to
as:

• MA1: first measurement from observer A.

• MA2: second measurement from observer A.

• MB1: first measurement from observer B.

• MB2: second measurement from observer B.

The delineation was performed over the images manually by marking at
least 10 points for each contour. The manual contours were acquired thanks
to a Matlab software implemented by the authors. After manual drawing,
the selected points were lineally connected and saved. Therefore, for a single
image, there are 4 manual contours for each of the 3 interfaces to be detected.
As ground truth contours for a single image, the mean of these 4 manual
delineations is considered.
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2.1.3. IMT metrics

IMT distance is calculated using Mean Absolute Distance (MAD), Poly-
line Distance (PD) [8], Center Line Distance (CLD) [9] and Haussdorf Dis-
tance (HD) [10]. These metrics are used for another purpose too, the com-
parison of the manual and automatic contours.

2.2. Methodology

A fully automatic method is presented. The method first makes a rough
segmentation of the lumen followed by a fine segmentation of the CCA walls
by means of a frequency-based implementation of active contours. User inter-
action is not required; it extracts the carotid diameter together with the IMT
and provides satisfactory results with different ultrasound image resolutions.

The proposed method to segment the CCA layers comprises three steps
(see Fig. 2). First of all, the lumen is delimited to calculate initial contours.
After that, the CCA layers are segmented via active contours implemented
in the Fourier domain and using B-splines as shape function. Finally, an au-
tomatic checking of the contours is performed. This checking step is previous
to the analysis of the results by medical staff.

Initialization

Lumen 

segmentation

CCA layers 

segmentation

Automatic 

checking

Cropped

Rotated

Initial 

contours Final contoursImages 

extraction

CCA US 

image

Figure 2: Flow chart of the method.

2.2.1. Initialization

As can be seen in Fig. 2, two inputs are required to detect the far wall,
a crop of the raw image containing only the CCA and the original image
rotated so that the CCA is horizontally oriented. From these images, lumen
is segmented to extract the initial contours for the active contours algorithm.

Images extraction

• Image crop
CCA longitudinal cut in ultrasound images includes not only the CCA
itself, but also patient data, resolution, date and other unnecessary data
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to segment the CCA layers superimposed over the US image. Thus, the
original image is cropped (see Fig. 3 left). Morphological closing and
opening using a horizontal structuring element (1 × 5 pixels) is applied
over the gradient image. Outer columns and rows of the resulting image
are removed if the sum of the corresponding column or row is zero. This
automatical crop of the image is useful when there is no access to the
DICOM fields that provide the limits of the ultrasound region or when
they are empty.

• Image rotation
In the lumen segmentation step, a correlation of the image with a
horizontal model of the far-wall pattern is performed. To improve the
performance of the correlation, the artery orientation is corrected to
make it horizontal too.

A Sobel directional filtering is applied over the original cropped image.
As a result, the horizontal edges of the image are obtained. Then, over
the edges, a Hough transform [11] is performed to detect the main 5
directions in the image. The longest line found via the Hough trans-
form is selected as the main direction of the artery. Finally, a bilinear
interpolation rotates the image. The whole process is depicted in Fig.
3, where, from left to right, we can see a raw image, its crop, the Sobel
edges of the crop with the Hough lines superimposed and the rotated
image.

Figure 3: From left to right: Raw image, cropped image, edges of the cropped image with
the Hough lines overimposed and rotated image.

Lumen segmentation

The different steps to segment the lumen automatically comprises:

1. Far wall detection
The rotated image is correlated with a softened crop of an actual ultra-
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sound image containing the intima-media-adventitia pattern (see Fig.
4). The maximum of correlation indicates the vertical location of the
far wall in the image.

2. Iterative median filtering
With this filtering, speckle noise is reduced while the lumen boundaries
are preserved [12] and the different regions of the image become smooth
and homogeneous. The filter is horizontally oriented, with size 5×15
pixels and applied 10 times to attenuate backscattering and speckle
noise in the lumen area.

3. Otsu’s binarization and negative of the image
The output of this step consists of a binary image with isolated white
regions.

4. Selection of the lumen region
Amongst the different regions obtained in step 3, the one corresponding
to the lumen must include the maximum of correlation calculated in
step 1 (see Fig. 4).

Rotated image

Correlation

Median 

Filtering

Model image

Initial contours

Result after median filtering

Detection of the model

Figure 4: Lumen segmentation process (left) and initial contours (right).

Then, lumen boundaries are interpolated with an order 3 polynomial to
smooth the contours. A near-far wall border is calculated as the mean vertical
position between the upper and lower edge of the lumen. This border will
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be used in the following sections (shown as dashed line in the right image in
Fig. 4).

Finally, to assure a height range that includes the borders to be detected,
near wall boundary is displaced 0.3 mm downwards, while far wall edge is
displaced 0.8 mm upwards and duplicated 1.65 mm (more than 3 times a
healthy IMT) downwards from the latter (see right image in Fig. 4). These
displacement values have been obtained by experimental adjustment.

2.2.2. Active Contours CCA layers segmentation

Frequency implementation of Active Contours

Active contours or snakes [13] are based on physical models of elastic
bodies. Therefore, its evolution in time and space is determined by internal
forces (i.e., inner characteristic such as elasticity or rigidity) and external
forces, which deform and attract the contours.

The discrete implementation of the active contours entails the calculation
of the inverse of a N × N matrix (having each contour N nodes), which
requires a high computational cost. To reduce it, the proposal by Weruaga et
al. [14] of using a frequency formulation is implemented. The computational
savings vary from N2 in the classical formulation to Nlog2N , being N the
number of nodes.

Conventionally, to construct the contour, each of the N nodes in contour
u is assembled with N piecewise polynomials, , obtaining additional points
in the contour called control points v. In our case, cubic B-spline is the
shape function used. Cubic B-splines are robust to noise and present good
performance-running time ratio [15].

The segmentation of the CCA layers reduces to an iterative evolution of
the initial contours, as can be seen in Fig. 5. To achieve rigid behaviour,
the elasticity and rigidity parameters have been fixed to α = 0 and β = 1,
respectively.

External forces are combined with gravity and take-off forces. The cal-
culation of the external, take-off and gravity forces is detailed below.

The position of the nodes in the next iteration is calculated always keep-
ing in mind that no contour must cross another one nor cross the near-far
wall border calculated in section 2.2.1. If the combined displacement of the
far wall contours is less than 0.02% of the vertical size of the image, their
evolutions stop, while if the near wall contour presents a displacement less
than 0.085% of the vertical dimension, it stops too. These stop conditions
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Figure 5: Flow chart of the active contours algorithm implementation.

were empirically optimized in order to detect when the active contours have
converged.

External forces calculation

After initializing the contours, the external forces are calculated (see Fig.
6). First of all, a softening of the image consisting of a low pass filter is ap-
plied. At this point, the artery shows a quasi-horizontal orientation, thus the
intensity changes of the artery layers take place mainly in the vertical direc-
tion. Therefore, to reduce computational cost, the gradient will be computed
only in the vertical axis.

Nevertheless, the intensity transition in the near wall-lumen interface is
from bright to dark (negative gradient) and for the far wall is from dark
to bright (positive gradient). Both kind of transitions are combined in a
single image by using the border b calculated in 2.2.1 (see Fig. 7). This
border stablishes the borderline between near bnw and far wall bfw regions.

Being Î the softened cropped image, g{ · } the vertical gradient operator and
s = (x, y) the position of a pixel in Î, the combined gradient image gc(Î) can
be described as

gc( ˆI(s)) =

{
abs(g(Î))|g(Î) < 0) if s ∈ bnw

g(Î)|g(Î) > 0 if s ∈ bfw
(1)

To eliminate more undesired structures, a morphological reconstruction
[16] is performed using a morphological mask containing only a selection of
elements of the image oriented in the main directions of the artery. Before
the reconstruction, a soft morphological processing is performed to remove
small structures, achieving a gradient image with reduced noise.

In order to perform the reconstruction, we use a morphological mask as
marker containig the main directions of the noise reduced gradient image.
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Figure 6: External forces calculation.

Figure 7: Positive (left), negative (centre) and combined gradient transitions (right).

Fig. 8 shows a diagram with the mask calculation process. After downsam-
pling by a factor 2, Canny edges of the image are computed. By applying
a Hough transform over these edges, the 3 main directions in the image
are extracted (Fig. 9, left). Then, several openings are performed over the
gradient image with reduced noise, using the lines provided by the Hough
transform as structuring elements. The accumulation of the openings is used
as the marker image in the reconstruction process (Fig. 9, centre). After the
reconstruction the resulting image is clearer and less noisy (Fig. 9, right).

Finally, from the reconstructed image gr, external forces Fext are com-
puted as

Fext = ∇|gr|+ c (2)

being c a constant from the gravity and take-off forces. These forces act
in case the contour is not attracted by any edge during the first iterations.
Gravity forces drive lumen-intima contour downward, whereas take-off forces
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Figure 8: Morphological mask extraction.

Figure 9: Mask (left), marker (centre) and reconstructed (right) images.

drive near wall-lumen and media-adventitia contours upwards
The segmentation after the active contour algorithm is shown in Fig. 10.

Figure 10: Segmentation after active contour algorithm.
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2.2.3. Automatic checking of the contours

This step avoids considering measurements in case the snakes do not
converge to the valid solution, e.g. in areas where there is no bright-dark-
bright intensity pattern (see Fig. 11 centre, where solid lines correspond to
checked sections and dashed lines represent unchecked sections). On the left
of the image (Fig. 11 centre), the active contours algorithm has not reached
the correct edge, mainly because there the far wall pattern is imperceptible.

To check and refine the curves, we focus on finding a bimodal vertical
profile of the far wall in the gradient image, i.e. one peak for the lumen-
intima interface and another for the media-adventitia interface. The search
of this bimodal intensity profile in the gradient image is made by combining
two strategies:

• Statistical strategy
As can be expected from bimodal intensity profiles, the set of vertical
distances between lumen-intima and media-adventitia segmented inter-
faces results into a dataset with pseudo-normal distribution (see Fig.
11 left). The obtained dataset contains the IMT estimations, and can
present outliers in case of inadequate layer segmentation, as is the case
in Fig. 11 centre (see dashed segments of the contours). Since a healthy
adult CCA presents an IMT from 0.5 mm, all the measurements under
0.4 mm are discarded. Then, the IMT distribution is multiplied by
a Gaussian window and thresholded to eliminate outliers. In Fig. 11
left, over the IMT histogram the Gaussian window is drawn and the
discarded values of distance are represented in white bars. The centre
of the window is placed on the median of the IMT distribution and the
standard deviation of the Gaussian window is the spatial resolution of
the image.

• Intensity-based strategy
The second strategy consists of finding a dark region surrounded by
gradient intensity peaks, located over the segmented layers. Intensity
peaks are found via a 2-means classification (peaks and gaps classes)
from the intensity values of the reconstructed gradient image. Next,
successively for each corresponding pair of control points, one in the
MA contour and other in the LI contour, a vertically-oriented profile
is extracted from the gradient image. The gradient profile ranges from
one control point location to anther one, comprising them. A pair of
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control points is marked as valid if the respective profile encloses a gap
between two intensity peaks.

Finally, the automatic checking stage consists of:

1. Combination of strategies
The goal is to distinguish between valid and non-valid segments by com-
bining both strategies (statistical and intensity-based) with an AND
operator.

2. Node validation and repositioning
A polynomial adjustment is applied over non-valid sections surrounded
by long validated sections (20 control points). The nodes are relocated
only in the non-valid sections to check if they accomplish the intensity-
based strategy in their new positions.

3. Intensity-based strategy with gamma correction
Finally, a second intensity-based checking, like in step 1, is performed
with the new node positions. The 2-means classification is performed
over a gamma correction (γ = 2) of the reconstructed gradient image
to enhance edges. This last checking step affects only to those sections
previously classified as non-valid, which results in longer valid sections.

The final result for the example image can be seen in Fig. 11 right.

Figure 11: Statistical checking process: (left) IMT histogram, (centre) segmentation over
the gradient image and final segmentation (right).

3. Results

3.1. Manual measurements

As can be inferred from Table 1, the IMT intraobserver reproducibility is
of 98.73% for observer A and of 98.27% for observer B. The IMTmeasurement

14



Table 1: Correlation of the 4 IMT manual measurements (MAD)

ρ Mean difference ± standard deviation (µm)
MA1 vs MB1 97.14% 4.4 ± 50.9
MA1 vs MB2 96.59% 3.7 ± 56.6
MA2 vs MB1 97.36% 10.3 ± 47.9

IMT MA2 vs MB2 97.32% 9.6 ± 50.3
MA1 vs MA2 98.73% 5.9 ± 34.1
MB1 vs MB2 98.27% 0.67 ± 41.6
MA1 vs MB1 97.17% 5.1 ± 50.8
MA1 vs MB2 96.62% 4 ± 56.3
MA2 vs MB1 97.24% 11.8 ± 48.8

LD MA2 vs MB2 97.33% 10.7 ± 50.1
MA1 vs MA2 98.74% -6.7 ± 34
MB1 vs MB2 98.21% -1.1 ± 42.2

difference presents a value in mean ± standard deviation of 5.9 ± 34.1 µm for
observer A and 0.67 ± 41.6 µm for observer B when IMT is measured as the
Mean Absolute Distance (MAD) between the LI and MA interfaces.

For the LD, the intraobserver reproducibility is of 98.74% for observer A
and 98.21% for observer B.

The interobserver reproducibility for the IMT shows a correlation coeffi-
cient betweeen 96.62% and 97.33%.

Since the manual measurements present good repeatability and repro-
ducibility, the average contours are considered as ground truth. Thus, the
automatic contours are compared to the mean of MA1, MA2, MB1 and MB2
contours.

Similar distributions of the IMT (measured as MAD) are obtained for the
4 manual observations, as can be seen in Table 2.

3.2. Visual results

In Fig. 12 some IMT segmentation results are shown for different cases:
(a) a good quality image, (b) an image with gaps in the interfaces to be
detected, (c) an image in which the carotid bulb is noticeable, (d) a noisy
image and (e) a sloping CCA image, respectively. For all of them, final
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Table 2: MAD IMT statistics for the manual measurements

Observation (mm) Q1 Median Q3 Mean ± std
MA1 0.48681 0.60275 0.79144 0.6690 ± 0.2142
MA2 0.50621 0.60637 0.80653 0.6749 ± 0.2097
MB1 0.49895 0.59294 0.78624 0.6646 ± 0.2049
MB2 0.48966 0.60206 0.74559 0.6652 ± 0.2182

checked contours are shown in solid line, whereas unchecked sections are
drawn in dashed line. Notice that the better image quality, the longer valid
sections are. In all cases, a good segmentation of the CCA layers is achieved
and the automatic checking step avoids the inclusion of wrong sections in
IMT segmentation, and, consequently, in the IMT statistics. These wrong
sections occur mainly under two scenarios, when there is no intensity in the
LI interface and when the CCA presents some curvature (because it is an
elongated CCA or the bulb is visible).

Manual and automatic IMT and LD statistics of the images in Fig. 12
when measured as MAD are shown in Table 3.

In Fig. 13 enlarged regions of the corresponding images in Fig. 12 are
shown. Automatic contours are drawn in solid line, whereas manual ground
truth contours are drawn as dashed lines.

Table 3: Segmentation results (measurements are given in mean ± standard deviation in
mm)

Image IMTauto IMTmanual LDauto LDmanual

Fig. 12(a) 0.46 ± 0.032 0.44± 0.028 5.85 ± 0.31 5.95 ± 0.22
Fig. 12(b) 0.77 ± 0.041 0.78± 0.085 8.35 ± 0.55 8.38 ± 0.52
Fig. 12(c) 0.59 ± 0.069 0.58 ± 0.046 5.57 ± 0.25 5.99 ± 0.62
Fig. 12(d) 0.83 ± 0.2 0.89 ± 0.14 7.27 ± 0.19 7.22 ± 0.18
Fig. 12(e) 0.66 ± 0.062 0.69 ± 0.072 6.53 ± 0.37 6.45 ± 0.15

3.3. Automatic measurements and statistics

Starting from automatic final contours, the previously introduced metrics
(see section 2.1.3) are used for two purposes: compare ground truth contours
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(a) Result for a good quality
image

(b) Result with gaps in the
IMT interfaces.

(c) Result for an image with
bulb.

(d) Result for noisy image. (e) Result for a sloping
CCA.

Figure 12: Segmentation results

with the automatic segmentation and measure the IMT and the LD. Thus,
the similarity of single manual and automatic contours and the final IMT and
LD measurement (manual and automatic) are compared, all measurements
computed with four different metrics.

• Manual vs. automatic IMT measurements
In Fig. 14 the Bland-Altman’s plot [17] of the manual vs. automatic
mean IMT results for MAD, PD, CLD and HD, respectively, are shown.
The vertical axis in the Bland-Altman’s plots represents manual minus
automatic measurement. Horizontal axis in the Bland-Altman’s plot
represents the average of the manual and automatic observation.

Pearson correlation coefficient ρ, error variance var(e) and mean IMT
and LD error (in mean ± standard deviation) can be seen in Table 4.

In Fig. 15, the boxplot distributions of the manual and automatic
IMT measurement are shown. Upper and lower box limits represent
Q3 and Q1, respectively. The middle red line lies over the median of
the distribution (Q2). Maxima and minima are represented as upper
and lower whiskers. The measurements considered as outliers (within
a confidence interval of 97.5%) are marked as crosses.
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(a) (b) (c)

(d) (e)

Figure 13: Automatic (solid lines) vs. manual (dashed lines) delineation over enlarged
areas of the images in Fig. 12

• Manual vs. automatic LD measurements
In Fig. 16 the Bland-Altman plot of the LD measured as MAD is shown
together with its boxplot.

• Distances between manual and automatic contours
In Table 5, the mean distance ± standard deviation between manual
and automatic contours is displayed for the considered metrics.

4. Discussion

The described method has achieved the NWI, LII and MAI segmentation
by means of a frequency implementation of the active contours algorithm.
Thus, it provides automatically the IMT and LD measurements from a longi-
tudinal CCA ultrasound image. The results were compared to ground truth
contours, which were calculated as the average of 4 manual delineations for
each image. In the following subsections a brief review of related method
can be found. After that, the results obtained by the presented method are
discussed and compared to already existing methods.
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Table 4: Correlation coefficient, error variance (mm2) and error (mean difference ± std
in µm) of the IMT for MAD, PD, CLD and HD of the manual vs. automatic IMT
measurement

metric ρ var(e)(mm2) e± std(µm)
MAD 0.9901 0.001 13.8 ± 31.9
PD 0.9901 9.4 · 10−4 10.1± 30.7

IMT CLD 0.9898 9.3 · 10−4 8.3 ± 30.5
HD 0.9471 0.0066 -4.8 ± 81.2

MAD 0.9922 0.0217 -65.4 ± 147.4
PD 0.9923 0.0215 -54.3 ± 146.5

LD CLD 0.9911 0.0247 -53.0 ± 157
HD 0.9420 0.1850 54.9 ± 430.2

Table 5: Distances between manual and automatic contours (in mm) for the metrics
considered (mean ± standard deviation

Metric LII MAI NWI
MAD 0.0330 ± 0.0152 0.0424 ± 0.0185 0.1098 ± 0.1082
PD 0.0347 ± 0.0154 0.0440 ± 0.0182 0.1133 ± 0.1062
CLD 0.0315 ± 0.0141 0.0413 ± 0.0187 0.1086 ± 0.1074
HD 0.5772 ± 0.8330 0.5873 ± 0.8315 0.8426 ± 1.3131
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Figure 14: Bland-Altman plots for IMT (manual vs. automatic measurement) for MAD,
PD, CL and HD metrics

4.1. Background

Since IMT has been used as an early and reliable indicator of cardiovascu-
lar risk, several methods have appeared to provide more accurate IMT mea-
surements. The first attempts correspond to Gustavsson et al. [18, 19, 20].
The main idea is to analyze the gradient of the image in vertical cuts to
determine the positions of the interfaces to be detected. Then, dynamic
programming is used to optimize a cost function to establish the positions
of the lumen-intima and media-adventitia interfaces. Despite the inclusion
of a continuity term, the data are still locally-derived. Besides, all of these
methods require some user interaction to select the region of interest.

Other authors propose active contours to segment the carotid layers [21,
22, 23] or a combination with other techniques, like dynamic programming
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[24]. However, since initialization is crucial in active contours performance,
most of them still required manual initialization of the contours. The use
of active contours provides a solution based on global information of the
US image, giving thus, softer final contours than methods based on locally-
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derived data.
There exists other approaches based on Nakagami distribution [25], Hough

transform [26, 27] or RANSAC algorithm [28], but they still lack automation.
According to the degree of automation, all the techniques in the liter-

ature can be clasified as user-independent or user-dependent [29]. User-
independent or fully automatic techniques do not require any user interac-
tion and present better time performance since they are usually designed to
process several images in a short period of time. However, to make the full
automation possible they need a common framework, that is, images with-
out plaques, carotid horizontally oriented, images with fixed resolution, etc.
Unlike the former techniques, user-dependent or semi-automated techniques
are more flexible with respect to the initial conditions and present more ac-
curate results. This is due to the manual selection of the region of interest.
An expert observer can easily extract the portion of the image were the IMT
measurement is optimum, thus, helping the segmentation algorithm.

To the authors’ knowledge, it is not until Delsanto’s proposal [30] that a
fully automatic method can be found. The same group of authors have pre-
sented different fully automatic methods, which present good performance
in the absence of blood turbulences. Even though some of them admit the
presence of plaques, they work with images presenting the same resolution
[31, 32, 33, 34, 35]. These proposals implement two stages, one to initialize
the contours and a second one to segment the artery walls. Following the
same idea, other authors have proposed methods based on models [36] or dif-
ferent implementations of active contours [37, 38], like active contours with-
out edges [39] based on the Chan-Vese snake [40], or frequency-formulation
of active contours [41]. The latter, needs to perform twice the active contour
segmentation ,increasing the computational cost, and this work lacks the
comparison of the results with a ground truth segmentation. Other works
are based on the use of FOAM [42] or neural networks [43].

Most of the former methods do not segment the near wall and do not
provide LD measurements. Besides, the mean IMT error in fully automatic
methods lies in the order of 40 µm (see Table 6). The proposed method
aims to automatically segment LI and MA interfaces of the far wall and the
near wall interface to provide measurements of the IMT and LD in CCA
ultrasound images. Our proposal segments all these interfaces and works
with ultrasound images with different spatial resolutions and it was tested
with three different ultrasound probes. The automatic results were compared
to ground truth contours, which were calculated as the average of 4 different
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manual delineations for each image. Besides, the use of frequency active
contours provides soft final contours while reducing the computational cost
when compared to the traditional implementation.

4.2. Manual vs. automatic IMT measurements

According to Table 4, there is a great correlation between manual and
automatic IMT for all metrics, being ρ: 0.9901(PD) ∼= 0.9901(MAD) >
0.9898(CLD) > 0.9471(HD). The error variance presents a similar trend, be-
ing around 10−3mm2 for CLD, PD, MAD and, higher for HD (6.6 · 10−3mm2).
The correlation coefficient shows high correlation between manual and auto-
matic IMT for all the metrics, and the mean errors present slight differences
between manual and automatic measurements (see Table 4) for all metrics.
Although the mean difference is lower for HD, this metric has a higher de-
viation, which leads to higher errors in most of the observations. This fact
can be observed from Fig. 15.

Corresponding to our mostly healthy population, MAD, PD and CLD
have IMT values around 0.6 mm, as can be seen from Fig. 15. Although the
four metrics present high correlation with the manual measurements (see Fig.
15, Fig. 14 and Table 4), HD overestimates the IMT value when compared
to the other metrics (Fig. 15). This is due to the non-linear process that
calculates HD [10]. Depending on clinical criterion, HD can be an appropriate
metric to measure IMT because it assures that most of the atherosclerotic
patients receive treatment.

Different authors prefer the use of PD and CL [29] amongst MAD or HD,
because they have into account the local orientations of the final contours
to provide a more accurate IMT value. However, we should keep in mind
that the manual IMT measurement is usually calculated as MAD, by both,
doctors and most authors [3, 27]. Hence, to compare our method with other
medical studies MAD must always be calculated. Nevertheless, PD and CLD
should be considered in future studies as a standard for IMT measurement.

Considering Fig. 15, it is more common to underestimate IMT when com-
pared to the ground truth measurements. This is due to the fact that snakes
improve the segmentation process, adjusting the contours to the maximum
intensity change of the edges to be found. This is the typical trend in semi
or fully automated methods.
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4.3. Manual vs. automatic LD measurements

The lumen diameter presents similar trends as IMT when comparing the
four metrics under study (see Fig. 16 right). The error is higher than for the
IMT (-65 ± 147.4 µm, when measured as MAD — see Table 4 and Fig. 16
left), but is still negligible when compared to the LD dimensions. The error
between manual and automatic LD measurements is shown in Table 4 where
high similarity when comparing manual and automatic LD measurements
under each of the considered metrics can be appreciated.

The mean LD error is similar to other methods found in the literature
(around 100 µm). For example, in [37], there are no LD error statistics, only
an overlap index of 79%. In [42], the LD error is under 100 µm on average,
but there is no data about statistical dispersion (see Table 6).

4.4. Distances between manual and automatic contours

Visually, automatic contours present a good agreement with manual de-
lineation (see Fig. 13).

In Table 5 it can be seen, as a general trend, that LII interface is better
detected than MAI (the mean distance with the ground truth contour is
lower). For MAD, PD and CLD, LII mean distance is around 30 µm, whereas
it increases to 40 µm for the MAI. Usually, LII is clearer than MAI, because
the dark to bright transition is sharper than that in the MAI. This is again
a common trend amongst the methods found in the literature [34]. Most
referenced papers, do not present the evaluation of the similarity between
manual and automatic contours; they limit to compare manual and automatic
IMT measurements.

4.5. Comparison with other techniques

Table 6 shows some of the methods discussed in the Background section
(4.1). Together with the main technique used, the degree of automation
is displayed in the column ’Auto’, which shows YES in case the method is
fully-automated. In the errorIMT column, the mean IMT measurement error
± standard deviation is shown. Finally, the last column shows YES if the
method provides LD measurements together with a LD error measure. As
can be inferred from Table 6, semi-automated methods presents lower error
than fully automatic proposals. This is mainly due to the fact that the user
selects the region where to measure. Hence, semi-automatic methods avoid
the measurement in regions where the intima-media complex cannot be seen
or it is not clear.
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Unlike other fully automatic methods [30, 32, 33, 34], which present an
average IMT error above 20 microns, the method described here presents an
error in the order of 10 microns.

The LD error is comparable to that presented by other methods or lower
[42, 37] (see Table 6, in the order of 50 µm).

Amongst the automatic methods based on active contours that provide
data about the execution time, running times ranging from 60 to 20s can be
found. On average, our method employs 12.2 s for a single image. Besides,
the segmentation provides three walls, instead of only two, like most of the
automatic methods found. The images were processed on domestic perfor-
mance equipment with a 2.4 GHz processor. The algorithm was implemented
on a Matlab platform (R2011a).

Table 6: Some IMT measurement methods.

Author Year Technique Auto errorIMT (µm) LD (error µm)
Liang [20] 2000 DP NO 42 NO

Delsanto [30] 2007 CA YES 63±49,1 NO
Loizou [23] 2007 AC NO 50±25 NO
Cheng [22] 2008 DP NO 9,2±31,5 NO
Faita [31] 2008 FOAM NO 10±35 NO
Rocha [24] 2010 DP+AC NO 70±110 NO
Rossi [42] 2010 FOAM YES 50± ?? YES <100

Meiburger [33] 2011 MSC YES 39±186 NO
Molinari [34] 2011 EF YES 43±93 NO

Xu [27] 2012 HT+AC NO 38±16,4 NO
Petroudi [39] 2012 AC YES 95±61,5 NO
Molinari [35] 2012 AC YES 21±197 NO
Bastida [41] 2013 AC YES - YES ?

Ilea [36] 2013 modelling YES 80±40 NO
Loizou [37] 2013 AC YES 30 ± 30 YES 180±150

DP: dynamic programming; AC: active contours; FOAM: First Order Abso-
lute Moment; MSC: mean-shift classifier; EF: edge flow; HT: Hough trans-
form;
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5. Conclusions

This paper proposes a fully automated method to segment the artery
walls in common carotid artery ultrasound images. Specifically, our method
segments LII and MAI from far wall, as well as the NWI. With this segmen-
tation, both, IMT and LD can be calculated along the artery length without
any user interaction.

The method here presented has shown good performance with noisy and
sloped images as well as images in which the carotid bulb appears. Unlike
most methods, it has been tested with images taken with 3 different probes
and within a spatial resolution set by the radiologist criterion (ranging from
from 0.029 mm/pixel to 0.081 mm/pixel).

The solution here presented is based on a frequency implementation of
active contours. Since initialization is crucial in the active contour evolu-
tion, the first step consists in locating the lumen automatically. Initializa-
tion includes speckle reduction, correlation with a model and morphological
processing. After that, the Fourier domain implementation of the snakes al-
gorithm is applied, which produces relevant computational cost savings [14].
Final contours are smooth due to the use of B-splines as shape function.

Finally, results are automatically refined by combining statistical and
intensity-based strategies. This last checking step avoids the inclusion of re-
gions which lack information in the IMT measurement. If the doctor wanted
to measure at a specific point, the automatically validated results can be
helpful to decide the most appropriate areas to measure IMT.

The automatic segmentation has been compared to a manual segmen-
tation considered as ground truth, obtained as the average of four manual
segmentations from two different observers. Four different metrics were as-
sessed to measure IMT: Mean Absolute (MAD), Polyline (PD), Center Line
(CLD) and Haussdorf Distance (HD). The method has been tested on a
database of 46 images obtaining great correspondence with ground truth. In
fact, Pearson correlation coefficient presents a range of 99 % (PD, MAD) >
98.98% (CLD) > 94.71% (HD) for the IMT measurement.

The mean IMT error is of 13.8 ± 31.9 µm, which is half of the IMT error
for other automatic methods. For the LD, the error is comparable but lower
than for other methods found. The execution time is comparable (or even
lower) to other methods that do not segment the near-wall interface.
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