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Abstract Atherosclerosis is one of the most extended car-
diovascular diseases nowadays. Although it may be unno-
ticed during years, it also may suddenly trigger severe
illnesses such as stroke, embolisms or ischemia. Therefore,
an early detection of atherosclerosis can prevent adult pop-
ulation from suffering more serious pathologies. The intima–
media thickness (IMT) of the common carotid artery (CCA)
has been used as an early and reliable indicator of athero-
sclerosis for years. The IMT is manually computed from
ultrasound images, a process that can be repeated as many
times as necessary (over different ultrasound images of the
same patient), but also prone to errors. With the aim to
reduce the inter-observer variability and the subjectivity of
the measurement, a fully automatic computer-based method
based on ultrasound image processing and a frequency-
domain implementation of active contours is proposed. The

images used in this work were obtained with the same
ultrasound scanner (Philips iU22 Ultrasound System) but
with different spatial resolutions. The proposed solution does
not extract only the IMT but also the CCA diameter, which is
not as relevant as the IMT to predict future atherosclerosis
evolution but it is a statistically interesting piece of informa-
tion for the doctors to determine the cardiovascular risk. The
results of the proposed method have been validated by doc-
tors, and these results are visually and numerically satisfac-
tory when considering the medical measurements as ground
truth, with a maximum deviation of only 3.4 pixels
(0.0248 mm) for IMT.
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Introduction

Atherosclerosis consists of a thickening of the arterial walls.
Although it is very spread into population and it may trigger
strokes, embolisms or ischemia, it could be unnoticed for
years. Therefore, medical research has been focusing on
early detection of atherosclerosis. The intima–media thickness
(IMT) has emerged as an early and reliable indicator of
atherosclerosis [1], making the tracking of the IMT possible
with the aim of avoiding the worsening of atherosclerosis and
cardiovascular risk.

Another factor to take into account is that the IMT
measurement is extracted by means of a B-mode ultrasound
scan. Since it is a non-invasive technique, the IMT measure-
ment facilitates studies over a large population.

The use of different protocols to measure the IMT [2] and
the variability between observers is a recurrent problem of
the manual measurement procedure. Therefore, the
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establishment of a single protocol to measure the IMT presents
an important challenge. Nowadays, IMT is considered as a
reliable indicator of atherosclerosis when the measurement
protocol presents repeatability and reproducibility [3, 4]. In
particular, the processing proposed is intended to take advan-
tages of a methodical acquisition protocol [2], whose authors
(from the Radiology Department from Hospital Universitario
Virgen de la Arrixaca (Murcia, Spain)) have provided all the
images used. The radiologist takes from one to three point
pairs on the far (posterior) wall of the vessel along a 1-cm-long
section proximal to the bifurcation. The measurement
corresponding to the maximum IMT is recorded.

The pictures were obtained with the ultrasound scanner
Philips iU22 Ultrasound System, following the process de-
scribed in [2]. Even though using the same transducer, the
spatial resolution of the images varies from one to another,
ranging from 0.029 to 0.067 mm/pixel. In other words, the
radiologists use always the same probe, but it is their choice
to change the image zoom or not.

The manual procedure consists of marking a pair of
points that delimits the IMT over a longitudinal cut of the
CCA, around 1 cm after its bifurcation. On the image in
Fig. 1, an example of the manual procedure is shown, where
the interfaces between the lumen, where the blood flows,
and the near (at the top of the image) and far (at the bottom)
walls can be seen. At the far wall, a typical bright–dark–
bright pattern can be appreciated. This pattern corresponds
to the intima–media–adventitia layers of the arterial walls.
The IMT is defined as the distance between the lumen–
intima interface (I5) and the media–adventitia interface
(I7), which is measured by means of two points (one on
each interface) marked by the doctor, whereas through the
segmentation of the interfaces I5 and I7 two lines would be
obtained. As a result, not only would the IMT be measured
more precisely but also other interesting statistics could be
calculated along the artery length, such as mean, median or
maximum IMT.

Besides, the use of ultrasound image processing to
extract IMTwould increase reproducibility, avoid subjectivity
and, since it is a non-invasive technique, it would also allow
the automatic analysis of a large amount of images. The
preceding idea makes the IMT automatic detection of great
interest to make studies over a large population.

Background

With the use of IMT as a cardiovascular risk indicator, there
have been several attempts to improve its measurement
procedure by making it user independent. Since the work
of Gustavsson et al. [5], different image processing methods
have appeared. Most of them were based on an analysis of
vertical cuts of the image [5, 6], on active contours [7, 8] or
on a combination of both [9].

Methods based on the analysis of the characteristics of
vertical cuts of the image determine the boundary location
by taking into account local information. Many of them
included a cost function to minimize in order to introduce
a continuity term to avoid irregular borders. Despite the use
of a continuity term, the data are still locally derived. More-
over, none of them was completely automatic; they required
user interaction, even though it consisted on giving only two
points nearby the arterial wall or the horizontal seek position
[5]. Those based on active contours avoid the locality problem
but, since initialization is critical for active contours [10], the
aforementioned works (amongst others) include user interac-
tion to initialize the contours.

The combination of both concepts (active contours and
vertical analysis of the image) can even require some user
interaction, except for the proposals of Molinari et al.
[11–13]. Up to our knowledge, fully automatic methods
cannot be found in the literature until the publication of
the work ofMolinari et al. However, these methods (including
Molinari et al.) do not deal with different spatial resolutions;
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Fig. 1 Interfaces to be detected
and IMT over an example
ultrasound image
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the images they use present always the same zoom level or
equivalence pixel to millimetres, which simplifies the wall
detection. Moreover, they present some problems in the pres-
ence of blood turbulences or hard carotid plaques, and they do
not segment the near wall. In our case, we pretend to obtain a
fully automatic method, with an edge detection based on active
contours which delimits near wall (I2) as well as extracts IMT.

CCA Segmentation Process

The process followed to delimit the intima and adventitia
layers of the CCA and the near wall is shown in Fig. 2.
Firstly, the input parameters of the interfaces delimitation
process, the initial contours and the driving forces of the
image, are calculated. The detection of the interfaces I2, I5
and I7 is controlled by an active contour algorithm. After the
detection, the validity of the measurements is assessed. If
the measurements are correct along all the artery length, the
process ends. Otherwise, a refinement process takes place to
improve the results.

This refinement step affects only the far wall, mainly
because the near wall edge appears clearer and it is highly
likely that the algorithm reaches the final solution in the
layer detection stage. By not taking the near wall contour
into account, the computational cost of the second stage is
considerably reduced. Besides, the initial contours for intima
and adventitia layers are pretty close to the final solution,
requiring, thus, of very few iterations.

Since one of the critical issues in active contour algo-
rithms, additionally to the local minima and the reduced
convergence speed in concave regions, is the initialization
of the contours [10], a great effort has been made to obtain
appropriate initial contours. This is the reason why the step

of automatic initialization (see “Automatic Initialization”
section) is the most elaborated in our process. In the sections
below, each of the steps shown in Fig. 2 will be explained.

Wall Detection

Automatic Initialization

In the flow chart shown in Fig. 3, the followed steps to
calculate the initial contours are shown. In the next sections,
a description of each of the processing stages will be
detailed.

CCA Angle Correction Although most of the images pres-
ent only a slight inclination, the CCA angle with respect to
the horizontal direction is calculated to easily detect the
position of the far wall. As a previous step to the angle
correction, the image is cropped to make the image anony-
mous and to consider only the anatomical information on
the ecography. The crop size is fixed and the same for all the
images. Over this cropped image, a horizontal Sobel oper-
ator [14] is applied to detect the horizontal edges of the
artery. After that, the main direction of the artery is detected
by computing the Hough transform [15] of the edges. This
orientation will give us the CCA angle, which can be cor-
rected by rotating the cropped image. A bilinear spatial
interpolation has been used in the rotation because it gives
the best trade-off between computational cost and image
quality [14].

Far Wall Detection The next step to obtain an automatic
initialization (see Fig. 3) is to determine the location of the
far wall (see flow chart in Fig. 4). Correlation of the cropped
image with a model is used for this purpose. Since we want
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Fig. 2 Flow chart of the CCA
processing
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to locate the far wall, the model must contain a portion of it.
The model was extracted from a generic ultrasound image of
the CCA. To improve the correlation results, the model
must present a clear light–dark–light interfaces pattern
(corresponding to the far wall), should be small to
reduce computational cost and must produce good cor-
relation outcomes with most of the considered images.
To fulfil the latter, a smoothing has been applied to the
model.

Since correlation is not reliable in the extremes [14] and
the CCA is usually centred in the cropped image, the image
has been vertically weighed so that the pixels near to the top
and the bottom limits are weakened. After that, only the
pixels with intensity above a threshold of 0.2 in the range [0,
1] are taken into account. This threshold has been chosen
after multiple tests because it guaranteed to detect far and
near wall separately and minimized the number of false
positives.

The different resulting regions are isolated and their areas
are measured. The two regions with the largest areas corre-
spond to the near and far wall regions. Afterwards, we check
that the point of maximum correlation is located between

these two regions. Otherwise, the maximum and its neigh-
bouring pixels are discarded and the following maximum
correlation position is considered. This process repeats
until a valid maximum (i.e. a maximum located between
the near and far walls of the CCA) is found. This point
will be used as input data in the following steps (see
Fig. 3).

Lumen Detection A median filtering is used to detect the
dark area corresponding to the lumen. To optimize the
filtering output, the inclination of the CCA is corrected
over the image (see flow chart in Fig. 5) and a hori-
zontally oriented filter is used. The median filtering is
iteratively applied to the image with the artery in hor-
izontal position to reduce speckle noise influence. By
doing this, the image is slightly blurred while maintain-
ing its edges [14], achieving smooth homogeneous
regions.

Later, the image is binarized and its negative is taken to
obtain a binary image with several white regions, one of
them corresponding to the lumen. After filling possible
holes, the region which contains the point of maximal cor-
relation will be selected as lumen, resulting in a binary mask
of the lumen.

Initial Contours Calculation Once the lumen edges have
been detected, a polynomial interpolation of order 3 is
applied to them to obtain smoother initial contours
corresponding to the near and far wall of the CCA. The
lower contour is split into two, one to detect the intima and
another to detect the adventitia layer. Both curves are slight-
ly displaced with respect to their original position. In par-
ticular, the upper contour (corresponding to the intima layer)
is moved 15 pixels upwards, while the lower (corresponding
to the adventitia layer) is placed 35 pixels under the previous
one.

At this point, it is possible to calculate the position of the
“geometric centre” of the lumen, which will be employed in
later processing. The geometric centre is calculated as the
mean point from the lumen region. Especially the vertical
coordinate position of the geometric centre is of our interest,
since it establishes a clear reference point between near and
far walls (see Fig. 7c).
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Fig. 3 Automatic initialization diagram
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Driving Force Calculation

Driving forces, extracted from the cropped original image,
control where the contours adjust. Usually, the gradient or
Laplacian of the image values are used as driving forces,
since they show the position of intensity transitions where
the layer boundaries are located. The calculation process to
determine drive forces is shown in Fig. 6. In the cropped
image (the crop is the same used in previous sections),
pixels with low intensity are forced to 0 to eliminate its
influence in the calculation of the gradient.

After that, a low-pass Gaussian filter is applied to smooth
the edges. Since the artery presents a nearly horizontal
inclination, the intensity changes we are interested in are
those which occur in the vertical direction. Thus, only the
gradient in the vertical direction is calculated. However, the
desired transitions are different for each wall. Namely, for
the near wall, the required transition is decreasing (from
light to dark, see Fig. 7a) and for the far wall is increasing
(from dark to light, see Fig. 7b). Given that the geometric
centre of the lumen delimits the border where the wanted
transitions change from decreasing to increasing, the com-
bination of both types of transition is possible, as can be
seen in Fig. 7c.

To slightly eliminate some noise (see Fig. 6), a morpho-
logical filtering is performed. Morphological filtering allows
us to find elements in the image with similar morphology as
the so-called structuring element [14]. More specifically, a
closing (to join unconnected regions) and an opening (to
eliminate small regions) with horizontally oriented structur-
ing element has been applied (see Fig. 8a).

The following step is to find the main three directions in
the image; a Hough transform is used. The Hough transform
[15] estimates the main geometric orientation of the struc-
tures in the image. In our case, we extract via a Hough
transform the main three directions in the image, which will
give us a morphological mask (see Fig. 8b) to reconstruct
the gradient image with reduced noise. Now, having elimi-
nated the information with different orientation from the

main three directions in the image, the resulting image is
clear and visually less noisy (see Fig. 8c). Finally, a gradient
operation over this image is computed to get the forces
which will drive the active contour algorithm.

CCA Layer Detection

As explained at the very beginning of “CCA Segmentation
Process” section, the process to detect interfaces I2, I5 and
I7 is determined by an active contour algorithm, which
presents an iterative evolution as can be inferred from
Fig. 9. There will be three contours, one for each interface
to detect.

The process starts with an interpolation over the initial
curves calculated in “Automatic Initialization” section. By
interpolating, the different points or nodes u that comprises
the contours are linked with a shape function that determines
extra points between the nodes called “control points” v.
Cubic B-splines are used as shape function because they
produce smooth contours, avoid the influence of the char-
acteristic rough texture in ultrasound images and provide the
best performance regarding its computational load. By in-
troducing this interpolation, the number of calculations con-
siderably decreases because only a few nodes affect the
snake evolution. Besides, a frequency-domain formulation
of the image processing algorithm has been employed [16],
which offers substantial computational savings in compari-
son to the time-domain formulation, especially for two-
dimensional structures [17].

After the node interpolation, the Laplacian affecting each
control point is evaluated. The Laplacian value, acting as
external force, is applied over the nodes together with the
gravity and take-off forces. These latter forces act mainly in
the first iterations if the contour does not reach any edge, i.e.
if the contour location coincides with a gradient value of
zero. In that case, curves for I2 and I7 will be affected by
take-off forces that push them upwards, whereas I5 curve
will be forced downwards by the effect of gravity forces.

DRIVING FORCE CALCULATION
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Gradient
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Fig. 6 Driving forces
calculation diagram
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When all the forces affecting the nodes are calculated, the
position of the nodes in the next iteration is obtained, always
forcing far wall curves not to cross. Finally, the process will
continue until the end condition is reached. This condition
involves two requirements; on the one hand, the combined
movement of curves I5 and I7 must be less than 0.1 pixel
(less than 0.017 % of the vertical size). On the other hand,
the displacement in the next iteration for I2 must be less than
0.05 pixel, which implies a displacement of 0.085 % of the
vertical size of the image. If one of the conditions is ful-
filled, the corresponding contour evolution will stop. If
neither of the conditions is reached, the algorithm will stop
after 1,000 iterations, which are sufficient for the curves to
converge in all cases.

Measurements and Validation

Before extracting measurements, it is necessary that the
contours are placed near an edge and that they present
continuity. To accomplish that, we focus on finding the
bimodal profile with two intensity peaks that must appear
in the vertical cuts of the image.

To make the search of a bimodal profile simpler, the
histogram of the distance between the far wall contours (I5
minus I7) is considered. Hence, the difference of a bimodal
distribution will produce a Gaussian distribution. However,
if the difference shows some outliers (IMT too big or too

small with respect to the most repeated values), we consider
that the outlier was produced because of an inadequate wall
detection, such as in the case of image #16 (see Fig. 10a).

To eliminate the aforementioned outliers, a Gaussian
window is applied to the histogram of the difference
(Fig. 10b). The window weighs the values in the histogram
by multiplying them with a Gaussian function. Since a
health adult’s CCA presents usually IMT from 0.05 cm,
the mean of the window is the median IMT over the values
above 6 pixels (equivalent to less than 0.44 mm for the
maximum space resolution) and the standard deviation is
1 pixel (0.079 mm for the maximum space resolution). By
doing this, the values of IMT too small are discarded. After
multiplying by the Gaussian window, all the bins under 1 %
of the most repeated IMT value are discarded. With this
method, the limits where the IMT measurement has been
validated are established, as can be seen in Fig.10c, where
the dotted line indicates non-validated measurement and the
continuous one valid measurement. This “IMT range” will
be used in later processing. Over the IMT range, some
variation margin is allowed depending on the number of
values discarded with the Gaussian window. The more dis-
carded values, the greater variation with respect to the
original range the “expanded range” will admit. In the case
of image #16 (see Fig. 10a, b), the IMT range ranges from
8 to 16 pixels (0.266 to 0.532 mm), and the expanded range
varies from 10 to 21 pixels (0.332 to 0.698 mm).

Fig. 7 Combination of
decreasing (a) and increasing
(b) gradient transitions in a
single image (c) from image
#14. The dotted line marks the
border between near and far
wall

Fig. 8 Gradient from image
#14 with reduced noise (a),
directional morphological mask
(b) and gradient reconstruction
with the directional mask (c)
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Refinement Stage

Contour Adjustment

If there are non-validated sections in the solution found (as
shown in Fig. 10c), the contours corresponding to interfaces
I5 and I7 must be properly reinitialized, but only in those
sections considered as non-validated (see Fig. 11). These
validated sections will be trimmed five control points v on

each side to avoid that the validated contours with short
extension have a significant weight in the adjustment.

Usually, for each non-validated section, only one contour
converges to a wrong solution, forcing us to reconsider the
traced contours. For this purpose, the wrong (or perhaps the
worse) contour in each non-validated section is determined.
The contour with the higher curvature in a non-validated
section will be considered the wrong curve in that specific
section. The followed criterion to establish which curve is
wrong is based on the second spatial derivative. Thus, the
curve with the bigger absolute value of its second derivative
in the non-validated section will be considered as the wrong
curve.

The previous process is repeated for all the non-validated
sections to proceed with a low-order interpolation (2 or 1 if
the value of the measured curvature is too small) over the
wrong sections. The interpolation takes as known points
those of the validated sections, making an estimation of
the non-validated sections. If the new contours twist or if
they separate further than the “expanded IMT range”, they
are force to keep a distance within the “expanded IMT
range”.

Since a non-validated measurement could be due to in-
sufficient intensity or to the existence of an attracting nearby
edge (driving force), together with this adjustment, the gra-
dient for each contour is weighed. In other words, the
intensity of the external forces in areas far from the new
initialization is reduced. For this purpose, a Gaussian func-
tion with 40 pixels wide (6.77 % of the image height) and
standard deviation 35 pixels (around 6 % of the image
height) centred in the new contour position is applied. As
a consequence, nearby edges lose intensity to avoid the
contours reaching them. This is again the case for image
#16, which is shown in Fig. 12.

CCA LAYERS DETECTION

Driving forces calculation

Take-off and gravity forces

Actualization

Check if curves cross

Stop
condition
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ui+1
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Initial contours
(1st iteration)
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Fig. 9 Flow chart of the iterative active contour process
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Fig. 10 Wall detection results for image #16 (a), measurement validation histograms before (top) and after (bottom) the application of a Gaussian
filter (b) and validated results (c)
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Refinement of Interfaces I5 and I7

In the results refinement stage, the processing is very similar
to that explained in “CCA Layer Detection” section (see
Fig. 9). The basic differences lie in the fact that only con-
tours corresponding to interfaces I5 and I7 will evolve and
that each one has a different driving forces. As an example,
results after the first stage for image #16 are shown in
Fig. 12a, where the first wrong section is due to the upper
contour and the second wrong section to the lower one.
Therefore, a different gradient image is applied to the curves
I5 (see Fig. 12b) and I7 (see Fig. 12c), respectively.

Measurements and Validation After Refinement

After the results refinement, the validation criterion is dif-
ferent from that used in “Measurements and Validation”
section. Now, valid IMT measurements must lie over inten-
sity peaks. This was not previously considered because it
could cause results like those in Fig. 10a. In other words, the
existence of intensity peaks under the obtained contours did
not initially guarantee that the bimodal profile was the
desired one. However, after the refinement process, the
intensity peaks can be considered as suitable locations for
the final contours.

Following this idea, intensity peaks are sought using a
classical K-means method with two classes, extracting a
binary image from the gradient of the image used as external
force. The nodes are then moved to the intensity peaks
found via K-means.

Finally, to assure the final contours smoothness, a last
checking is made. An order 2 polynomial fit is calculated

over the contours obtained in the previous section. If the
maximum difference between the non-validated section po-
sition and the polynomial fit is less than 3.5 pixels
(0.256 mm for the maximal vertical space resolution), that
section will be definitely considered as valid. By doing this,
a smoothness criterion is established, considering valid sec-
tions where there is no information but where that IMT
value is to be expected with enough guarantees. It is also
possible that the intensity peak be too weak and then, even
though it may be the desired position, it be considered as
non-validated. Figure 13 illustrates this situation.

Results

The provided images can be classified into three different
datasets. One contains images with overlaid markers placed
by the doctors, another one shows raw images (i.e. images
without any overlapped element) and the third one contain
the same images with and without markers for a better
comparison between manual procedure and our method.

In Fig. 14, the obtained results for different images can be
seen over the images marked by the doctors. Under each
image, the mean relative error and the mean difference in
millimetres are shown. Taking into account all the marked
and validated locations, the mean relative error has been
calculated as the averaging of the relative deviations of the
algorithm measurement with regard to the doctor’s ones. For
this dataset, the relative error remains under 3.25 %. We
found the maximum deviation in pixels for the marker at the
right in Fig. 14c, which is of only 2.2 pixels (0.0726 mm).

In Fig. 15, a second CCA image set is shown. These
images do not have any overlaid markers, and their
corresponding results have been only visually validated by
the doctors. It is remarkable that although the case in
Fig. 15b did not present the intima–media–adventitia pattern
along all the length of the cropped image, the proposed
method has achieved a good result and has correctly evalu-
ated the validity of the final contours.

Finally, in Fig. 16, IMT measurements extracted from
images without markers are compared to the quantitative
measurements obtained by the doctors from the same
images. Under each image, the mean relative error,

CONTOUR ADJUSTMENT

Establish valid
sections

Determine wrong
contour sections

Reinitialization
(polynomial fit)

Independent
gradient

calculation

Valid measurements

Independent drive
forces

Contour
refinement

Fig. 11 Contour adjustment process previous to the refinement stage

Fig. 12 Example of
independent gradient images
for image #16: a results after
the first stage, b gradient for the
upper and c lower contour in
the refinement stage
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calculated as explained at the beginning of the present
section (along with the mean difference in millimetres),
between the segmentation here presented and the medical
measurements is displayed, but only for those markers lo-
cated in a validated section. This difference is calculated
only at those points where the doctor has placed a marker to
properly compare both methods.

The image in Fig. 16a presents the maximum mean
relative error (9.71 %). This is due to a deviation of
0.1056 mm (1.6 pixels) for each marker under a validated
section. Although the difference in pixels is small, the
dependence of the relative error on the spatial resolution
produces a high error (9.71 %).

Visually, we can appreciate that the final contours reach
the markers placed by the doctors or that they lie nearby,
with a maximum deviation of 2.7 pixels for the left marker
in Fig. 16b. Once more, this image presents a low spatial

resolution (0.067 mm/pixel) in comparison with other
images. Thus, a small difference in pixels could translate
into a large difference in mm (0.1809 mm), which affects
negatively to the mean error. For all the images, the relative
error of the difference between the manual and the automat-
ic measurement at the selected locations remains always
under 10 %.

To improve the near wall segmentation, its detection
should be independently validated (see Fig. 16b). By limit-
ing the curvature of the correct final contour, we could
determine a new incorrect section and exclude the invalid
lumen diameter measurements from the mean, maximum
and minimum measurements.

Conclusions

Thanks to the image processing techniques described along
this work, both near and far walls are correctly located in the
available ultrasound images. This allows the development of
a fully automatic method, in which the user interaction is not
necessary at all. Being the initialization critical issue in the
active contour evolution, many efforts and computational
cost have been invested in automatically obtaining appro-
priate initial contours. Apart from having a completely
automatic initialization, the method here presented over-
come previous methods based on snakes because it imple-
ments the contours in a frequency domain, which provide

Fig. 13 Validation example for image #15. Before (a) and after poly-
nomial fit (b)

(a) 0.73 % (0.0061 mm) (b) 1.11% (0.0050 mm)

(c) 3.22% (0.0264 mm) (d) 1.92% (0.0165 mm)

Fig. 14 Segmentation for images with markers and relative error in percentage (in millimetres)
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(a) (b)

(c) (d)

Fig. 15 Segmentation for images without markers

(a) 9.71% (0.1056mm) (b) 8.28% (0.0715mm) 

(c) 6.5% (0.0550mm) (d) 0.03% (0.0300mm) 

Fig. 16 Segmentation for images without markers over the images marked by the doctors and relative error in percentage (in millimetres)
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significant computational savings (especially for two-
dimensional structures) [16].

The shape function used in active contours is a cubic B-
spline. This shape form has been chosen for its good per-
formance versus running ratio and because it produce
smooth edges [18]. Besides, the evolution of the contours
divided into two stages requires short execution time than
that in a single stage allowing more freedom to the curves
because in the second stage the contours are initialized quite
close to the final solution.

It is noteworthy that for both stages, the contours evolve
simultaneously, reducing the running time when compared
to previously published solutions [8], where the evolution of
the curves for I5 and I7 is sequential. The validity of the
results is studied based on statistical features after the CCA
layer detection and on intensity features after the refinement
process. This validation distinguishes correct from wrong
sections of the final results, avoiding the inclusion of the
latter in the statistical measurements. Apart from correctly
assessing the results, this automatic validation can even help
the doctors to decide where the most appropriate regions to
measure IMT are.

The authors are studying how to mix both features (sta-
tistical and based on intensity) to merge both validation
steps into a single one and to eliminate the second contour
evolution stage, while maintaining the iteration reduction. In
other words, the idea is to correct the non-validated sections
after a single snake stage.

Both numerical and visual results have been endorsed by
the doctors. The mayor discrepancies occur when the zoom
level is too low (i.e. low spatial resolution), since a small
difference in pixels translates into a high difference in milli-
metres. This result is to be expected because the less zoom,
the worse the doctor can distinguish the interfaces to detect.

Authors are currently working on a comprehensive
validation of the presented methodology, which includes
many more images and medical measurements
(concerning the IMT and the lumen diameter) for its
comparison. At the moment, these results confirm those
presented in this paper.

Acknowledgements This work is supported by the Spanish Minis-
terio de Ciencia e Innovación, under grant TEC2009-12675, and by
the Séneca Foundation (09505/FPI/08). The authors would like to
thank the Radiology Department of Hospital Universitario Virgen de
la Arrixaca for their kind collaboration and for providing all the
ultrasound images used.

References

1. Loizou CP, Pantziaris M, Pattichis MS, Kyriacou E, Pattichis CS:
Ultrasound image texture analysis of the intima and media layers
of the common carotid artery and its correlation with age and
gender. Comput Med Imaging Graph 33(4):317–324, 2009

2. Velazquez F, Berná JD, Abellan JL, Serrano L, EscribanoA, Canteras
M: Reproducibility of sonographic measurements of carotid intima–
media thickness. Acta Radiol 49(10):1162–1166, 2008

3. Gonzalez J, Wood JC, Dorey FJ, et al: Reproducibility of carotid
intima–media thickness measurements in young adults. Radiology
247(2):465–471, 2008

4. Bots ML, Evans GW, Riley WA, Grobbee DE: Carotid intima–
media thickness measurements in intervention studies: design
options, progression rates, and sample size considerations: a point
of view. Stroke 34:2985–2994, 2003

5. Gustavsson T, Liang Q, Wendelhag I, Wikstrand J: A dynamic
programming procedure for automated ultrasonic measurement of
the carotid artery. In: Proc. IEEE Comput Cardiol, 1994, pp 297–300

6. Liang Q, Wendelhag I, Wikstrand J, Gustavsson T: A multiscale
dynamic programming procedure for boundary detection in ultra-
sonic artery images. IEEE Trans Med Imaging 19:127–142, 2000

7. Chan R, Kaufhold J, Hemphill LC, Lees RS, Karl WC: Anisotrop-
ic edge-preserving smoothing in carotid B-mode ultrasound for
improved segmentation and intima–media thickness (IMT) mea-
surement. Comput Cardiol 27:37–40, 2000

8. Ceccarelli M, De Luca N, Morganella A: An active contour approach
to automatic detection of the intima–media thickness. In: IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP’06. doi:10.1109/ICASSP.2006.1660441, 2006

9. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A:
Snakes based segmentation of the common carotid artery intima
media. Med Biol Eng Comput 45:35–49, 2007

10. Liang J, McInerney T, Terzopoulos D: United snakes. Med Image
Anal 10(2):215–333, 2006

11. Delsanto S, Molinari F, Giusetto P, Liboni W, Badalamenti S, Suri
JS: Characterization of a completely user-independent algorithm
for carotid artery segmentation in 2-D ultrasound images. IEEE
Trans Instrum Meas 56(4):1265–1274, 2007

12. Molinari F, Zeng G, Suri JS: An integrated approach to computer-
based automated tracing and its validation for 200 common carotid
arterial wall ultrasound images: a new technique. J Ultrasound
Med 29:399–418, 2010

13. Molinari F, et al: CAUDLES-EF: carotid automated ultrasound
double line extraction system using edge flow. J Digit Imaging,
2011. doi:10.1007/s10278-011-9375-0

14. González RC, Woods RE: Digital Image Processing, 2nd edition.
Prentice Hall, Upper Saddle River, 2002

15. Duda RO, Hart PE: Use of the Hough transformation to detect
lines and curves in pictures. Commun ACM 15:11–15, 1972

16. Weruaga L, Verdú R, Morales J: Frequency domain formulation of
active parametric deformable models. IEEE Trans PAMI 26
(12):1568–1578, 2004

17. Verdú R, Larrey J, Morales J: Frequency implementation of the
Euler–Lagrange equations for variational image registration. IEEE
Signal Process Lett 15:321–324, 2008

18. Unser M: Splines: a perfect fit for medical imaging. Pro Biomed
Opt Imag 225–236, 2002

J Digit Imaging (2013) 26:129–139 139

http://dx.doi.org/10.1109/ICASSP.2006.1660441
http://dx.doi.org/10.1007/s10278-011-9375-0

	Segmentation of the Common Carotid Artery Walls Based on a Frequency Implementation of Active Contours
	Abstract
	Introduction
	Background
	CCA Segmentation Process
	Wall Detection
	Automatic Initialization
	Driving Force Calculation
	CCA Layer Detection

	Measurements and Validation
	Refinement Stage
	Contour Adjustment
	Refinement of Interfaces I5 and I7

	Measurements and Validation After Refinement

	Results
	Conclusions
	References


