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Abstract: Mushroom extracts have shown potential as a source of new antimicrobial agents. This
study investigates the chemical profile of an aqueous ammonia extract obtained from the carpophores
of Ganoderma lucidum, which grows on Quercus ilex trees, and explores its valorization as a biora-
tional. The major chemical constituents of the extract, identified through gas chromatography–mass
spectrometry, include acetamide, oleic acid, 1,2,3,4-butanetetrol, monomethyl azelate, undecane, and
palmitic acid. The anti-oomycete and antifungal activity of G. lucidum extract was evaluated against
Phytophthora cinnamomi, the primary threat to Quercus spp. in the dehesa biome, as well as three
Botryosphaeriaceae fungi. In vitro tests revealed minimum inhibitory concentration (MIC) values
of 187.5 µg·mL−1 against P. cinnamomi and 187.5–1000 µg·mL−1 against the fungi. Furthermore,
conjugation of the G. lucidum extract with chitosan oligomers (COS) synergistically enhanced its
antimicrobial activity, resulting in MIC values of 78.12 and 375–500 µg·mL−1 against P. cinnamomi and
the fungi, respectively. These MIC values are among the highest reported to date for natural products
against these phytopathogens. Subsequent ex situ testing of the COS-G. lucidum conjugate complex
on artificially inoculated Q. ilex excised stems resulted in high protection against P. cinnamomi at a
dose of 782 µg·mL−1. These findings support the potential utilization of this resource from the dehesa
ecosystem to protect the holm oak, aligning with sustainable and circular economy approaches.

Keywords: antifungal activity; anti-oomycete activity; chitosan oligomers (COS); dehesa ecosystem; gas
chromatography–mass spectrometry (GC-MS); mushroom extracts; natural products; phytopathogens;
Quercus ilex; reishi

1. Introduction

Medicinal mushrooms’ fruiting bodies, mycelium, and spores are valuable sources of
bioactive products [1]. Ganoderma lucidum (Curtis.) P. Karst. is a dark, large fungus with a
glossy exterior and a woody texture. It has been used for promoting health and longevity in
Japan and China, where it is known as ‘reishi’ or ‘mannentake’, and ‘lingzhi’, respectively.
The G. lucidum fruiting body has a tawny-to-russet-colored stipe (Figure 1). The context
tissue, cinnamon-buff to pink-buff in color, shows concentric growth zones.

Several researchers have carried out the extraction of metabolites from G. lucidum using
various solvents, namely, methanol, chloroform, acetone, or water [2,3]. Ganoderma lucidum
extracts contain secondary metabolites such as phenols, steroids, terpenoids, nucleotides,
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glycoproteins, and polysaccharides [4]. Polysaccharides (ganoderans) and triterpenes (gan-
oderic acids, ganodermanondiol, ganodermanontriol, ganolucidic acid B, and lucidumol B)
are the major bioactive chemical constituents [5,6].
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Figure 1. Detail view of a basidiocarp of G. lucidum (left) and its stipe (right). 
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Yang et al. [14] demonstrated that G. lucidum polysaccharides combined with small 
amounts of chemical fungicides were successful in controlling plant diseases such as 
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Concerning phytopathogens, Phytophthora spp. are a threat to global food security 
and the health, function, and biodiversity of native ecosystems [15]. The dehesa (semi-nat-
ural open woodlands) is a characteristic ecosystem of the Iberian Peninsula that is affected 
by one of these pathogens. The loss of trees due to the disease caused by the oomycete 
Phytophthora cinnamomi is one of the most significant problems that this biome faces, which 
is exacerbated by climate change [16]. Phytophthora cinnamomi is a globally distributed 
pathogen that can infect thousands of species and is considered to be the main biotic 
driver of Quercus spp. woodlands’ decline in Spain [17]. It is also one of the most threat-
ening invasive pathogens in the world [18]. In addition to P. cinnamomi, the trees in the 
dehesa are also threatened by ascomycete fungi of the genus Botryosphaeria, including Bot-
ryosphaeria dothidea, Diplodia corticola, and Dothiorella iberica. These fungi cause cankers and 
dieback of twigs and have been associated with the decay of holm oaks and cork oaks, 
although B. dothidea has also been found in other species of the genus Quercus such as 
Quercus robur L. and Quercus rubra Michx. L. [19]. 

Taking into consideration that the use of fungicides is discouraged under the current 
new European Union forest strategy for 2030 (Sustainable Forest Management in Europe, 
2022/2016(INI)) and that Article 14 of Directive 2009/128/EC promotes the use of formula-
tions based on natural ingredients as new protection techniques, the study presented 
herein aims to study the chemical constituents present in G. lucidum aqueous ammonia 
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The biological activity of G. lucidum has been investigated by Mizuno et al. [7] and
Liu et al. [8]. Its polysaccharide composition significantly contributes to G. lucidum’s im-
munomodulatory, antioxidant, antitumor, and antibacterial properties [5,9]. On the other
hand, its triterpene content is responsible for its antitumor, anti-inflammatory, antioxidant,
anti-hepatitis, antimalarial, hypoglycemic, antimicrobial, and anti-inflammatory activ-
ity [10,11]. Furthermore, its polyphenol content plays a role in its antioxidant, antimicrobial,
and anti-inflammatory properties, as well as its anti-tyrosinase activity [12,13].

The antimicrobial activity of G. lucidum extracts has been evaluated against bacteria
such as Bacillus subtilis, Staphylococcus aureus, Klebsiella aerogenes, Corynebacterium diphtheriae,
Escherichia coli, Salmonella spp., and Pseudomonas aeruginosa [2], as well as against fungi
such as Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Mucor indicus, Curvularia
lunata, Fusarium oxysporum, Alternaria alternata, Drashelaria spp., and Penicillium spp. [3].
Yang et al. [14] demonstrated that G. lucidum polysaccharides combined with small amounts
of chemical fungicides were successful in controlling plant diseases such as wheat brood,
root rot, and corn stalk rot.

Concerning phytopathogens, Phytophthora spp. are a threat to global food security and
the health, function, and biodiversity of native ecosystems [15]. The dehesa (semi-natural
open woodlands) is a characteristic ecosystem of the Iberian Peninsula that is affected
by one of these pathogens. The loss of trees due to the disease caused by the oomycete
Phytophthora cinnamomi is one of the most significant problems that this biome faces, which
is exacerbated by climate change [16]. Phytophthora cinnamomi is a globally distributed
pathogen that can infect thousands of species and is considered to be the main biotic driver
of Quercus spp. woodlands’ decline in Spain [17]. It is also one of the most threatening
invasive pathogens in the world [18]. In addition to P. cinnamomi, the trees in the dehesa are
also threatened by ascomycete fungi of the genus Botryosphaeria, including Botryosphaeria
dothidea, Diplodia corticola, and Dothiorella iberica. These fungi cause cankers and dieback of
twigs and have been associated with the decay of holm oaks and cork oaks, although B.
dothidea has also been found in other species of the genus Quercus such as Quercus robur L.
and Quercus rubra Michx. L. [19].

Taking into consideration that the use of fungicides is discouraged under the current
new European Union forest strategy for 2030 (Sustainable Forest Management in Europe,
2022/2016(INI)) and that Article 14 of Directive 2009/128/EC promotes the use of formula-
tions based on natural ingredients as new protection techniques, the study presented herein
aims to study the chemical constituents present in G. lucidum aqueous ammonia extract
by gas chromatography–mass spectrometry (GC–MS) and to explore opportunities for the
valorization of this extract for the control of aforementioned phytopathogens. This second
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goal was addressed by first studying the in vitro antifungal and anti-oomycete activity of
the aqueous ammonia extract, alone and upon conjugation with chitosan oligomers (COS),
and by subsequent ex situ testing of the most effective treatment on Quercus ilex L. excised
stems to confirm its anti-oomycete activity against P. cinnamomi.

2. Results
2.1. Infrared Vibrational Characterization

The primary absorption bands in the infrared spectra of G. lucidum carpophores pow-
der are summarized in Table 1, alongside those of the commercial G. lucidum powder
of Chinese origin. The identified functional groups are consistent with the presence of
the chemical constituents identified in the aqueous ammonia extract by GC−MS (such
as polyphenols, esters of organic acids, and alkaloids), together with non-extracted con-
stituents, such as glucans (a characteristic β-glucan band appears at 1036 cm−1 and another
band which represents (1→4) linked glucans is located at 1153 cm−1).

Table 1. Main absorption bands (cm−1) in the infrared spectra of G. lucidum carpophore powder.

Wavenumber (cm−1)
AssignmentG. lucidum

(This Study)
G. lucidum

(Commercial)

3290 3297 –OH and –NH stretch

2924 2922 –CH2 asymmetric stretching of alkyls (cutine, wax,
pectin, amides)

2874 C–H stretching
(2183) C–N bonding
(2148) C=C stretching
(2047) C–N bonds
(2018) C–H stretching (polysaccharides)

1645 1634 C=O stretching (amides); C=C stretching; O–H
deformation

1538 C–N bonds
1451 C–H bending

1374 1371 C–C asymmetrical stretching; phenolic OH groups;
C–H (cellulose)

1203 1248 ketonic carbonyl group and C–N bonds

1153 C–C in plane (β-carotene); C–O–C asymmetric
stretch (cellulose)

1036 1035 C–C stretching; C–N stretching; >C=O (ketonic)
group

562 C–C out of plane bending; C–H rocking vibration
526 C–C in-plane bending; COO− rocking

452 C–C–C–C in-plane deformation

2.2. Extract Phytoconstituents Elucidation by GC−MS

The main components of the G. lucidum carpophore aqueous ammonia extract
(Figures S1 and 2, and Table 2) were: acetamide or ethanamide (28.3%); 9-octadecenoic
acid and its methyl ester (8%); l-threitol (or 1,2,3,4-butanetetrol) (4.8%); nonanedioic
acid, monomethyl ester (4.8%); undecane (4.5%); n-hexadecanoic acid (palmitic acid)
and its methyl ester (4.6%); glycerin (3.9%); 2,6-dimethoxy-phenol (2.5%); 5-hydroxy-
2(1H)-pyridinone (2.5%); mequinol or 4-hydroxyanisole (2.2%); N-methoxy-2-carbamino
aziridine (2.2%); dodecanoic acid and its methyl ester (2.2%); 3-(acetyloxy)-N,N-dimethyl-
2-propenethioamide (2.1%); and N,N-dimethylaceto acetamide (1.7%).
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Figure 2. Chemical structures of the main chemical constituents identified in the aqueous ammonia
extract of G. lucidum carpophores.

Table 2. Main chemical constituents identified by GC-MS in G. lucidum carpophore aqueous ammo-
nia extract.

Retention Time
(min)

Peak Area
(%) Assignment Qual

3.3124 28.279 Acetamide 90

5.1286 1.0155 5-(2-Chlorophenyl)-3-(1-piperidylmethyl)-1,3,4-
oxadiazole-2(3H)-thione 59

6.1139 3.9257 Glycerin 78
6.1673 4.7722 1,2,3,4-Butanetetrol, [S-(R*,R*)]- 64

6.9863 2.1160 2-Propenethioamide, 3-(acetyloxy)-N,N-dimethyl-,
(E)- 37

7.2123 1.29 2,5-Dimethyl-4-hydroxy-3(2H)-furanone 43
7.4078 0.9017 Fumaric acid, 3-methylbut-3-enyl tetradecyl ester 47
7.4790 0.7049 Tetrahydrofuran, 2-ethyl-5-methyl- 38
7.5442 1.70 2,5-Furandione, dihydro-3-methylene- 50
7.6511 2.1911 Mequinol 86
7.7995 4.4650 Undecane 42

8.5651 0.8559 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl- 62

9.4732 1.0981 Catechol 93
10.9867 0.8408 2-Methoxy-4-vinylphenol 64
11.0936 1.7093 N,N-Dimethylacetoacetamide 50
11.3312 1.86 N-Methoxy-2-carbaminoaziridine 49
11.4616 2.5489 Phenol, 2,6-dimethoxy- 97
11.8652 0.7987 DL-Proline, 5-oxo-, methyl ester 72
12.0491 2.5475 2(1H)-Pyridinone, 5-hydroxy- 64
13.2065 0.9025 Suberic acid monomethyl ester 64
13.2778 0.9487 Apocynin 81
13.5211 1.5205 Thiazole, 5-ethenyl-4-methyl- 35
13.6992 1.6385 Dodecanoic acid, methyl ester 98
14.1384 0.5720 Dodecanoic acid 96
14.1859 0.4162 Propenoic acid, 3-(1-ethyl-3-methyl-4-pyrazolyl)- 46
16.0317 1.2402 Methyl tetradecanoate 97
16.1208 0.8852 Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- 96

16.7262 1.1287 Cyclohexanone, 5-methyl-2-(1-methylethyl)-,
O-methyloxime, (2S-trans)- 38

18.1456 2.5903 n-Hexadecanoic acid ester 96
18.4889 2.0519 n-Hexadecanoic acid 95
19.8304 4.16 9-Octadecenoic acid, methyl ester 99
20.0678 0.9002 Methyl stearate 89
20.1865 3.8668 9-Octadecenoic acid, (E)- 96

Qual = Quality of resemblance.

2.3. Antifungal and Anti-Oomycete Activity

The results of the antifungal/anti-oomycete susceptibility test are presented in Figure 3.
An increase in concentration led to a decrease in the radial growth of the mycelium for all
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three tested products (COS, G. lucidum carpophore aqueous ammonia extract, and their
conjugate complex), resulting in statistically significant differences. The aqueous ammonia
extract of G. lucidum carpophores exhibited higher antifungal/anti-oomycete activity than
COS, with minimum inhibitory concentrations (MICs) ranging from 187.5 to 1000 µg·mL−1

and from 750 to 1500 µg·mL−1, respectively. Phytophthora cinnamomi was the most sensitive
phytopathogen in both cases, with MIC values of 187.5 and 750 µg·mL−1 for G. lucidum
extract and COS, respectively. The formation of conjugate complexes improved the activity,
with the COS–G. lucidum conjugate producing complete inhibition of Botryosphaeriaceae
family pathogens at concentrations in the range of 375 to 500 µg·mL−1, while the inhibition
value was as low as 78.12 µg·mL−1 for P. cinnamomi. The 50 and 90% effective concentrations
(EC50 and EC90, respectively), presented in Table 3, allow for a clearer observation of this
enhancement of the antifungal/anti-oomycete activity, which was quantified according to
Wadley’s method. The synergy factor values were in the range of 1.98–3.63. As these values
were higher than 1, a synergistic behavior can be inferred in all cases.
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Figure 3. Mycelial growth inhibition achieved with chitosan oligomers (COS), aqueous ammonia
extract of G. lucidum carpophores, and their conjugate complex (COS–G. lucidum) against (a) B. doth-
idea and D. corticola, and (b) D. iberica and P. cinnamomi at concentrations ranging from 62.5 to
1500 µg·mL−1 (or from 15.62 and 250 µg·mL−1 for COS–G. lucidum in the case of P. cinnamomi). The
same letters above concentrations indicate that they are not significantly different at p < 0.05. Error
bars represent standard deviations (n = 6). ‘C’ stands for the untreated control (i.e., PDA medium to
which only the solvent used for extraction was added).
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Table 3. Effective concentrations (EC, expressed in µg·mL−1) against B. dothidea, D. corticola, D. iberica,
and P. cinnamomi of chitosan oligomers (COS), the aqueous ammonia extract of G. lucidum carpophores,
and their conjugate complex (COS–G. lucidum). Synergy factors (SF) for the COS–G. lucidum extract
conjugate complex were estimated according to Wadley’s method.

Pathogen

Treatment

COS G. lucidum COS–G. lucidum

EC50 EC90 EC50 EC90 EC50 SF EC90 SF

B. dothidea 428.5 956.9 692.7 938.2 404.0 1.31 479.2 1.98
D. corticola 592.8 969.5 256.0 621.6 206.5 1.73 350.7 2.16
D. iberica 697.3 1201.7 476.4 703.8 249.6 2.27 345.6 2.57

P. cinnamomi 166.4 595.3 112.6 169.4 50.2 2.68 72.6 3.63

For the purpose of comparison, Fosetyl-Al, a conventional synthetic fungicide widely
employed against Phytophthora spp. and fungi associated with grapevine trunk diseases
(GTDs), was utilized as a positive control. As indicated in Table 4, when administered at the
recommended dose of 2000 µg·mL−1 (equivalent to 2.5 g·L−1 for Fosbel®, fosetyl-Al 80%),
complete inhibition of the four phytopathogens was observed. However, when applied at
one-tenth of the recommended dose, a moderate inhibition was observed against B. dothidea
and D. corticola, while a weak inhibition was observed in the case of P. cinnamomi, and no
inhibition was detected against D. iberica.

Table 4. Mycelial growth inhibition achieved with Fosetyl-Al at the recommended dose (Rd =
2000 µg·mL−1) and at one tenth of the recommended dose (Rd/10 = 200 µg·mL−1) against the four
phytopathogens under study.

Pathogen
Radial Growth of Mycelium (mm) Inhibition (%)

Rd/10 Rd Rd/10 Rd

B. dothidea 38.9 0 48.1 100

D. corticola 42.8 0 42.9 100

D. iberica 75.0 0 0 100

P. cinnamomi 65.5 0 12.7 100
The radial growth of the mycelium for the control (PDA only) was 75 mm. All mycelial growth values (in mm) are
average values (n = 3).

2.4. Protection of Excised Stems against P. cinnamomi

The COS−G. lucidum conjugate complex was the most active product in the in vitro
tests and was subsequently tested as a protective treatment against P. cinnamomi on holm-
oak-excised stems. Three different concentrations were used, corresponding to the MIC,
MIC × 5, and MIC × 10 (i.e., 78, 391, and 782 µg·mL−1, respectively). Results are presented
in Figure S2, and a comparison of canker lengths is shown in Table 5. No protective effect
was observed at the lowest dose tested (i.e., at the MIC value obtained in the in vitro tests),
with canker lengths similar to those of the positive control (non-treated stems infected with
the oomycete). At a dose equal to five times the MIC, significantly lower canker lengths
were observed. However, it was necessary to increase the concentration up to 10 times
the MIC to achieve effective protection, with no significant differences compared to the
negative control. Nevertheless, at this dose, small cankers were still visible in four of the
excised stems (out of fifteen replicates), indicating that higher doses may be required in
field conditions.
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Table 5. Analysis of the differences in necrosis lengths between the treatments with a confidence
interval of 95% (p < 0.0001).

Treatment LS Means (Necrosis
Length (mm)) Groups

C+ 40.467 A
MIC 37.400 A

MIC × 5 13.067 B
MIC × 10 1.800 C

C− 0.000 C
C+: positive control (inoculated, no treatment); C−: negative control (not inoculated).

3. Discussion
3.1. On the Chemical Profile

Among the list of compounds presented in Table 2, acetamide or ethanamide has been
previously identified in red beetroots (Beta vulgaris var. rubra) and Clerodendrum infortuna-
tum L. leaves [20]. It has also been found in extracts from Larrea divaricata Cav., Picea pungens
Engelm., and Sequoiadendron giganteum (Lindl.) Buchholz. The presence of acetamide in
the extract may be attributed to the partial hydrolysis of N,N-dimethylacetoacetamide,
which was also identified in the extract. Alternatively, it could originate from N-(3-
methylbutyl)acetamide or N(2-phenylethyl)acetamide, which are common components
of fresh wild mushrooms [21]. However, it is worth noting that the presence of acetamide
in the extract may be an artifact resulting from the extraction procedure, as it can also be
formed through the decomposition of ammonium acetate. Ammonium acetate is generated
by neutralizing excess ammonia in the extract with acetic acid. It is important to mention
that acetamide-containing compounds are widely used as herbicides in agriculture [22],
and several acetamide derivatives have been reported to act as antimicrobial agents [23].

Oleic acid, or 9-octadecenoic acid, has been identified in damask rose oil [24], Chenopodium
album L. root methanolic extract [25], Allium sativum Regel L. [26], Sesuvium portulacastrum
L. [27], Armeria maritima (Mill.) Willd. [28], Taxus baccata L. [29], and in small amounts in
pomegranates, peas, cabbages [30], Foeniculum vulgare Mill. [31], and Landolphia owariensis
Beauv. [32]. Its antifungal activity has been demonstrated against soil pathogens affecting
the family Cucurbitaceae, namely, Fusarium equiseti, Fusarium oxysporum f. sp. niveum,
Neocosmospora falciformis, Neocosmospora keratoplastica, Macrophomina phaseolina, and Sclero-
tinia sclerotiorum [28], corroborating the activity previously reported by Walters et al. [33]
against Crinipellis perniciosa, a pathogen of the genera Theobroma and Herrania, responsible
for witches’ broom, as well as against the oomycete Pythium ultimum, which affects flower
bulbs, summer flowers, and perennials.

L-threitol, also known as 1,2,3,4-butanetetrol, is a non-cariogenic component found
in Shiitake mushrooms [34] and is also the primary component of Thaumatococcus daniellii
(Benn.) Benth. ex B.D.Jacks. leaves [35]. At present, there is no available information on the
antimicrobial, antibacterial, or antifungal activity of this compound.

Nonanedioic acid (or 8-carbomethoxyoctanoic acid) monomethyl ester, also known
as monomethyl azelate, is a dicarboxylic acid naturally produced by Malassezia furfur (C.P.
Robin) Baill. and is also present in whole-grain cereals, rye, and barley. It is known to be
effective in treating acne and various cutaneous disorders [36].

Undecane was previously identified as a major constituent of the extract of the stem
bark of Symplocos crataegoides Buch.-Ham. ex D. Don (7.5%) [37], Opuntia ficus indica (L.) Mill
(20%) [38], Seseli pallasii Besser (13.3%), T. baccata (12.2%) [29], and in smaller percentages in
the essential oils of Hypericum hirsutum L. [39] and Lantana camara L. [40]. There is no clear
information available on the mechanism of action of undecane as an antimicrobial agent.

n-Hexadecanoic acid (palmitic acid) and its methyl ester were identified in several
plants such as Equisetum arvense L. (18.3%) [41], A. maritima (18%) [28], Limonium binervosum
(G.E.Sm.) C.E. Salmon (15%) [42], Hibiscus syriacus L. (9.6%) [43], and Tamarix gallica L.
(3.7%) [44]. Palmitic acid has been found to have nematicide and pesticide properties [45].
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Moreover, it has demonstrated antifungal activity against various fungi, including Alternaria
solani, F. oxysporum, Colletotrichum lagenaria, A. niger, Aspergillus terreus, Aspergillus nidulans,
N. falciformis, N. keratoplastica, M. phaseolina, and S. sclerotiorum [28,46,47].

2,6-Dimethoxyphenol (syringol) has been identified in various extracts, including
Macrotermes gilvus fungus combs (6.5%) [48], Uncaria tomentosa (Willd. ex Schult.) DC. [49],
and T. gallica [44]. The antimicrobial effects of syringol isolated from Camelia japonica wood
vinegar have been demonstrated against Globisporangium splendens, Ralstonia solanacearum,
F. oxysporum, and Phytophthora capsici [50].

5-hydroxy-2(1H)-pyridinone is analogous to 6-hydroxy-2(1H)-pyridinone, the primary
natural compound found in the wild berry Rubus fraxinifolius Poir. [51]. Although no infor-
mation is currently available on the antimicrobial activity of 5-hydroxy-2(1H)-pyridinone,
the 2(1H)-pyridone ring system is abundantly found in a wide variety of naturally occur-
ring alkaloids and novel synthetic biologically active molecules. Heterocycles containing
a 2(1H)-pyridone framework constitute a highly studied class of compounds due to their
diverse biological activities, including anti-HIV, antibacterial, antifungal, and free radical
scavengers [52].

3.2. On the Antimicrobial Activity Comparison of G. lucidum Extracts

The antibacterial and antifungal activity results reported for G. lucidum aqueous
ammonia extract in this study are consistent with the previously reported antimicrobial
activity of G. lucidum extracts in other solvents (Table S1) [3,12,53–59]. However, previous
reports have primarily focused on human pathogens, with limited data on phytopathogens,
thus making a direct comparison among extraction media unfeasible.

3.3. Comparison of Efficacy vs. Other Natural Compounds

The use of different isolates with distinct susceptibility profiles generally makes it
difficult to accurately compare the activity of G. lucidum aqueous ammonia extract with
that of other plant extracts reported in the literature (see Table 6). Nevertheless, it can be
observed that G. lucidum-based treatments exhibit some of the highest activities against the
four phytopathogens. Regarding B. dothidea, the efficacy of the pure extract is comparable
to that of a compound herbal extract compound consisting of seven Chinese medicinal
plants [60]. Meanwhile, the activity of the conjugate complex is intermediate between
those of COS-U. dioica and COS-E. arvense conjugates [41], tested against the same isolate.
Concerning D. corticola, the extract displays the highest activity. As for D. iberica, the data
are only available for COS-U. dioica and COS-E. arvense conjugates [41] (tested against the
same isolate), which exhibited lower activity, with MIC values at least twice that of the COS-
G. lucidum conjugate complex. In terms of the activity against P. cinnamomi (MIC = 187.5
for G. lucidum extract), it is only lower than those reported for an aqueous ammonia
extract of holm oak bark (MIC = 78.12 µg·mL−1) [61] and O. ficus-indica aqueous extract
(EC90 = 121.7 µg·mL−1) [62], and comparable to those of Flourensia cernua DC. extract
(EC90 = 193.4 µg·mL−1) [62] and Thymus vulgaris L. essential oil (MIC = 200 µg·mL−1) [63].

3.4. Comparison of Efficacy vs. Fosetyl-Al

Upon comparing the values of mycelial growth inhibition for Fosetyl-Al (as shown in
Table 4) with the effective concentrations reported for G. lucidum extract and its conjugate
complexes (as presented in Table 3), it can be observed that the in vitro activity of the
natural products was comparable to or even higher than that of the conventional fungicide.
Specifically, in the case of P. cinnamomi, complete inhibition was achieved at concentrations
of 187.5 µg·mL−1 and 78.1 µg·mL−1 for the non-conjugated extract and the conjugate
complex with COS, respectively, whereas Fosetyl-Al exhibited only 12% inhibition at a
concentration of 200 µg·mL−1.
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Table 6. Activities reported in the literature for plant extracts against the four phytopathogens studied
in this work.

Phytopathogen Extraction Media Plant Efficacy Ref.

B. dothidea

Ethanol 80%

Chinese herbal extract compound
(Scutellaria baicalensis, Syzygium
aromaticum, Cinnamomum cassia,

Gleditsia sinensis, Pogostemon cablin,
Acorus calamus, and Camellia

oleifera, ratio
1.375:1.125:0.45:0.5:1.35:1.25:2.8)

IR = 85%, at 800 µg·mL−1 [60]

Methanol 100%

Hemizygia transvaalensis n.a.

[64]

Pearsonia aristata IR = n.a.–<40%, at 100,000 µg·mL−1

Thesium burkei n.a.

Alloteropsis semialata n.a.

Smilax anceps n.a.

Schrebera alata IR = n.a.–<40%, at 100,000 µg·mL−1

Syncolostemon eriocephalus IR = <40%, at 100,000 µg·mL−1

Eucomis autumnalis IR = 85%, at 100,000 µg·mL−1

Mundulea sericea IR = <40%, at 100,000 µg·mL−1

Brachylaena huillensis IR = <40%, at 100,000 µg·mL−1

Lapholaena sp. IR = <40%, at 100,000 µg·mL−1

Methanol 95%

Dolichos kilimandscharicus IR ≥ 60%, at 1000 µg·mL−1

[65]Maerua subcordata IR < 50%, at 1000 µg·mL−1

Phytolacca dodecandra IR < 50%, at 1000 µg·mL−1

Water
COS–Equisetum arvense MIC = 750 µg·mL−1

[41]
COS–Urtica dioica MIC = 375 µg·mL−1

D. corticola

Ethanol 50%

Plantago major IR = 14.6%, at 2000 µg·mL−1 [66]

Medicago sp. IR = 60.9%, at 2000 µg·mL−1

[67]
Melilotus indicus IR = 16.7%, at 2000 µg·mL−1

U. dioica IR = 34.1%, at 2000 µg·mL−1

Medicago sp., M. indicus, P. major,
and U. dioica IR = 15.8%, at 2000 µg·mL−1

Water or ethanol Rosmarinus officinalis IR = 52.2%, at 1500 µg·mL−1 [68]

Ethanol 100% Cistus ladanifer IR = 38.75%, at 1000 µg·mL−1 [69]

Ethanol 80%

Musa sp. IR = 6–20%, at 750 µg·mL−1

[26]

Allium sativum IR = >50%, at 750 µg·mL−1

Citrus lemon IR = 21–49%, at 750 µg·mL−1

Citrus sinensis IR = 21–49%, at 750 µg·mL−1

Allium cepa IR = 21–49%, at 750 µg·mL−1

Punica granatum n.a.

Solanum tuberosum IR = 21–49%, at 750 µg·mL−1

Eucalyptus sp. IR = 6–20%, at 750 µg·mL−1

Pinus sp. IR = 21–49%, at 750 µg·mL−1

Olea europea IR = 6–20%, at 750 µg·mL−1

D. iberica Water
COS–Equisetum arvense MIC = 750 µg·mL−1

[41]
COS–Urtica dioica MIC = 1000 µg·mL−1
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Table 6. Cont.

Phytopathogen Extraction Media Plant Efficacy Ref.

P. cinnamomi

Aqueous ammonia Quercus ilex subsp. ballota MIC = 78.12 µg·mL−1 [61]

Ethanol 50% P. major IR = 32.2%, at 2000 µg·mL−1 [66]

Ethanol 50%

Medicago sp. IR = 21.5%, at 2000 µg·mL−1

[67]
M. indicus IR = 87.5%, at 2000 µg·mL−1

U. dioica IR = 40%, at 2000 µg·mL−1

Medicago sp., M. indicus, P. major,
and U. dioica IR = 72.6%, at 2000 µg·mL−1

Water or ethanol R. officinalis IR = 33.9%, at 1500 µg·mL−1 [68]

Ethanol 80%

Musa sp. n.a.

[26]

A. sativum IR > 50%, at 750 µg·mL−1

C. lemon IR = 21–49%, at 750 µg·mL−1

C. sinensis IR = 21–49%, at 750 µg·mL−1

A. cepa IR > 50%, at 750 µg·mL−1

P. granatum n.a.

S. tuberosum n.e.

Eucalyptus sp. n.a.

Pinus sp. IR = 21–49%, at 750 µg·mL−1

O. europea n.a.

Water

Larrea tridentata MIC90 = 1431 µg·mL−1

[62]

Flourensia cernua MIC90 = 193.4 µg·mL−1

Agave lechuguilla MIC90 = 68,568 µg·mL−1

Opuntia ficus-indica MIC90 = 121.7 µg·mL−1

Lippia graveolens MIC90 = 4825 µg·mL−1

Carya illinoensis n.a.

Yucca filifera n.a.

Essential oil

Salvia officinalis MIC > 1600 µg·mL−1

[63]

Salvia rosmarinus MIC > 1600 µg·mL−1

Origanum vulgare MIC > 200 µg·mL−1

Laurus nobilis MIC > 1600 µg·mL−1

Coriandrum sativum MIC = 800 µg·mL−1

Thymus vulgaris MIC = 200 µg·mL−1

Mentha piperita MIC = 800 µg·mL−1

Lavandula intermedia MIC = 1600 µg·mL−1

Beilschmiedia miersii MIC = 300 µg·mL−1 [70]

Methanol Arbutus unedo MIC = 5990 µg·mL−1 [71]

Water P. granatum cv. ‘Wonderful’ IR < 40%, at 10,000 µg·mL−1 [72]

COS: chitosan oligomers; IR: inhibition rate; IZ: inhibition zone; MIC: minimum inhibitory concentration; n.a.:
no activity.

3.5. Comparison of Efficacy in Excised Stems

Concerning the activity of the COS—G. lucidum extract conjugate complex as a protec-
tive treatment against P. cinnamomi, a comparison with other treatments against Phytophthora
spp. is presented in Table 7. Its efficacy was similar to that of non-conjugated Q. ilex aqueous
ammonia extract [61], although it was tested on Prunus amygdalus × P. persica excised stems
rather than on Q. ilex ones. The activity of the COS—G. lucidum extract conjugate complex
was higher than those of non-conjugated Sambucus nigra L. flower ammonia extract [73]
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and the COS–Quercus suber L. aqueous ammonia bark extract conjugate complex [74], but
these were tested against Phytophthora cactorum and Phytophthora megasperma, respectively,
so the comparison should be made with caution.

Table 7. Protective treatments against Phytophthora spp. based on natural products.

Source of
Excised Stems Pathogen Natural Product Effectiveness Ref.

Quercus ilex Phytophthora
cinnamomi

COS–Ganoderma
lucidum ammonia

carpophore extract
conjugate complex

Full protection at
782 µg·mL−1 This work

Prunus amygdalus ×
P. persica

P. cinnamomi

Q. ilex subsp.
ballota aqueous
ammonia bark

extract

Full protection at
782 µg·mL−1 [61]

Phytophthora
cactorum

COS–Quercus suber
aqueous ammonia

bark extract
conjugate complex

Full protection at
3750 µg·mL−1 [74]

Phytophthora
megasperma

Sambucus nigra
flower aqueous

ammonia extract

Full protection at
1875 µg·mL−1 [73]

4. Materials and Methods
4.1. Reagents and Fungal Isolates

Ammonium hydroxide (50% v/v aqueous solution) was purchased from Alfa Aesar
(Ward Hill, MA, USA). Acetic acid (80% in H2O, purum grade) and potato dextrose agar
(PDA) were supplied by Sigma Aldrich Química S.A. (Madrid, Spain). High molecular
weight chitosan and NeutraseTM 0.8 L enzymes were acquired from Hangzhou Simit Chem.
and Tech. Co. (Hangzhou, China) and Novozymes A/S (Bagsværd, Denmark), respectively.
Commercial G. lucidum used for vibrational spectra comparisons was purchased from
MundoReishi Salud S.L. (Palencia, Spain). The commercial fungicide used as a positive
control in the in vitro experiments, namely, Fosbel® (fosetyl-Al 80%, reg. no. 25502;
Probelte), was kindly provided by the Plant Health and Certification Service (CSCV) of the
Gobierno de Aragón.

Phytophthora cinnamomi Nirenberg & O’Donnell was supplied by the Centro de Sanidad
Forestal de Calabazanos (Villamuriel de Cerrato, Palencia, Spain); Diplodia corticola Phillips,
Alves & Luque (CAA500 isolate) was kindly provided by the Biology Department of the
Universidade do Minho (Braga, Portugal); while Botryosphaeria dothidea (Moug. ex Fr.) Ces.
De Not. (ITACYL_F141) and Dothiorella iberica Phillips, Luque & Alves (ITACYL_F066)
isolates were provided by the Instituto Tecnológico Agrario de Castilla y León (ITACYL,
Valladolid, Spain). All isolates were supplied as subcultures on PDA and refreshed.

4.2. Collection of Samples

Ganoderma lucidum carpophores growing on Q. ilex trees were collected in October
2021 in El Royal farm, in El Tejado de Béjar, Salamanca, Spain (40◦26′42.4′′ N 5◦33′09.4′′ W).
Specimens were identified and authenticated by Prof. Dr. B. Herrero-Villacorta (Depar-
tamento de Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid) and voucher
specimens are available at the herbarium of the ETSIIAA. Different specimens (n = 20) were
thoroughly mixed to obtain composite samples, which were shade-dried, pulverized to a
fine powder in a mill grinder, homogenized, and sieved (1 mm mesh).

4.3. Extraction Process, Preparation of Chitosan Oligomers, and Preparation of
Conjugate Complexes

An aqueous ammonia extraction medium was chosen due to the woody texture of
G. lucidum and to achieve the dissolution of polyphenols and other bioactive compounds of
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interest. Briefly, 67.3 g of G. lucidum carpophore powder was first digested in an aqueous
ammonia solution (140 mL H2O + 20 mL NH3) for 2 h, then sonicated in pulsed mode
(with a 2 min stop every 2.5 min) for 10 min using a probe-type ultrasonicator (model
UIP1000hdT; 1000 W, 20 kHz; Hielscher Ultrasonics, Teltow, Germany), and then allowed
to stand for 24 h. It was neutralized to pH 7 using acetic acid. Finally, the solution was
centrifuged at 9000 rpm for 15 min, and the supernatant was filtered through Whatman No.
1 paper. The extraction yield was 4.2% (2.86 g).

Aliquots of the extract were freeze-dried for attenuated total-reflectance Fourier-
transform infrared (ATR-FTIR) spectroscopy and GC−MS characterization. For the latter,
25 mg of the lyophilized extract was resuspended in 5 mL of methanol (HPLC grade) to
obtain a 5 mg·mL−1 solution, which was filtered before injection.

Chitosan oligomers were prepared using the method previously reported in [75],
resulting in a solution with oligomers with a molecular weight of less than 2 kDa.

The COS–G. lucidum carpophore extract conjugate complex was obtained by combining
solutions (both at a concentration of 3000 µg·mL−1) in a 1:1 (v/v) ratio, followed by
sonication for 15 min (five pulses lasting 3 min each to keep the temperature below 60 ◦C).
The solution was freeze-dried for ATR-FTIR characterization to confirm the formation of
the conjugate complex.

4.4. G. lucidum Characterization Procedures

The infrared vibrational spectra of the G. lucidum dried samples, as well as that of a
commercial G. lucidum sample, were registered using a Thermo Scientific (Waltham, MA,
USA) Nicolet iS50 FTIR spectrometer, equipped with an in-built diamond ATR system. The
spectra were collected over the 400–4000 cm−1 range, with a 1 cm−1 spectral resolution,
taking the interferograms resulting from co-adding 64 scans.

The aqueous ammonia extract of G. lucidum carpophores was analyzed by GC–MS at the
Research Support Services (STI) at Universidad de Alicante (Alicante, Spain), using an Agilent
Technologies gas chromatograph model 7890A coupled to a quadrupole mass spectrometer
model 5975C. The chromatographic conditions were as follows: injection volume = 1 µL;
injector temperature = 280 ◦C, in splitless mode; initial oven temperature = 60 ◦C, 2 min,
followed by a ramp of 10 ◦C/min up to a final temperature of 300 ◦C, 15 min. The chromato-
graphic column used for the separation of the compounds was an Agilent Technologies
HP-5MS UI column with a length of 30 m, a diameter of 0.250 mm, and a film thickness of
0.25 µm. The mass spectrometer conditions were as follows: temperature of the electron
impact source of the mass spectrometer = 230 ◦C; temperature of the quadrupole = 150 ◦C;
ionization energy = 70 eV. The identification of components was based on a comparison
of their mass spectra and retention time with those of the authentic compounds and by
computer matching with the database of the National Institute of Standards and Technol-
ogy (NIST11).

4.5. In Vitro Antifungal and Anti-Oomycete Activity

The antifungal and anti-oomycete activity of the G. lucidum carpophore extract and the
conjugate complex with COS was examined using the poisoned food method. Aliquots of
stock solutions were added to the PDA medium to produce final concentrations in the range
of 15.62–1500 µg·mL−1. Mycelial plugs were transferred from the margin of one-week-old
PDA cultures of B. dothidea, D. corticola, D. iberica, and P. cinnamomi to plates filled with the
amended media. For each treatment and concentration combination, three plates were used,
and each experiment was carried out twice. The untreated control consisted of replacing
the extract with the solvent used for extraction in the PDA medium. Fosbel® (fosetyl-Al
80%, reg. no. 25502; Probelte, Murcia, Spain) was used as a positive control. Additional
controls, consisting of pure PDA medium and PDA with the lowest concentration of the
treatment, were also included to confirm the absence of contamination. Radial mycelium
growth was quantified by measuring the average of two perpendicular colony diameters
for each replicate. Growth inhibition was estimated after incubation in the dark at 25 ◦C
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for one week, using the formula: ((dc − dt)/dc) × 100, where dc is the average colony
diameter in the untreated control and dt is the average diameter of the treated colony.
Effective concentrations (EC50 and EC90) were estimated using PROBIT analysis in IBM
SPSS Statistics v.25 (IBM; Armonk, NY, USA). The degree of interaction was estimated
using Wadley’s method [76].

4.6. Protection Tests on Artificially Inoculated Excised Stems

Given the restrictions that apply to in vivo assays involving P. cinnamomi, the effi-
cacy of the most active treatment in the in vitro tests (i.e., COS−G. lucidum carpophore
extract conjugate complex) was investigated by artificial inoculation of excised stems in
controlled laboratory conditions. Inoculation was performed according to the procedure
proposed by Matheron et al. [77], with modifications as described in [61,73,74]. Young
stems (1.5 cm diameter) of healthy Q. ilex plants were cut into 10 cm-long sections using a
sterilized grafting knife. The excised stem pieces were immediately wrapped in moistened
sterile absorbent paper. In the laboratory, the freshly excised stem segments were first
immersed in a 3% NaClO solution for 10 min, then in 70% ethanol for 10 min, and then
thoroughly rinsed four times with distilled water, to avoid superficial contaminants in
the tissue. Some of the stem segments (n = 15 for the positive control, and n = 15 for
the negative control) were soaked for 1 h in distilled water to be used as controls, while
the remaining stem segments were soaked for 1 h in aqueous solutions containing an
appropriate amount of the conjugate complex to obtain MIC, MIC × 5, and MIC × 10
concentrations (n = 15 segments/concentration). A coadjuvant (Alkir®, 1% v/v) was added
to all the solutions, including the control, to facilitate the moistening and penetration of the
treatment into the bark. After soaking, the stem pieces were allowed to dry, and the bark
was carefully removed with a scalpel to reveal the cambium. The bark was then placed
on an agar Petri dish and, in the case of the positive control and treated samples, it was
inoculated by placing a plug (diameter = 5 mm) from the margin of a one-week-old PDA
culture of P. cinnamomi on the center of the inner surface of the bark. After inoculation,
stem segments were incubated in a humid chamber for 4 days at 24 ◦C and 95–98% relative
humidity. The efficacy of the treatments was evaluated by measuring the lengths of the
cankers that developed at the inoculation sites. Finally, the oomycete was re-isolated from
the lesions and morphologically identified to fulfill Koch’s postulates.

4.7. Statistical Analysis

The results from the in vitro mycelial growth inhibition and ex situ necrosis lengths
were subjected to statistical analysis using one-way analysis of variance (ANOVA). Post hoc
comparisons of means were conducted using Tukey’s test at a significance level of p < 0.05.
Homogeneity and homoscedasticity requirements were checked using Shapiro–Wilk and
Levene tests. The statistical analysis was performed using IBM SPSS Statistics v.25 software.

5. Conclusions

This study provides valuable insights into the composition and antimicrobial activity
of an aqueous ammonia extract of Ganoderma lucidum carpophores. The GC-MS charac-
terization revealed the presence of chemical constituents such as oleic acid and its methyl
ester, 1,2,3,4-butanetetrol, monomethyl azelate, undecane, and palmitic acid and its methyl
ester, which have demonstrated antimicrobial properties in previous studies. In vitro tests
demonstrated significant anti-oomycete and antifungal activity of the G. lucidum extract,
further enhanced upon combination with chitosan oligomers. In particular, conjugate
complexes based on the extract exhibited notable efficacy against Phytophthora cinnamomi, a
serious threat to Quercus spp., resulting in complete inhibition at 78.12 µg·mL−1, which
was confirmed in ex situ bioassays on holm-oak-excised stems. These findings highlight the
potential of G. lucidum as a natural alternative to synthetic fungicides for controlling plant
diseases caused by oomycetes and fungi, and suggest its promise as a bioactive product for
safeguarding Quercus spp. in the dehesa ecosystem.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12122271/s1, Figure S1: GC-MS chromatogram of G. lucidum
carpophore aqueous ammonia extract; Figure S2: Canker lengths observed in holm-oak-excised stems
artificially inoculated with P. cinnamomi; Table S1: Antimicrobial activity reported in the literature for
G. lucidum extracts.
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