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Abstract: The mineralocorticoid receptor (MR) plays an important role in the development of chronic
kidney disease (CKD) and associated cardiovascular complications. Antagonizing the overactivation
of the MR with MR antagonists (MRA) is a therapeutic option, but their use in patients with CKD is
limited due to the associated risk of hyperkalemia. Finerenone is a non-steroidal MRA associated
with an improved benefit-risk profile in comparison to steroidal MRAs. In this study, we decided
to test whether finerenone improves renal and cardiac function in male hypertensive and diabetic
ZSF1 rats as an established preclinical HFpEF model. Finerenone was administered at 10 mg/kg/day
for 12 weeks. Cardiac function/hemodynamics were assessed in vivo. ZSF1 rats showed classical
signs of CKD with increased BUN, UACR, hypertrophy, and fibrosis of the kidney together with
characteristic signs of HFpEF including cardiac fibrosis, diastolic dysfunction, and decreased cardiac
perfusion. Finerenone treatment did not impact kidney function but reduced renal hypertrophy and
cardiac fibrosis. Interestingly, finerenone ameliorated diastolic dysfunction and cardiac perfusion in
ZSF1 rats. In summary, we show for the first time that non-steroidal MR antagonism by finerenone
attenuates cardiac diastolic dysfunction and improves cardiac perfusion in a preclinical HFpEF model.
These cardiac benefits were found to be largely independent of renal benefits.

Keywords: diabetes; heart failure; mineralocorticoid receptor antagonist; diastolic dysfunction;
finerenone

1. Introduction

The The prevalence of diabetes has increased continuously in the past years, repre-
senting a major challenge for the society and public health systems around the world [1].
Chronic kidney disease (CKD) and heart failure are the principal complications of dia-
betes [2,3]. Diabetes and other cardiometabolic risk factors contribute to de development
of HFpEF pathogenesis through endothelial dysfunction, inflammation, and oxidative
stress [4–6]. Diabetic patients with impaired renal function are at higher risk to suffer
from cardiovascular events than kidney failure, therefore, it is important to have a global
approach to limit CKD progression and cardiovascular disease (CVD) in diabetic patients
in order to reduce the incidence of cardiovascular morbidity and mortality.

The mineralocorticoid receptor (MR) plays an important role in the development of
CKD and associated cardiovascular complications especially in case of type 2 diabetes.
Antagonizing the overactivation of the MR is a therapeutic strategy largely studied in

Int. J. Mol. Sci. 2023, 24, 2536. https://doi.org/10.3390/ijms24032536 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032536
https://doi.org/10.3390/ijms24032536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1409-4581
https://orcid.org/0000-0002-5169-1628
https://orcid.org/0000-0002-0867-1277
https://orcid.org/0000-0002-1746-9580
https://orcid.org/0000-0002-7820-4148
https://orcid.org/0000-0003-3425-7528
https://doi.org/10.3390/ijms24032536
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032536?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2536 2 of 14

cardiovascular [7–10] and kidney diseases models [11–14], showing the benefit of using
mineralocorticoid receptor antagonists (MRA) to delay the progression of the disease.
However the use of the available steroidal MRA is limited in target patient populations
with compromised renal function due to the risk of hyperkalemia [15].

Finerenone is a non-steroidal mineralocorticoid receptor antagonist with different
and specific properties compared to classical steroidal MRAs such as spironolactone and
eplerenone [16]. Finerenone has a protective action in preclinical models of kidney and
cardiovascular diseases [17–19]. Finerenone has been associated with a lower risk of de-
veloping hyperkalemia compared with spironolactone in the ARTS phase 2a trial [20].
Two large clinical trials have been recently published showing the beneficial effects of
finerenone in stage 1 to 4 CKD patients with type 2 diabetes (T2D) on top of optimal renin-
angiotensin-system (RAS) therapy including angiotensin converting enzyme inhibitors
(ACEi) or angiotensin receptor blockers (ARB): the FIDELIO-DKD trial demonstrated the
beneficial effect of finerenone compared with placebo, lowering the risks of CKD progression
and cardiovascular events in 5734 patients with advanced CKD [21] and the FIGARO-DKD
trial that included 7437 patients with type 2 diabetes and less advanced CKD showed
improved cardiovascular outcomes compared with placebo [22]. Of note the incidence of
hyperkalemia-related discontinuation (2.3% and 0.9%, in the finerenone and placebo group,
respectively) was markedly lower than any dual RAS blockade in previous trials in CKD
patients with T2D [23] or with spironolactone on top of RAS blockade in CKD [24].

Our group has previously shown that finerenone prevented from systolic and diastolic
dysfunctions and changes in the heart structure associated with non-diabetic CKD induced
by 5/6 nephrectomy in mice [25]. We also reported that finerenone opposed metabolic
syndrome-related diastolic cardiac dysfunction and nephropathy in the Zucker rat, a model
with insulin resistance and diabetic disease [17]. The aim of this study was to test whether
finerenone improves renal and/or cardiac functions in the ZSF1 rat, a model with metabolic
syndrome-related heart failure with preserved ejection fraction (HFpEF) which has repeat-
edly been reported to show distinct features of HFpEF, such as an increased left ventricular
(LV) end diastolic pressure, LV hypertrophy, diastolic dysfunction, lung congestion and left
atria remodeling, while maintaining a preserved ejection fraction (EF) [26].

2. Results
2.1. Renal and Cardiac Characteristics in the ZSF-1 Rats

The obese ZSF1 rats develop a model of diabetic nephropathy associated with car-
diac dysfunction.

ZSF1 and lean control rats were followed for 12 weeks, and renal and cardiac damages
were analyzed.

We observed increased blood urea nitrogen levels (BUN) (Figure 1A), urine albumin-
creatinine ratio (UACR) (Figure 1B), renal hypertrophy (Figure 1C), glomerular (Figure 1D–E)
or tubular injuries (Figure 1D,F) and interstitial kidney fibrosis (Figure 1G,H) in the ZSF1
rats compared to the control lean rats.

12 weeks after the beginning of the experimental period, echocardiography showed
that, compared to lean control rats, ZSF1 rats have similar LV end-diastolic diameter
(Figure 2A), a trend to increase LV end-systolic diameter (Figure 2B), together with re-
duced fractional shortening (p = 0.06 vs. lean) (Figure 2C) and increased stroke vol-
ume (Figure 2D) whilst cardiac output was similar (data not shown). At the end of this
12 weeks experimental period, invasive LV hemodynamic studies were performed. Systolic
blood pressure was strongly increased in ZSF1 rats compared to lean control rats (mmHg:
175 ± 13.2 vs. 204 ± 1.5, n = 5–7, mean +/− SEM, p = 0.026). LV pressure–volume curves
showed an increase in the LV end-systolic pressure (LVESP) in the ZSF1 rats compared
to lean (Figure 2E) and similar LV end-systolic pressure–volume relationship (LVESPR)
(Figure 2F); LV end-diastolic pressure (LVEDP) were similar between groups (Figure 2G)
whilst LV end-diastolic pressure–volume relationship (LVEDPVR) is increased in ZSF1
rats compared to lean (Figure 2H). No changes were observed in dP/dtmax, dP/dtmin,
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and Tau (Supplementary Table S1). These results suggested impaired LV contractility and
compliance in ZSF1 compared to lean which are the early signs of diastolic dysfunction.
Myocardial perfusion, which takes place during the diastolic phase in the cardiac cycle, was
assessed by magnetic resonance imaging (MRI) and showed a decrease in the perfusion of
the left ventricle in the ZSF1 rats compared to lean control rats (Figure 2I). The worsening
in the LV diastolic function was associated with myocardial interstitial fibrosis in the ZSF1
rats compared to the control rats (Figure 2J–K). Together these results show that LV diastolic
dysfunction was associated with the increase in LVESP and LVEDPVR. We also found
a reduction in cardiac perfusion that could be responsible for the increase in oxidative
stress and contribute to the development of fibrosis, influencing factors of the diastolic
dysfunction we see in the ZSF1 rats.
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Figure 1. Renal injury developed in obese ZSF-1 rats after 12 weeks. Blood urea nitrogen levels (A),
urine albumin to creatinine ratio (B), and kidney weight (C). Representative light microphotographs
(20× magnification) of rat kidney sections stained with Masson Trichrome (D) and Sirius red (G);
glomerular (E) and tubular injury quantification (F), kidney fibrosis (H). Student’s t-test was used for
statical analysis, n = 5–8. * p < 0.05 vs. lean.
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Figure 2. Impaired LV diastolic function is associated with a decrease in left ventricle perfusion and
myocardial interstitial fibrosis in the ZSF1 rats. Left ventricle end-diastolic diameter (A), left ventricle
end-systolic diameter (B), fractional shortening (C), stroke volume (D), left ventricle end-systolic
pressure (E), left ventricle end-systolic pressure–volume relationship (F), left ventricle end-diastolic
pressure (G), left ventricle end-diastolic pressure–volume relationship (H) and left ventricle tissue
perfusion (I). Representative light microphotographs (20× magnification) of rat kidney sections
stained with Sirius red (J) and kidney fibrosis quantification (K). Student’s t-test was used for statical
analysis, n = 5–8. * p < 0.05 vs. lean.

2.2. Impact of Finerenone in Renal and Cardiac Dysfunction in the ZSF-1 Rats

We next studied the impact of the non-steroidal MRA finerenone on renal and car-
diac parameters in the ZSF1 diabetic model. The treatment of finerenone for 12 weeks
had no impact on BUN (Figure 3A), UACR (Figure 3B), glomerular and tubular injuries
(Figure 3D–F) or renal fibrosis (Figure 3G,H), whilst it decreased the kidney hypertrophy
(Figure 3C), compared to the non-treated animals. Finerenone has no impact on plasma
potassium content (mmol/L: 3.8 ± 0.2 vs. 3.8 ± 0.2, n = 6–8, mean +/− SEM, p = ns).
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Figure 3. Kidney hypertrophy is reduced by finerenone treatment after 12 weeks. Blood urea
nitrogen levels (A), urine albumin to creatinine ratio (B), and kidney weight (C). Representative light
microphotographs (20× magnification) of rat kidney sections stained with Masson Trichrome (D)
and Sirius red (G); glomerular (E) and tubular injury quantification (F), kidney fibrosis (H). Student’s
t-test was used for statical analysis, n = 5–8. * p < 0.05 vs. ZSF-1.

Finerenone treatment did not alter LV end-diastolic diameter (Figure 4A) and LV
end-systolic diameter (Figure 4B) but increased fractional shortening (Figure 4C), whilst
stroke volume (Figure 4D) and cardiac output (data not shown) were not modified. Systolic
blood pressure was not modified by finerenone (mmHg, 204.6 ± 3.1 vs. 195.4 ± 5.5,
n = 8, mean +/− SEM, p = ns). LV hemodynamic studies showed similar LV end-systolic
pressure (Figure 4E), LV end-systolic pressure–volume relationship (Figure 4F), and LV end-
diastolic pressure (Figure 4G) between groups, whilst LV end-diastolic pressure–volume
relationship was reduced with finerenone treatment compared to non-treated animals
(Figure 4H), suggesting amelioration of the diastolic dysfunction observed in the ZSF1 rats.
Although not statistically significant (7% increase in dP/dtmin and 11% reduction in Tau
induced by finerenone when compared to untreated ZSF-1) all the parameters suggest an
improvement of LV diastolic function while all systolic parameters are not modified by
finerenone (Supplementary Table S1). Left ventricle myocardial perfusion was strongly
improved in the finerenone-treated group compared to the non-treated ZSF1 rats (Figure 4I).
The improvement in the LV diastolic function in the finerenone-treated rats was associated
with less myocardial interstitial fibrosis compared to non-treated animals (Figure 4J–K).
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Figure 4. Finerenone ameliorates diastolic dysfunction and fibrosis together with better myocardial
perfusion. Left ventricle end-diastolic diameter (A), left ventricle end-systolic diameter (B), fractional
shortening (C), stroke volume (D), left ventricle end-systolic pressure (E), left ventricle end-systolic
pressure–volume relationship (F), left ventricle end-diastolic pressure (G), left ventricle end-diastolic
pressure–volume relationship (H) and left ventricle tissue perfusion (I). Representative light mi-
crophotographs (20× magnification) of rat kidney sections stained with Sirius red (J) and kidney
fibrosis quantification (K). Student’s t-test was used for statical analysis, n = 5–8. * p < 0.05 vs. ZSF-1.

2.3. Involvement of Nitric Oxide (NO) to the Effects of Finerenone on LV Function and LV Tissue Perfusion

We next studied the effect of nitric oxide synthase (NOS) inhibition on the beneficial
cardiac effect of finerenone. After 7 days of N(ω)-nitro-L-arginine methyl ester (L-NAME)
treatment, we observed a significant reduction in the heart rate, without affecting systolic
blood pressure. Interestingly, L-NAME depleted the beneficial effects of finerenone on
the indices of LV diastolic function as seen in LVEDP, Tau, dP/dtmin, and LVEDPVR, but
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did not modify the indices of LV systolic function (Table 1). Lastly, L-NAME blunted the
increase in LV tissue perfusion induced by finerenone treatment (Table 1).

Table 1. L-NAME impact on cardiac function in ZSF-1 rats treated with finerenone.

ZSF1 + Fine n = 8 ZSF1 + Fine + L-NAME n = 3

SBP 195 ± 5.5 202 ± 5.8
HR 327.3 ± 6.8 291 ± 7.0 *

LVESP 191.5 ± 6.4 205.4 ± 5.5
dP/dt max 11,467.8 ± 504.4 9757 ± 419.0 *
LVESPVR 30.8 ± 1.9 29.7 ± 1.5

LVEDP 6.05 ± 0.7 14.6 ± 3.0 *
dP/dt min 9979.5 ± 641.4 4420.6 ± 177.4 *

Tau 12.38 ± 0.5 17.29 ± 0.5 *
LVEDPVR 2.86 ± 0.3 3.76 ± 0.1 *

LV tissue perfusion 6.9 ± 0.3 3.6 ± 0.2 *
Data are presented as the mean ± SEM; n = 3–8. * p < 0.05 vs. ZSF-1 + Fine. (SBP) systolic blood pressure
(mmHg), (HR) heart rate (bpm), (LVESP) left ventricle end-systolic pressure (mmHg), (dP/dt max) contractility
(mmHg/s), (LVESPVR) left ventricle end-systolic pressure–volume relationship (mmHg/RVU), (LVEDP) left
ventricle end-diastolic pressure (mmHg), (dP/dt min) relaxation (mmHg/s), (Tau) time constant of relaxation
(msec), (LVEDPVR) left ventricle end-diastolic pressure–volume relationship (mmHg/RVU) and (LV tissue
perfusion) left ventricle tissue perfusion (mL/min).

3. Discussion

Together these results show that finerenone treatment reduced kidney hypertrophy and
cardiac fibrosis and improved cardiac diastolic function and perfusion in diabetic ZSF1 rats.
This is to the best of our knowledge the first published report demonstrating a benefit of
MR antagonism in this particular metabolic syndrome-associated preclinical HFpEF model.

The obese ZSF1 rats is a model of diabetic nephropathy associated to cardiac dysfunc-
tion. The ZSF1 rats that has been previously characterized as a model of HFpEF. Several
studies indeed reported the cardiac characteristics of the model, with increased LV mass,
LVEDP, LVESPVR, LVESP, LVEDD, LVEDV (left ventricular end-diastolic volume), E/E’,
E/A; decreased HR, cardiac index, RVEF (right ventricle ejection fraction), effort resistance,
LAEF (left atrial ejection fraction); no changes in LVEF (left ventricle ejection fraction),
cardiac output and Tau [26–31].

The role of MR overactivation mainly assessed using MR antagonists has been con-
firmed in various diabetic animal models, reporting the benefit of MR blockade on renal
injury [32–35] and cardiac dysfunction [36–41]. The lack of beneficial effect of finerenone
in renal characteristics in our model is in contrast with other findings in different rodent
diabetic models [34,35,42]. These differences may rely to the type of model used (such as
type 1 diabetes in rat [32–35,43] or type 2 diabetes in db/db mice [43–45]. In these reports,
MRA treatment slow down albuminuria independently of the type of MRA (steroidal or
non-steroidal). The MRA Eplerenone used in our previous study has no effect at all in
the ZSF1 rat model in absence or in presence of AngII co-treatment [46]. The absence of
albuminuria lowering effect of the MRA finerenone in ZSF1 rats may be intrinsic to the
model (or to the treatment duration), but other studies are needed to clarify this point. The
underlying mechanisms of MR blockade mainly involve a reduction of organ fibrosis and
inflammation but a direct effect on adipose tissue and its metabolic consequences [47] may
indirectly have beneficial impact on cardiorenal functions. A reduction of local oxidative
stress has also been proposed. While most of the pharmacological studies used classical
steroidal MRAs like spironolactone [38,39,41] or eplerenone [34,35,40], only two studies
assessed the impact of the non-steroidal MRA finerenone in this context. Lachaux et al.
reported that finerenone blunted metabolic syndrome-related diastolic cardiac dysfunction
and nephropathy in the obese Zucker rat model [17]. Using a complex model associating
high salt intake/uninephrectomy in the diabetic db/db mice, Hirohama et al. reported that
both hypertension and renal injury were ameliorated by finerenone [44].
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The activation of the MR in diabetes may result from a combination of various mecha-
nisms: increased ligand levels, either aldosterone for which increased synthesis has been
reported from the adrenal upon obesity [48] or from local production for example by
adipocytes [49], while increased MR activation by glucocorticoid may also occur, especially
in cells where HSD2 is not expressed, together with the induction of local HSD1 activity
associated to diabetes [50]. Increased MR expression has been reported in podocytes [51]
and this may also occur in other cell types [52] leading to global overactivation of MR-
dependent pathways. Of note, ligand independent activation of the MR by oxidative stress
has been proposed and showed to be at least partly mediated by Rac1 as a target for the
beneficial renal effects of finerenone in the the high-salt diet/uninephrectomy/diabetic
mouse model (HS/UNx/db/db) [44].

Myocardial perfusion is critical for the supply of oxygen and nutrients, deliveries
of hormones and growth factors or vasoactive agents to improve or maintain adequate
coronary perfusion for myocardium contraction efficacy and maximal exercise capacity, es-
pecially in HFpEF [53]. Under physiological conditions coronary arterial perfusion mainly
occurs during relaxation and impaired diastolic function reduces myocardial perfusion [54].
The benefit of finerenone on myocardial perfusion we report in the ZSF1 rats is therefore
very important in the context of metabolic associated HFpEF and may participate to the
global benefit of finerenone on CV outcomes noticed in clinical trials. Down-regulation
of endothelial nitric oxide synthase (eNOS) expression and activation has been reported
in ZSF1 model in the kidney and heart [55,56] and previous studies showed that that
finerenone regulates the production of NO through the regulation of eNOS in heart tis-
sue [9,17,57]. We therefore studied the effect of Nitric oxide synthase (NOS) inhibition on
the beneficial cardiac effect of finerenone. One underlying mechanism relies in part to an
increase NO availability as we showed that L-NAME perfusion, preventing NO production,
indeed blunted the benefit of finerenone on myocardial perfusion.

The clinical impact of antagonizing the MR in diabetic patients has been highlighted
recently in two major clinical trials, involving more than 13,000 patients. The FIDELIO-
DKD and the FIGARO-DKD showed that finerenone improved renal and cardiovascular
outcomes compared with placebo [21,22]. The present preclinical study suggests that the
cardiovascular benefits are, at least in part, related to the improvement of diastolic function,
decreased interstitial cardiac fibrosis and improved myocardial perfusion. Accordingly, a
phase III study called FINEARTS-HF (NCT04435626) to evaluate the efficacy and safety of
finerenone on morbidity and mortality in patients with HF and a LVEF of≥40% is currently
ongoing. The study plans to enroll 6000 patients suffering from HF with mid-range and
preserved ejection fraction (HFmrEF and HFpEF). FINEARTS-HF is currently the largest
outcome trial investigating an MRA in HFpEF (Last Update Posted at ClinicalTrials.gov:
13 September 2022).

An important question is whether combining MRAs, especially finerenone, with with
Sodium/glucose cotransporter-2 inhibitors (SGLT2i) would add a benefit in comparison to
the use of each antagonist separately in diabetic kidney disease (DKD) patients on the renal
and CV outcomes. Indeed the selective SGLT2 inhibitor empagliflozin improved systolic
blood pressure and reduced the left ventricle weight and volume as well as posterior wall
thickness in ZSF1 rats but did not improve left ventricle filling estimated by the E/E′ ratio in
echocardiographic study [58]. Empagliflozin also normalized NO-mediated endothelium-
dependent relaxation in ZSF1 rats [58]. Chronic treatment with the dual SGLT-1-2 inhibitor
sotagliflozin was effective in mitigating left atria cardiomyopathy in this rat model of
metabolic syndrome-related HFpEF [26]. Since the benefits of MRAs only partly overlap
with those of SGLT2i, an additive benefit (or even a synergistic action) may be expected.
Such a combination of finerenone and empagliflozin confer renal and CV protection in
a preclinical mouse model of hypertension-induced cardiorenal disease [59]. Combining
the SGLT2 inhibitor dapagliflozin with the steroidal MRA eplerenone resulted in a robust
additive UACR-lowering effect in the randomized cross-over clinical trial ROTATE-3 but
long-term impact on renal or CV outcomes was not assessed [60]. The Phase II CONFI-

ClinicalTrials.gov
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DENCE study (NCT05254002) will investigate finerenone plus empagliflozin compared
with either finerenone or empagliflozin alone in about 870 patients with CKD and T2D.

4. Materials and Methods

The data generated during and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

4.1. Experimental Design

Experiments were approved by the Darwin ethics committee of Sorbonne University
(#18317-2019010411586046) approved on 15 July 2019, and conducted according to the
INSERM animal care and use committee guidelines. 26 male 12-weeks-old ZSF1 rats
(obese and lean control) were purchased from Charles River and 3 separate protocols were
performed (Figure 5). Protocol 1: ZSF1 lean (control n = 5) and ZSF1 (n = 6) were included to
characterize the model. Protocol 2: to evaluate the impact of finerenone treatment in ZSF1
rats, ZSF1 without treatment (n = 7) and ZSF1 treated (n = 8) with finerenone in the food
(10 mg/kg/day) were included. Protocol 3: to test the effect of NOS inhibition in ZSF-1
rats, ZSF1 rats treated with finerenone were also treated with L-NAME (Sigma Aldrich.
Saint-Louis, MO, USA) for 7 days at the end of the experimental period (100 mg/kg/day).
The animals were followed for 12 weeks and housed in a climate-controlled facility with a
12-h light/12-h dark cycle and provided free access to water and food. The welfare of the
rats was monitored throughout the study. Physiological analyses were performed between
11–12 weeks of follow-up. Animals were sacrificed at 12 weeks of study. Tissues were
collected, weighted, and rinsed in ice-cold Dulbecco’s phosphate buffered saline (DPBS;
ThermoFisher, Waltham, MA, USA); the kidney and heart were cut in two parts, one for
histology and the other for molecular analysis that was frozen in liquid nitrogen and stored
at −80 ◦C.
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4.2. Biochemical Studies

24-hr urine collection was performed using metabolic cages in all studied groups
12 weeks after the beginning of the experiment. We determined plasma urea and potassium;
and urinary albumin and creatinine levels with an automatic analyzer (Catalyst one, IDEXX.
Westbrook, ME, USA). UACR was calculated as urinary albumin (mg)/urinary creatinine (g).
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4.3. Echocardiography

Transthoracic Doppler echocardiographic studies were performed after 11 weeks
of treatment in anesthetized rats with isoflurane (ISO-VET®, 3% for induction, 2% for
maintenance) using an echocardiographic system (VIVID 7, GE) equipped with an 8–5 MHz
transducer. Briefly, a two-dimensional short-axis view of the left ventricle was obtained
at the level of the papillary muscle to record M-mode tracings. Left ventricular diameters
were measured following the American Society of Echocardiology leading-edge method
from at least 3 consecutive cardiac cycles. Left ventricular outflow velocity was measured
by pulsed-wave Doppler, and cardiac output was calculated as CO = aortic VTI • [π • (left
ventricular outflow diameter/2)2] • heart rate, where VTI is a velocity-time integral [61].

4.4. Magnetic Resonance Imaging (MRI)

Left ventricular tissue perfusion was evaluated in anesthetized animals (Brietal™,
50 mg/kg IP) at 11 weeks of treatment, using magnetic resonance imaging (Bruker Biospec
4.7 Tesla, Billerica, Masachusetts, USA) with arterial spin labeling technique. Perfusion
images were analyzed with ParaVision 5.0 software (Bruker, Billerica, MA, USA) [62].

4.5. Hemodynamic Studies

Hemodynamic studies were performed in the left ventricle. LV hemodynamics was
determined by measuring the LV pressure–volume curves after the treatment period. The
right carotid artery was cannulated with a micromanometer tipped catheter (SPR 838, Millar
Instruments, Houston, TX, USA) in anesthetized rats (Brietal™; 50 mg·kg−1, IP). Arterial
blood pressure and heart rate were recorded, and after that, the catheter was introduced into
the LV for LV pressure recording. We gently occluded the abdominal aorta with a cotton
swab to obtain LV pressure–volume loops at baseline and during loading. Data were stored
and analyzed by using Millar conductance data acquisition and analysis software (IOX™,
EMKA, Velbert, Germany). Finally, we measured or calculated left ventricular end-systolic
and end-diastolic pressures, dP/dtmax/min, left ventricular relaxation constant Tau, and
slopes of left ventricular end-systolic as well as end-diastolic pressure–volume relations.

4.6. Histology

Kidney sections and the left ventricle were collected and immersed in paraformalde-
hyde fixative solution (Sigma-Aldrich®. Burlington, MA, USA). After fixation, the sections
were dehydrated and embedded in paraffin. From these sections, 5-µm thick histologic
slices were obtained and were stained with Sirius Red for collagen determination in the
heart and kidney, and Masson Trichrome staining for kidney structure. For the measure-
ment of kidney fibrosis and structure, slides were examined and 10 microphotographs per
sample were obtained under a microscope (Zeiss, Oberkochen, Germany) at 20×magnifi-
cation. Injured tubules and glomeruli were counted using ZEN 3.1–Zeiss software (Zeiss,
Oberkochen, Germany). A semi-quantitative score was graded from 0 to 4. Renal and LV
fibrosis was calculated as a percentage of collagen area to the total area of the image of the
staining. All analyses were blinded.

4.7. Statistical Analysis

The results are presented as the mean ± SE. Differences in the means between the
two groups for non-repeated variables were compared by Student’s t-test. All comparisons
passed the normality test (Shapiro–Wilk normality test, in GraphPad Prism 7.04). Analysis
was performed using GraphPad Prism 7.4. Results were considered significant when p < 0.05.

5. Conclusions

In summary, we show for the first time that the non-steroidal MR antagonist finerenone
attenuates cardiac diastolic dysfunction and improves cardiac perfusion in a preclinical
HFpEF model. These cardiac benefits were found to be largely independent of renal benefits.
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The ongoing clinical FINEARTS-HF study will analyze the impact of finerenone on CV
outcomes in patients with HFmrEF and HFpEF.
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