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A B S T R A C T   

Halloysite nanotubes (HNTs) are excellent candidates to improve the immobilization of electroactive materials or 
enzymes due to their tubular structure and properties. In this work, an improved LbL based catechol sensor has 
been developed using a combination of sensing materials with complementary activity. These include sulfonated 
copper phthalocyanine (CuPcSO3− ) acting as electrocatalytic material, poly(ethyleneimine) (PEI) to increase the 
charge injection efficiency and the increase of the surface provided by HNTs. The LbL film has been used as the 
sensing platform to deposit tyrosinase in order to further enhance the performance of the developed sensor 
towards catechol. The LbL films were characterized by using UV–Vis, FTIR and cyclic voltammetry. The limits of 
detection, repeatability and reproducibility of the sensors and the biosensor were evaluated. The limits of 
detection were 1.23 μmol⋅L− 1 for the optimized (PEI/CuPcSO3− ) sensor, 0.987 μmol⋅L− 1 for the (PEI/HNT/PEI/ 
CuPcSO3− ) sensor and 0.938 μmol⋅L− 1 for the (PEI/HNT/PEI/CuPcSO3− )-Tyrosinase sensor.   

1. Introduction 

In the last decades, important advances have been made in the field 
of electrochemical sensors thanks to the introduction of new platforms 
for sensors design, such as nanotechnological materials (i.e. conducting 
polymers, metallophtacocyanines, metal nanoparticles, etc.) and nano-
structured architectures (carbon nanotubes, LbL films, self-assembly 
monolayers, etc.) which have improved their sensitivity. The choice of 
materials for the sensing units is crucial to obtain a high performance. 
Metallophthalocyanines (MPcs) (N4-macrocyclic metal complexes) are 
molecular organic semiconductors that have been widely used in the 
construction of electrochemical sensors since they exhibit remarkable 
electrochemical and electrocatalytic properties owing to their ability to 
accept and donate electrons, either from central metal ions or 18- 
π-conjugated ring systems [1–4]. Moreover, organic semiconductors are 
also very attractive as building blocks in organic-based devices where 
the injection of charge into the organic semiconductor is sourced from a 
conductive electrode [5]. Electron injection into the organic semi-
conductor can be achieved using an electrode that matches the highest 
occupied molecular orbital (HOMO) of the organic semiconductor. In 

this sense, the charge injection efficiency increases as the barrier height 
at the interface decreases [5–8]. For this purpose, several strategies have 
been carried out to minimize the energy barrier at the metal/organic 
semiconductor interface to improve the charge injection efficiency [5]. 
One of them is the use of insulating polymers containing simple aliphatic 
amine groups, such as the branched polyethylenimine (PEI), that have 
demonstrated to be a surface modifier that allows the fabrication of 
electrodes for efficient electron injection, reducing the energy barrier for 
electron injection through the intrinsic molecular dipole moments 
associated with the neutral amine groups [9]. Thus, the use of PEI in 
electrochemical sensors lead to a better energy level alignment between 
the metal electrode and the organic semiconductor. 

On the other hand, in the fabrication of electrochemical sensors 
based on nanomaterials it is important to get carriers for nanomaterials 
that help to improve their dispersion and/or increase the electroactive 
area and, for this purpose, nanoclays are good candidates due to their 
high surface area. This material is defined as natural or synthetic clay 
minerals with a layered structure and with at least one dimension in the 
nano-scale range [10,11]. Halloysite is a two-layered aluminosilicate 
clay mineral with the empirical formula Al2Si2O5(OH)4⋅2H2O. 
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Halloysite nanotubes (HNTs) are hollow tubes with diameters (inner and 
outer) smaller than 100 nanometers and lengths ranging from 0.2 to 1.5 
µm [10]. A monolayer HNT Al2Si2O5(OH)4⋅nH2O refers to the so-called 
halloysite (10 Å, n = 2). Dehydrating the HNT by heating leads to hal-
loysite (7 Å, n = 0). The charge (zeta potential) behavior of the HNT 
particles is described as mostly negative surface potential of SiO2 (at pH 
6–7) and a small contribution from the positive Al2O3 inner surface (at 
pH 2–8) [11]. 

HNTs exhibit interesting properties such as their swelling, adsorbent 
and cation exchange capacity, plasticity, high surface area, natural 
occurrence and cytocompatibility [12,13]. Due to their hollow tubular 
shape and cation exchange capacity, HNTs have been used in the 
fabrication of sensors by incorporating electroactive ions or enzymes, 
among other, to be applied in the medical, environmental and food in-
dustry [10,12–15]. Moreover, in comparison to carbon nanotubes, HNTs 
have some important advantages like their low-cost, non-toxicity, 
availability and their environmentally safe and ease to process [14,16, 
17]. Furthermore, the inner and outer sides of HNTs present a particular 
surface chemistry which is one of the major advantages of this material 
in order to achieve a selective functionalization of the lumen of HNTs 
and the outer surface [13]. In the field of electrochemical sensors, HNTs 
have been used due to their attractive aforementioned properties in 
several analyte identification such as hydrogen peroxide [18–22], ni-
trites [23,24], glucose [22,25,26], ascorbic acid [27], dopamine [28], 
hydrazine [29] and mercury in aqueous media [30]. HNTs have also 
been implemented in the field of enzymatic electrochemical biosensors 
to improve their specificity, selectivity and sensitivity. In this sense, 
sensors must also provide properties such as good limit of detection, 
response time, stability and/or linearity. However, only few works of 
HNTs-based biosensors have been reported based on glucose oxidase 
[31], lactase [32] and peroxidase [33]. For enzyme-based sensors, the 
specificity must be maintained even when altering temperature and pH 
and, moreover, regenerated again during the reaction. In addition, 
direct electron transfer between the enzyme and the electrode surface 
must be achieved. For this purpose, HNTs can be used to improve 
enzyme immobilization and thus enhance the performance of the sen-
sors due to their high surface area and also their high loading capacity as 
they have an empty lumen that can be a suitable substrate for the 
loading of different molecules. Furthermore, other properties such as the 
cost, biocompatibility, hollow tube structure and light density raise even 
more this material like an advanced nanomaterial for biosensor appli-
cations. Regarding the hollow tube structure, it is interesting to note that 
Kummar Krishnan et al. have reported the advantage of the curve sur-
face of HNTs which helps to decrease the attraction between two nearby 
enzymes and access the multilinking point and, therefore, reduces the 
enzyme aggregation on the surface ensuring their biocatalytic activity 
[31]. 

In this work, we report a novel electrochemical nanostructured 
sensor using HNTs in order to improve the electrocatalytic performance 
of a copper phatholcyanine based sensor. For this purpose, sensors were 
fabricated by the LbL technique due to their low-cost and versatility to 
prepare nanostructured films in addition to the simplicity of the required 
equipment and the particular advantage of the use of mild conditions (e. 
g. aqueous solutions). The electrochemical responses of the sensors were 
tested towards the polyphenol catechol, which is a phenolic group of 
interest in the oxidation process of many foods. Moreover, to go a step 
further, it has been evaluated the use of a tyrosinase-based biosensor in 
order to corroborate the high capacity of the HNTs to immobilize 
enzymes. 

2. Experimental 

2.1. Chemicals 

All chemicals and solvents were of reagent grade and used without 
further purification. Copper(II) phthalocyanine tetrasulfonic acid 

tetrasodium salt (CuPcSO3− ); poly(ethyleneimine) (PEI, branched, 25 
kDa); halloysite nanoclays (HNT) (30–70 nm × 1–3 μm), and the phenol 
oxidase enzyme tyrosinase (from mushroom, activity ≥1000 U⋅mg− 1) 
(Tyr) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The 
halloysite nanoclay was dehydrated by heating at 210 ◦C for 3 h prior to 
use it. Phosphate buffer (0.01 M; pH 7.0) was used to prepare all the 
solutions. 10− 3 mol⋅L− 1 stock solutions of catechol were prepared by 
solving the corresponding compound in KCl solution (0.1 mol⋅L− 1). 

2.2. Apparatus 

Layer by layer films were deposited onto ITO glass substrate using a 
ND-R 11/2 Rotary Coater (Nadetech Innovations, Navarra, Spain). 
Voltammetric measurements were obtained using a potentiostat/gal-
vanostat PARSTAT 2273 (Princeton Applied Research, Oak Ridge, TN, 
USA) and an electrochemical cell of three-electrode. The LbL sensors 
were used as the working electrode; the reference electrode was Ag| 
AgCl/KCl 3 mol⋅L− 1 and the counter electrode was a platinum sheet with 
a surface area of 1 cm2. Fourier transform infrared (FTIR) spectra of the 
films deposited on ZnSe were obtained from 4000 to 400 cm− 1 using a 
Jasco Model FT/IR-6600 Spectrometer (Tokyo, Japan). The software 
used for FTIR data collection was Spectra Manager II (Jasco, Tokyo, 
Japan). Before the analysis the instrument was purged with nitrogen for 
10 min. As reference, the background spectrum of air (100 BKG) was 
collected before the acquisition of the sample spectrum. The spectra 
were recorded at 26 

◦

C with a resolution of 2 cm− 1 and 300 scans were 
averaged for each spectrum. UV–Vis spectra were registered from 300 to 
800 nm in a Shimadzu UV-1603 spectrophotometer (Kyoto, Japan). 

2.3. LbL sensors preparation 

ITO glass substrates (1 cm2 surface area) were used as the substrate. 
Prior to the film deposition, the substrates were washed in an ultrasonic 
bath with acetone and gently rinsed with deionized water (MilliQ). 

2.3.1. Preparation of (PEI/CuPcSO3− )n LbL sensors 
The LbL films were grown using PEI as the positive layer and 

CuPcSO3− as the negative layer. PEI solution of 1 g⋅L− 1 and phthalocy-
anine solution of 5⋅10− 4 mol⋅L− 1 both in phosphate buffer (0.01 
mol⋅L− 1, pH 7.0) were used to build the films. LbL films were fabricated 
by successive immersions of the ITO substrate in the PEI and the 
phthalocyanine solution. Fig. 1 illustrates the sequence of the immer-
sions: (1) PEI solution (3 min); (2) deionized water to remove excess of 
non-adsorbed PEI (30 s); (3) CuPcSO3− solution (5 min); (4) deionized 
water to remove the excess and non-adsorbed CuPcSO3− (30 s). After 
these four steps a complete sequence is deposited onto the ITO substrate 
(n = 1). This procedure was also followed for n = 5 (that is, 5 sequences) 
and for n = 10 (10 sequences). 

2.3.2. Preparation of (PEI/HNT/PEI/CuPcSO3− )n LbL sensors 
The LbL films prepared with HNT were grown using PEI as the 

positive layer, and HNT and CuPcSO3− as the negative layers. PEI and 
CuPcSO3− solutions were the same as described before. The HNT solution 
used was 1 mg⋅L− 1 in deionized water. The sequence of the film depo-
sition is shown in Fig. 2: (1) PEI solution (3 min); (2) deionized water to 
remove excess of non-adsorbed PEI (30 s); (3) HNT solution (10 min); 
(4) deionized water to remove excess of non-adsorbed HNT (30 s); (5) 
PEI solution (3 min); (6) deionized water to remove excess of non- 
adsorbed PEI (30 s); (7) CuPcSO3− solution (5 min); (8) deionized 
water to remove the excess and non-adsorbed CuPcSO3− (30 s). After 
these eight steps a complete sequence is deposited onto the ITO substrate 
(n = 1). In this case, the procedure was also followed for n = 5 and for n 
= 10. 

2.3.3. Preparation of (PEI/HNT/PEI/CuPcSO3− )n -Tyr-LbL sensors 
(PEI/HNT/PEI/CuPcSO3− )n-Tyr-biosensors were prepared by 
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depositing tyrosinase onto the (PEI/HNT/PEI/CuPcSO3− )n sensors. For 
this purpose, a solution of 5 mg⋅mL− 1 of tyrosinase in 0.01 mol⋅L− 1 

phosphate buffer (pH 7.0) was used. Firstly, the LbL sensor was 
immersed in 0.01 mol⋅L− 1 phosphate buffer (pH 7.0) for 2 min, 
following by 5 min of immersion in glutaraldehyde (2.5 % v/v, buffer 
solution) and dried in air at room temperature for 15 min. Then, 50 μL of 
tyrosinase solution was deposited onto the LbL sensor by drop-casting, 
dried at room temperature for approximately 45 min and, finally, the 
LbL biosensor was rinsed with phosphate buffer to remove any unbound 
enzyme and stored at 4 ◦C. 

2.4. Electrochemical measurements 

Cyclic voltammetry was carried out from − 1.0 V to +1.2 V (vs. Ag/ 
AgCl) with a scan rate of 0.1 V⋅s− 1, except when indicated otherwise. A 
KCl solution (0.1 mol⋅L− 1) was employed as the electrolytic medium in 
electroanalysis experiments. The influence of the potential sweep rate 
was studied in 10− 3 mol⋅L− 1 catechol in 0.1 mol⋅L− 1 KCl, while varying 
the scan rates from 0.01 to 2.0 V⋅s− 1. The limits of detection (LD) were 
calculated from peak current responses taken from voltammograms 
recorded at different concentrations from 10 to 138 μmol⋅L− 1, following 
the “3⋅SD/m” criterion, where “m” is the slope of the calibration graph 
and “SD” was estimated as the standard deviation (n = 5) of the vol-
tammetric signals at the concentration level corresponding to the lowest 

concentration of the calibration plot. 
The repeatability of the voltammograms was evaluated from 10 

repetitions on each sample. The reproducibility of data provided by the 
LbL films was evaluated by comparing data provided by 3 sensors 
measuring identical samples in different days. 

3. Results and discussion 

3.1. UV–Vis characterization 

The LbL films were prepared using the procedure described above. 
The growth of the films was monitored after each sequence by UV–Vis 
absorption spectroscopy. Fig. 3 shows the UV–Vis spectra of the LbL 
components separately. As can be observed, only the CuPcSO3− exhibited 
absorbance at shorter wavelengths (Soret band at 336 nm) from the π-π* 
transition in the macrocyclic ring of phthalocyanine and at longer 
wavelengths, the Q band at 608 nm (dimeric) and a shoulder at 663 nm 
(monomeric) which are attributed to the HOMO→LUMO electronic 
transitions of the π electrons between the central metal and axial ligands 
in the phthalocyanine structure [34–36]. As expected, the PEI and HNT 
do not show any absorbance in the studied range. 

Fig. 4 shows the UV–Vis spectra of (PEI/CuPcSO3− )n and (PEI/HNT/ 
PEI/CuPcSO3− )n LbL films and the linear correlation between the 
absorbance and the number of layers for both systems. The absorbance 

Fig. 1. Preparation of (PEI/CuPcSO3− )n LbL films.  

Fig. 2. Preparation of (PEI/HNT/PEI/CuPcSO3− )n LbL films.  
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of the Q band increased linearly after the deposition of each sequence 
confirming the good quality of the deposition and the uniform growth of 
the LbL films. The linearity regression coefficient for (PEI/HNT/PEI/ 
CuPcSO3− )n LbL films was higher than for (PEI/CuPcSO3− )n representing 
a better and more uniform deposition of the sequences, that can also be 
observed in the UV–Vis spectra where a similar amount of material is 
transferred onto the substrate per sequence confirming a more uniform 
growth of the LbL films. Moreover, for both LbL sensors, the quality of 
the films, and hence the linearity regression coefficient, decreased for 
more than 10 sequences. In fact, in some depositions carried out for 
(PEI/CuPcSO3− )n, it was observed that after a sequence the absorbance 
decreased below that the obtained in the previously sequence as illus-
trated in Fig. 4 after the sequence number 5 and after the number 9. This 
result can mean that there was a loss of material during the procedure. 

On the other hand, the amount of CuPcSO3− transferred onto the 
substrate after each sequence was higher for (PEI/HNT/PEI/CuPcSO3− )n 
than for (PEI/CuPcSO3− )n LbL films (Fig. 4c) which clearly confirms the 
influence of the HNT in facilitating the adsorption of CuPcSO3− in the 
LbL system. The preparation method was highly reproducible and co-
efficients of variation calculated from the maximum absorbance after 10 
sequences were lower than 3 %. 

3.2. FTIR characterization 

The FTIR spectra of the LbL films and of all three compounds forming 
the films were collected using zinc selenide (ZnSe) as the substrate. 
Fig. 5a-c shows the spectra of bare materials. The FTIR spectrum cor-
responding to PEI contains two characteristic bands at 1541 cm− 1 and at 
1422 cm− 1 corresponding to the bending of imine N–H bond and to the 
C–H bond, respectively, the N–H stretching at 3500 cm− 1, the C–H 
stretching at 2870 cm− 1 and 2798 cm− 1 and the C–N stretching at 1040 
cm− 1[37,38]. 

The main peaks for CuPcSO3− appeared at a wavenumber of 3500 
cm− 1 associated with O–H stretching in the SO3–H group, the vibration 
stretching of the bonds C–N and C–C can be seen at 1600 cm− 1 and 
1480 cm− 1, respectively. The peaks corresponding to the stretching of 
O–S–O appeared at 978–1127 cm− 1 and 1263–1453 cm− 1, the peak 
obtained at 875 cm− 1 is due to the presence of Cu-ligand and the 
vibrational stretching seen at 692–770 cm− 1 indicates the presence of a 
phthalocyanine ring [37,39,40]. 

The FTIR spectrum of the HNT clay displayed a peak from the O–H 
deformation of the inner hydroxyl groups at 857 cm− 1, the peak corre-
sponding to the stretching of the Si–O–Si bond at a wavenumber of 
981 cm− 1 and the reflection one at 1068 cm− 1. Finally, the stretching 
vibration due to the external and internal O–H groups of HNTs were 
observed at the wavenumbers of 3565 cm− 1 and 3638 cm− 1 [19,32,41]. 

The FTIR spectra of the (PEI/CuPcSO3− )10 and (PEI/HNT/PEI/ 
CuPcSO3− )10 sensors were studied in order to identify the interaction 

between each material in the composition of the LbL films and, there-
fore, corroborate their correct adhesion by electrostatic forces. In 
Fig. 5d, the PEI bands at 1580 cm− 1 and 1430 cm− 1 assigned to N–H 
and C–H bending were also found in the (PEI/CuPcSO3− ) LbL films with 
small changes in position. The appearance of a band at a wavenumber of 
3500 cm− 1 due to the N–H stretching group from the PEI and the C–H 
stretching at 2870 cm− 1 and 2802 cm− 1 and the C–N stretching at 1340 

Fig. 3. UV–Vis spectra of CuPcSO3− , HNT and PEI water solutions.  

Fig. 4. UV–Vis characterization of (a) (PEI/CuPcSO3− )n and (b) (PEI/HNT/PEI/ 
CuPcSO3− )n LbL films (from n = 1 to n = 10) with the corresponding linear 
correlation between absorbance near 608 nm vs. number of sequences. c) 
Comparison between the UV–Vis spectra of (PEI/CuPcSO3− )10 LbL films and 
(PEI/HNT/PEI/CuPcSO3− )10. 
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cm− 1 were also identified. Additionally, the bands corresponding to 
CuPcSO3− at 978–1127 cm− 1 and 1263–1453 cm− 1 due to the stretching 
of O–S–O can be seen, as well as the peak obtained at 873 cm− 1 due to 
the Cu–ligand and the vibrational stretching at 692–770 cm− 1 of the 
phthalocyanine ring. These results suggest the formation of LbL films 
between PEI and CuPcSO3− in a supramolecular level interaction by the 
formation of salt bridges of SO3–NH3, which includes hydrogen bonding 
and electrostatic interaction, between H atom from protonated amine 
group from PEI and O atom of sulfonic group from CuPcSO3− [37,42]. 

On the other hand, in Fig. 5e, when HNT is incorporated into the LbL 
structure, the (PEI/HNT/PEI/CuPcSO3− ) films showed some signals due 
to HNT, such as the peak from the O–H deformation of the inner hy-
droxyl groups shifted at 869 cm− 1. The peak corresponding to the 
stretching of the Si–O–Si bond and the peak of the stretching of 
O–S–O from the sulfonic group of the CuPcSO3- appeared overlapped 
and shifted at 972 cm− 1, indicating that these polar groups can be 
involved in an electrostatic interaction [37]. Moreover, the stretching 
vibration due to the external and internal O–H groups of HNTs at 3565 
cm− 1 and 3638 cm− 1 were not observed in the FTIR spectrum of 
(PEI/HNT/PEI/CuPcSO3− ) films due to when the external hydroxyl 
groups of HNTs form the interactions with the amine groups of PEI these 
bands could shift blue and, thus, they were overlapped with the band at 
3500 cm− 1 corresponding to the stretching of the N–H bond from the 
PEI [41]. 

3.3. Electrochemical characterization 

The electrochemical responses of the LbL sensors were analysed in 
catechol using cyclic voltammetry. A solution of KCl 0.1 mol⋅L− 1 was 
used as the supporting electrolyte and the responses of the sensors were 

Fig. 5. a-c) Comparison between the FTIR spectra of each LbL component (cast), d) FTIR spectrum of (PEI/CuPcSO3− )10 and e) FTIR spectrum of (PEI/HNT/PEI/ 
CuPcSO3− )10 LbL films. 

Fig. 6. Voltammetric responses of the (PEI/CuPcSO3− )10 and (PEI/HNT/PEI/ 
CuPcSO3− )10 LbL sensors in KCl (0.1 mol⋅L− 1). 
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first cycled (10 cycles) in the solution to adjust the films to the envi-
ronment. Fig. 6 shows the responses of (PEI/CuPcSO3− )10 and (PEI/ 
HNT/PEI/CuPcSO3− )10 sensors in KCl where it is observed that the films 
do not have peaks of interest. 

The voltammograms of (PEI/CuPcSO3− )n and (PEI/HNT/PEI/ 
CuPcSO3− )n immersed in catechol 10− 3 mol⋅L− 1 in KCl are shown in 
Fig. 7 for different number of sequences (n = 1, 5 and 10) in order to 
determine the effect of “n” in the electrochemical responses. Results of 
both LbL structures clearly exhibits that the higher number of sequences, 
the greater values of intensities for the anodic and cathodic responses. 
During the oxidation, catechol was oxidized to form 1,2-benzoquinone 
exhibiting 2 anodic peaks, respectively, while during the reverse scan, 
quinones were reduced to the phenolic compound displaying a broad 
peak. In addition, the (PEI/HNT/PEI/CuPcSO3− ) sensors showed higher 
intensities towards catechol than the (PEI/CuPcSO3− ) sensors, as well as 
exhibited peaks with a shape better defined and a more stable anodic 
potential, especially in the second peak of the oxidation. The values of 
potentials and intensities of the peaks are summarized in Table 1. This 
result corroborates that the implementation of HNT in the LbL films 
leads to a better adhesion of the phthalocyanine and, therefore, to a 
significant enhancement in its electrocatalytic behavior. 

The (PEI/HNT/PEI/CuPcSO3− )10 LbL films were also used as the 
electron mediator in a tyrosinase-based biosensor, (PEI/HNT/PEI/ 
CuPcSO3− )10-Tyr, as tyrosinase is selective to the oxidation of o-diphe-
nols such as catechol. For this purpose, the LbL sensor used was that with 
HNT and with a number of LbL sequences of 10 considering that this 
sensor performed the better voltammetric behaviour in catechol as 
stated before. The as-prepared biosensors immersed in catechol do not 
exhibit a drastic increase in the intensity of the peaks as it has been 
reported in other works. However, a clear and notable improvement in 
the reversibility of the peaks was observed, and besides only one 
oxidation peak was observed instead of two peaks, occurring the 
oxidation/reduction of the catechol at lower potentials than for the non- 
enzymatic sensors (Fig. 8). This result demonstrates that the LbL films 
containing HNT facilitate the electron transfer and the synergistic effect 
between the components is clear. 

Fig. 7. Voltammetric responses in 10− 3 mol⋅L− 1 catechol in KCl (0.1 mol⋅L− 1) for (a) the (PEI/CuPcSO3− ) sensor, (b) the (PEI/HNT/PEI/CuPcSO3− ) sensor, and (c-e) 
comparison of voltammograms for each LbL sensor and for different number of sequences. 

Table 1 
Potentials and intensities obtained in catechol 10− 3 mol⋅L− 1 in KCl (0.1 
mol⋅L− 1).  

LbL sensor Anodic peaks Cathodic peaks 

Pontential 
(mV) 

Intensity 
(μA) 

Pontential 
(mV) 

Intensity 
(μA) 

(PEI/CuPcSO3− )1 
420 65 

125 − 75 1050 220 

(PEI/CuPcSO3− )5 
425 85 140 − 110 
950 300 

(PEI/CuPcSO3− )10 
500 110 125 − 130 
975 340 

(PEI/HNT/PEI/ 
CuPcSO3− )1 

390 65 
175 − 111 1000 276 

(PEI/HNT/PEI/ 
CuPcSO3− )5 

450 91 
180 − 126 990 310 

(PEI/HNT/PEI/ 
CuPcSO3− )10 

475 115 180 − 190 
980 381  

Fig. 8. Voltammetric responses of the (PEI/HNT/PEI/CuPcSO3− )10-Tyr-sensor 
compared to the non-enzymatic sensor in 10− 3 mol⋅L− 1 catechol in KCl 
(0.1 mol⋅L− 1). 
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3.4. Limits of detection and scan rate study 

The limits of detection (LD) were evaluated by analysing the 
response of the LbL sensors (elaborated with 10 sequences) towards 
catechol at different concentrations ranging from 10 to 138 μmol⋅L− 1. 
The results are illustrated in Fig. 9 for the (PEI/CuPcSO3− )10 and the 
(PEI/HNT/PEI/CuPcSO3− )10 LbL sensors. The study was carried out 
evaluating the anodic peak at 420–425 mV observed for (PEI/ 
CuPcSO3− )10 and (PEI/HNT/PEI/CuPcSO3− )10 sensors. In both cases, a 
linear relationship was observed between the intensities and the con-
centration of catechol, confirming the availability of these LbL sensors to 
determine this compound. The limits of detection, using the “3⋅SD/m” 
criterion, were 1.23⋅10− 6 mol⋅L− 1 for the (PEI/CuPcSO3− )10 sensor and 
slightly better for the (PEI/HNT/PEI/CuPcSO3− )10, reaching a LD of 
9.87⋅10− 7 mol⋅L− 1. In addition, as the coefficient of regression was quite 
higher for the (PEI/HNT/PEI/CuPcSO3− )10 sensor (r2 = 0.973) in com-
parison to the (PEI/CuPcSO3− ) sensor (r2 = 0.926), this result confirmed 
the more reliability of the (PEI/HNT/PEI/CuPcSO3− )10 sensors. 

The improved performance can be attributed to synergistic in-
teractions between the HNT and the phthalocyanine in terms of a better 
adhesion of the latter in the structure of the films. This improvement was 
also confirmed by carrying out a scan rate dependence study in order to 
observe the influence of the HNT in the electron transfer behaviour of 
the sensors. For this purpose, voltammograms in catechol 10− 3 mol⋅L− 1 

were collected at different scan rates ranging from 10 to 2000 mV⋅s− 1. 
The responses are illustrated in Fig. 10. 

The cathodic and anodic peak potentials shifted to more negative 
and positive potentials, respectively, with increasing the scan rate. The 
anodic peak currents (Ia) varied linearly with the square root of the scan 
rate (v1/2). These results indicate that the redox processes of catechol on 
the (PEI/CuPcSO3− )10 and (PEI/HNT/PEI/CuPcSO3− )10 sensors are 
controlled by diffusion [43,44] according to the Randles-Sevick Eq. (1): 

Ia = 2.65⋅105⋅n3/2⋅D1/2⋅v1/2⋅A⋅C (1) 

Where Ia is the anodic peak current, n is the electron number, D is the 
diffusion coefficient of catechol, v is the scan rate, A is the electroactive 
area of the electrode (cm2) and C is the concentration of catechol 
(mol⋅cm− 3). According to the slope values, the higher value for the (PEI/ 
HNT/PEI/CuPcSO3− )10 sensor indicated that the oxidation of catechol 
occurred more rapidly in that sensor due to the electroactive area of the 
electrode is higher according to Eq. (1), confirming the improvement of 
the electron transfer rates. 

The specificity of the (PEI/HNT/PEI/CuPcSO3− )10 sensors was 
improved incorporating tyrosinase in the structure. In Fig. 11 can be 
observed that when representing the catechol concentration vs. the 

current of the anodic peak obtained from the enzymatic LbL sensor, a 
linear relationship was obtained in the concentration range with a 
regression coefficient of 0.9967, higher than for the non-enzymatic 
sensor. The limit of detection obtained with (PEI/HNT/PEI/ 
CuPcSO3− )10-Tyr-sensor was 9.38⋅10− 7 mol⋅L− 1, which was similar to 
that obtained with the non-enzymatic sensor. However, the higher co-
efficient of regression confirmed the higher reliability of the (PEI/HNT/ 
PEI/CuPcSO3− )10-Tyr-sensor compared to the non-enzymatic sensor. 

The electrochemical performance of the LbL tyrosinase biosensor 
was compared with others reported in the literature (Table 2). It can be 
seen that the linear range, detection limit and sensitivity were compa-
rable, and/or even superior, with the results obtained in other research 
group’s work. Moreover, the simple procedure for the construction of 
the reported biosensor means a significant advantage in comparison 
with others. 

PEDOT/PSS: poly (3,4-ethylenedioxythiophene)/polystyrene sulfo-
nate; AuNPs: gold nanoparticles; IL: ionic liquid; MWCNT: multi-walled 
carbon nanotube; DHP: dihexadecylphosphate; GCE: glassy carbon 
electrode; AgNWs: silver nanowires; PPy: polypyrrole; Pt: platinum 
electrode; MNP: magnetic nanoparticles; SPE: screen-printed electrode; 
SPCE: screen-printed carbon electrode; GA: glutaraldehyde; pTH: poly 
(thionine); PAPCP: poly(N-3-aminopropyl pyrrole-co-pyrrole); ITO: 
indium-tin-oxide; AEP: acetone-extracted propolis; Au: gold electrode. 

3.5. Repeatability and reproducibility 

The reproducibility and repeatability of the sensors was examined by 
cycling the electrodes in catechol 10− 3 mol⋅L− 1 using three electrodes 
prepared at different days and using 10 sequences in the LbL film con-
struction. The reproducibility of the LbL method was confirmed since 
coefficients of variation lower than 4 % were found in both, the cathodic 
and anodic peaks. Regarding the repeatability, the results of 5 consec-
utive cycles showed a coefficient of variation lower than 2 % for the non- 
enzymatic sensors and lower than 5 % for the (PEI/HNT/PEI/ 
CuPcSO3− )10-Tyr-sensor. 

4. Conclusions 

This work provides a study of a LbL sensor based on HNTs in order to 
enhance the electrochemical performance of the sensors. The UV–Vis 
characterization corroborated the adhesion of CuPcSO3- on the LbL films, 
with a higher level of organization in the LbL structure when using HNT 
in the growth of the films. Moreover, the electrostatic interaction be-
tween the materials used in the LbL films was confirmed by using FTIR 
characterization. In addition, important advantages have been evi-
denced due to the incorporation of HNT in the enzymatic biosensor 

Fig. 9. Voltammograms and linear relationship between intensity and concentration of (a) (PEI/CuPcSO3− )10 and (b) (PEI/HNT/PEI/CuPcSO3− )10 sensors immersed 
in increasing concentrations of catechol ranging from 10 to 138 μmol⋅L− 1. 
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based on tyrosinase. The results showed that the presence of HNT in the 
LbL sensor gives voltammetric responses with redox peaks with higher 
intensities. Moreover, the electroactive area of the HNT based sensor 
was higher leading to a more rapidly oxidation of catechol. In addition, 
the limits of detection were improved when using HNT in the LbL 
structure as well as the reliability of the results was higher. The use of 
tyrosinase to construct an enzymatic sensor based on HNT and LbL 
exhibited redox peaks with lower intensities, but more reversible, and 
limits of detection similar to that obtained with the non-enzymatic 
sensors. However, the high coefficient of regression obtained 
confirmed a higher reliability when using tyrosinase. In addition, the 
linear range, detection limit and sensitivity of the tyrosinase biosensor 
were comparable, and/or even superior, with other catechol biosensors 
based on tyrosinase. Finally, the LbL sensor and biosensor showed 
excellent reproducibility and repeatability that could be attributed to 
the reliability of LbL procedure. 
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Fig. 10. Voltammograms and linear relationship between Ia and v1/2 of (a) (PEI/CuPcSO3− )10 and (b) (PEI/HNT/PEI/CuPcSO3− )10 sensors (immersed in 10− 3 mol⋅L− 1 

catechol in KCl (0.1 mol⋅L− 1) at scan rates ranging from 10 to 2000 mV⋅s− 1). 

Fig. 11. CVs and linear relationship between intensity and concentration of the 
(PEI/HNT/PEI/CuPcSO3− )10-Tyr-sensor immersed in increasing concentrations 
of catechol ranging from 10 to 138 μmol⋅L− 1. 

Table 2 
Comparison with other catechol biosensors based on tyrosinase.  

Tyrosinase- 
based 
biosensors 

Linear range 
(μmol⋅L− 1) 

Detection 
limit 
(μmol⋅L− 1) 

Sensitivity 
(mA⋅mol− 1⋅L) 

Reference 

PEDOT/PSS/ 
AuNP-Tyr 

4–60 0.39 – [45] 

PEDOT/PSS/ 
AuNP-Tyr 

90–150 2.80 – [45] 

TYR-IL- 
MWCNT- 
DHP/GCE 

4.9–1100 0.58 – [46] 

AgNWs-Tyr 25–172 2.70 197.9 [47] 
Tyr-AuNPs- 

DHP/GCE 
2.5–95 0.17 115 [48] 

Tyr-PO4–PPy/Pt 10–120 0.84 47 [49] 
Tyr-MWCNT- 

MNP/SPE 
10–80 7.61 – [50] 

Tyr-AuNPs- 
SPCE 

2.5–20 1.2 55 [51] 

TYR/GA/pTN/ 
GCE 

1–300 6 – [52] 

Tyr-PAPCP/ITO 1.6–119 1.2 3.46 [53] 
Tyr/MWCNT/ 

AuNPs/AEP/ 
Au 

1–500 0.80 150 [54] 

(PEI/HNT/PEI/ 
CuPcSO3− )10- 
Tyr 

10–138 0.94 112.3 This work  
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