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Abstract—Brain—computer interface (BCI) spellers based on
event related potentials (ERPs) are intrinsically synchronous
systems. Therefore, selections are constantly made, even when
users are not paying attention to the stimuli. This poses a major
limitation in real-life applications, in which an asynchronous
control is required. The aim of this study is to design, develop and
test a novel method to discriminate whether the user is controlling
the system (i.e., control state) or is engaged in other task (i.e., non-
control state). To achieve such asynchronous control, our method
detects the steady-state visual evoked potentials (SSVEPs) elicited
by peripheral stimuli of ERP-based spellers. A characterization
experiment was conducted to investigate several aspects of this
phenomenon. Then, the proposed method was validated in offline
and online sessions. A total of 20 healthy subjects participated the
experiments. The proposed method achieved an average accuracy
of 95.5% for control state detection during the online sessions,
providing a reliable asynchronous control. Furthermore, our
approach is independent of the ERP classification stage, and to
the best of our knowledge, is the first procedure that does not
need to extend the duration of the calibration sessions to acquire
non-control observations.

Index Terms—Brain—computer interfaces, event-related po-
tentials, asynchrony, control-state detection, steady-state vi-
sual evoked potentials, P300.

I. INTRODUCTION

RAIN—computer interfaces (BCIs) provide a direct path-

way between the brain and an external device. These
systems use the neural activity to identify the user’s inten-
tions and translate them into commands [1], [2]. The main
application of BCI systems is to create a new channel of
communication in real time for severely disabled people.
BCI systems enhance or restore their capability to relate to
their environment [1]. Electroencephalography (EEG) is the
most common technique to register the neural activity in BCI
systems [1]. EEG uses electrodes to register the electrical
signal generated by the superficial neurons close to them.
This signal is the superposition of rhythmic and transient
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components that reflect the underlying activity of the brain.
Particularly, event-related potentials (ERPs) are the natural
response of the brain to different types of events [3]. ERPs
elicited by a single visual stimulus (e.g., a brief flash) are
known as visual ERPs [3].

The first ERP-based BCI was proposed by Farwell and
Donchin [4]. The system used the row-column paradigm
(RCP) to determine the intentions of the user. The RCP
displays a matrix (i.e., speller) with several commands. The
rows and columns of the matrix are randomly highlighted a
predefined number of times (i.e., sequences). The user has
to stare at the desired command and count the flashes (i.e.,
target stimuli), while ignoring the other stimuli (i.e., non-
target stimuli). Target stimuli elicits visual ERPs in the EEG
just after each flash. The signal processing stage detects the
visual ERPs and determines the command. This BCI is also
named as P300-based speller because of the P300 potential,
which is the most prominent peak of visual ERPs elicited
by target stimuli [1], [3]. Recent research has improved the
accuracy and the speed of this BCI through new stimulation
paradigms or signal processing methods [5]-[7]. Nevertheless,
ERP-based spellers are synchronous systems. They always
make a selection for every trial, even when the user is not
paying attention to the stimuli. This poses a major limitation
for most applications, such as wheelchair control or web
browsers, where an asynchronous approach should be a key
feature [8], [9]. For this reason, detecting whether the user
wants to make a selection with the speller (i.e., control state)
or is engaged in other task (i.e., non-control state) is a crucial
issue to bridge the gap between laboratory and real-life BCI
applications.

In recent years, several studies have addressed the asyn-
chronous control in ERP-based spellers following two main
strategies: (i) algorithms that define a threshold dependent
on the output scores of the ERP classification stage [6],
[8]-[12]; or (ii) hybrid BCIs that combine different control
signals [13]-[15]. Nevertheless, these approaches present a
number of drawbacks. For instance, algorithms that rely on
the output scores of the ERP classification stage have high
inter-session variability [5]. Small changes in the amplitude
or latency of the ERPs could override the threshold and cause
a drastic decrease in the peak accuracy of these methods. In
fact, thresholds must be recalibrated before each session with
the BCI system. This procedure is time consuming, affects
the usability of the system and is frustrating for users [5],
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[10], [12]. Moreover, previous approaches require to record
additional data of the non-control state of the users (i.e., non-
control trials) to calculate the threshold, increasing the duration
of the calibration sessions. On the other hand, hybrid BClIs
increase the complexity of the system, requiring two or more
different stimulation interfaces. In these BClIs, the user has to
be able to manage with two or more control signals, making
them more demanding. Consequently, hybrid BCIs might be
a major challenge for certain users who cannot maintain high
levels of concentration [6], [16]. Algorithms independent of
the ERP classification stage may help to overcome these
limitations. In this regard, Pinegger et al. [17] proposed a
method based on the hypothesis that the flashing frequency of
the RCP should be represented somehow in the EEG, reaching
an average accuracy of 79.5% for control state detection.
However, this method still needs to double the duration of
the calibration sessions in order to acquire non-control trials.

The aim of this study is to design, develop and test a
novel method for control state detection able to overcome the
limitations of previous approaches. We hypothesize that pe-
ripheral stimuli (i.e., non-target stimuli) of ERP-based spellers
elicit a weak steady-state visual evoked potential (SSVEP).
SSVEPs are waveforms, similar to a sinusoid, that appear with
repetitive visual stimuli i the EEG [3], [18]. In order to test
the hypothesis, we performed a characterization experiment to
study the cause of this phenomenon and its dependence on the
stimulation frequency. Finally, we designed and developed a
novel method for asynchronous control based on the detection
of the SSVEPs elicited by peripheral stimuli. Our approach
is independent of the ERP classification stage and does not
use additional control signals. Furthermore, to the best of
our knowledge, it is the first asynchrony algorithm that does
not need to extend the duration of the calibration sessions
to acquire non-control trials. The efficacy of the method was
tested in offline and online experiments.

II. METHODS
A. Signal acquisition and subjects

This study consist of 3 tests: characterization, offline and
online experiments. For the characterization experiment, EEG
signal was recorded using 16 active electrodes: F3, Fz, F4,
C3, Cz, C4, CPz, P3, Pz, P4, PO3, PO7, POz, PO4, POS8
and Oz, according to the extended International 10-20 System
distribution. Two electrodes in FPz and the earlobe were used
as ground and reference, respectively. This distribution was
chosen to favor the detection of the SSVEPs [18]. For the
offline and online experiments, EEG signals were recorded
using 8 active electrodes, placed at Fz, Cz, Pz, P3, P4, PO7,
PO8 and Oz. This configuration was not only chosen based
on the results of the characterization experiment, but also
because it is commonly used in ERP-based spellers [9], [10].
A g USBamp (g.Tec, Guger Technologies, Austria) was used
to amplify and convert the signal into the digital domain
with a sampling frequency of 256 Hz. A novel BCI platform,
MEDUSA®, was developed and used to present the stimuli,
record and save the data and process the signal during the
online sessions [19].

Twenty healthy subjects participated in the experiments,
divided into two groups. Five subjects (mean age: 31.2 + 4.8
years; 4 males; 1 female) took part in the characterization
experiment. The remaining 15 subjects (mean age: 26.1 +2.3
years; 11 males; 4 females) took part in the offline and online
sessions. The experimental protocol was approved by the
local ethics committee and all participants gave their informed
consent.

B. Characterization experiment

The characterization experiment was aimed at analizing the
SSVEPs elicited by RCP. The stimulation frequency of ERP-
based spellers is reflected in the EEG and can be used to de-
termine the control state in an asynchronous BCI system [17].
However, the origin and characteristics of this phenomenon
have not been studied yet. We hypothesize that non-target
stimuli of RCP trigger a weak SSVEP in the user’s EEG.
Based on this assumption, two analysis were conducted:

1) First analysis: This analysis was designed to investigate
how the characteristics of the SSVEP vary as a function of
the stimulation frequency. This frequency is the inverse of the
stimulus onset asynchrony (SOA), which is the time between
two consecutive flashes calculated as the sum of the stimulus
duration and inter-stimulus time. Therefore, the stimulation
frequency is defined as fy = 1/SOA. Participants had to
spell 6 words (i.e., runs) of 6 letters (i.e., trials) using the
matrix shown in Fig. la. In one trial, each row and column
was highlighted 15 times (i.e., sequences). Each run had a
different stimulation frequency as shown in Table 1.

2) Second analysis: This analysis was designed to find out
the cause that provokes the SSVEPs. Four runs were performed
with different stimulation matrices. As previously, each run
had 6 trials of 15 sequences. SOA was fixed to 175 ms
(fst = 5.71Hz) [17]. For the first run, the overt matrix shown
in Fig. 1b was used. Participants were asked to stare at the
black space while the rows and columns were highlighted.
Therefore, participants only saw stimuli with their peripheral
visual field. For the second run, the covert matrix shown in
Fig. 1c was used. This matrix only had one letter in the centre.
Participants were asked to fix the gaze in this letter while it
was randomly highlighted. Unlike in the first run, participants
only saw stimuli in the central region of their visual field. For
the last two runs, the RCP matrix shown in Fig. 1a was used.
These runs consisted of one control run and one non-control
run. In the control run, participants were asked to spell 6
characters. In the non-control run, participants were watching a
video without attending the stimuli. This analysis was intended
to study whether the SSVEPs are provoked by the peripheral
stimuli of the RCP. In that case, the EEG signal in the overt
mode should only show the SSVEP, but no ERPs with the
P300 component would be found. Conversely, the EEG signal
of the covert mode should only contain ERPs, but no SSVEP.
Accordingly, the control mode would show the superposition
of the SSVEP and ERPs, while in the non-control mode none
of these waveforms should be found.
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(a)

Fig. 1. Matrices used during the experiments: (a) RCP matrix, (b) overt matrix, (c) covert matrix.

TABLE I
STIMULATION PARAMETERS FOR THE CHARACTERIZATION EXPERIMENT
Run SOA Inter- Stimulus Flashing
stimulus duration frequency
time
1 475 ms 400 ms 75 ms 2.10 Hz
2 375 ms 300 ms 75 ms 2.67 Hz
3 275 ms 200 ms 75 ms 3.64 Hz
4 175 ms 100 ms 75 ms 5.71 Hz
5 150 ms 75 ms 75 ms 6.66 Hz
6 125 ms 50 ms 75 ms 8.00 Hz
SOA: stimulus onset asynchrony

C. Proposed method for control state detection

The Oddball Steady Response Detection (OSRD) method
is our novel algorithm for detecting the user’s control state
in ERP-based spellers. OSRD provides a binary output y €
{0,1} for each trial. When control state is detected (y = 1),
the system selects a command. Conversely, when non-control
state is detected (y = 0), no further actions are taken. OSRD
takes the EEG signal corresponding to one trial as input (i.e.,
signal from the first stimulus of the first sequence to the last
stimulus of the last sequence considered), and performs in real
time the following stages:

1) Pre-processing: The objective of this stage is to increase
the signal-to-noise ratio. Finite impulse response (FIR) band-
pass filter is applied between [fy — bwi/2, fs + bw; /2]
Hz, where bw; is heuristically set to 2 Hz. The stimulation
frequency (f) is calculated as the difference between onsets
of consecutive stimuli. Common Average Reference (CAR)
is applied to remove common noisy components in the EEG
[10].

2) Feature extraction: The proposed method extracts two
features for each trial, which are based on canonical cor-
relation analysis (CCA) and power spectral density (PSD).
CCA is a multivariate statistical method that finds underly-
ing correlations between two multidimensional sets of data
(i.e., X,Y) [20]. CCA finds the optimal linear combination
o =w! «X, y=w] +Y which maximizes the correlation p
between X and Y. In this case, X is the EEG signal of one
trial with dimensions N x C, where N is the length of the
trial and C is the number of channels. On the other hand, Y
is the reference signal, which is a sine wave of frequency fy
with dimensions N x 1. An schematic representation of CCA
is depicted in Fig. 2a. CCA has been successfully applied in
BClIs for the detection of SSVEPs [21], [22]. However, to the

best of our knowledge, it has not been applied to asynchronous
ERP-based spellers yet. Hence, the first feature (x1) is the
maximum correlation coefficient between the trial signal and
the reference:

7, = CCA(X,Y) (1)

The second feature (z2) is directly derived from the spec-
trum estimation. Firstly, all channels of the trial are con-
catenated in a single vector of dimensions (N - C) x 1.
Secondly, the PSD of this vector is estimated using the Welch’s
method. The concatenation of the channels allows increasing
the spectral resolution. Afterward, zo is calculated as the
difference between the mean value of the PSD in a narrow
range and the mean value in a wide range (see Fig. 2b),
formally:

1 Fatbwa/2 1 fatbwi /2
=g [ S [ st @

bwa Jf,—bws, /2 Fu—buws /2

where S(f) is the PSD, and bw; and bw, are fixed to 2 Hz
and 0.1 Hz, respectively. In practice, these values are chosen
to have enough points of the PSD within these bands, making
the method more robust against noise.

3) Synthetic non-control observations: ERP-based spellers
should be recalibrated frequently owing to the high variability
of ERPs [5]. In fact, users have to spell several trials before
each BCI session to assure maximum performance. This
procedure is time consuming and frustrating for users [5].
Moreover, previous asynchronous ERP-based spellers needed
to extend the duration of calibration sessions to acquire non-
control trials. Here, we introduce a new approach in order to
create synthetic non-control observations from control trials.
Consequently, there is no need to register non-control trials
in calibration sessions, which is a great advantage in real-life
applications. The aforementioned features (i.e., 1 and x3) are
calculated based on the stimulation frequency, fy. Assuming
that the PSD from the EEG maintains its characteristics in
a narrow band around fy, non-control observations can be
simulated by shifting the stimulation frequency a fixed value
fo (see Fig. 2¢): fi, = f« + fo, where fy is set to 0.5 Hz.
Afterward, this value is used in Eq. 1 and Eq. 2 to calculate
x1 and z5. This procedure is based on the assumption that
the characteristics of the PSD at f}, would be similar to non-
control trials. Hence, this approach uses control trials to create
synthetic non-control observations.
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Fig. 2. (a) Schematic representation of the Canonical Correlation Analysis (CCA) used to extract the first feature 1, where EEG signal represent one trial
(N x C) and the reference signal is an ideal sinusoid y = sin(27 - f&) (IN X 1). CCA calculates the maximum correlation, p, between the two datasets. (b)
Power spectral density (PSD) of one control and one non-control trials. Parameters bw; and bwsg are used to calculate the second feature 2. (c) Shifting of
the stimulation frequency fy to calculate a synthetic non-control observation from one control trial.

4) Feature classification: The last stage determines the con-
trol state for each observation (y € {0, 1}). Linear discriminant
analysis (LDA) is a linear classifier that applies dimensionality
reduction by projecting the data to simultaneously minimize
the within-class covariance and maximize the between-class
covariance [23]. In this study, LDA is applied due to its
extensive use in BCI systems [9], [10], [12], [17]. Previously,
input features are normalized using z-score.

D. Offline experiment

The offline experiment was aimed at: (i) analizing the
performance of OSRD method, (ii) validating the synthetic
non-control observations approach, and (iii) acquiring data to
train OSRD method for the online session.

Fifteen participants performed 10 control and 10 non-
control runs in 2 sessions. Each run had 6 trials of 15
sequences. In control runs, participants were asked to spell
6 random characters using the matrix shown in Fig. la. In
non-control runs, participants had to ignore the stimuli while
watching a video or reading a text. Therefore, the dataset was
composed of 60 control trials and 60 non-control trials per
participant.

Two analysis were performed to assess the performance of
OSRD method and validate the synthetic non-control obser-
vations approach. In the first analysis, leave-one-out (LOO)
procedure was applied in the whole dataset for each user,
using control and non-control trials (i.e., 120 trials). In each
iteration, the classifier was trained using complete trials (i.e.,
15 sequences). However, testing features were calculated for
each number of sequences. In the second analysis, the evalua-
tion procedure was modified as follows: The training features
were calculated only with the control trials, creating from them
synthetic non-control observations. When LOO procedure
leaved one synthetic non-control observation out for testing, it
was replaced by one real non-control observation. Therefore,
OSRD was trained with synthetic non-control observations but
tested with real non-control observations.

E. Online experiment

The online experiment was aimed at assessing the efficacy
of OSRD in a real setting. To this end, the same participants of

the offline experiments were asked to spell 4 random words
of 6 letters (i.e., 24 trials) using the matrix shown in Fig.
la. During the first 3 trials of each word, participants had
to attend the stimuli. Conversely, during the last 3 trials,
participants had to ignore the stimuli while reading a text. We
determined the optimal number of sequences for each user as
the minimum to reach a training accuracy of 95% in command
selection. Whether a participant did not meet this criteria, it
was established to 15 sequences.

The control state was determined for each trial applying
OSRD method. Afterward, the command was selected by
detecting ERPs in the epochs of signal after each stimulus of
the RCP paradigm. It should be noted that the system only
selected a command whether control state was determined
previously. The command selection algorithm had 4 stages.
In the preprocessing stage, frequency (i.e., band-pass, 0.5-
30 Hz, FIR) and spatial filtering (i.e., CAR) were applied.
In the feature extraction stage, subsampling (i.e., 20 Hz)
over signal epochs of 800 ms from the stimulus onset was
applied. The features of each channel were concatenated to
make an observation. In the feature selection stage, backward
and forward step-wise regression was applied to select the
60 most relevant features for each user. These features were
fed to an LDA to detect the ERPs in the epochs. Each
epoch was labelled with the code of the row or column that
was highlighted. Finally, the algorithm selected the command
corresponding to the row and column that reached the highest
score in the classification stage. Further information about this
methodology can be found in [10], [12]. Control state detection
(i.e., OSRD) and command selection stages were calibrated
using the control trials of the offline dataset (i.e., 60 trials).
Hence, the training set of the OSRD method was composed
by 60 real control observations and 60 synthetic non-control
observations.

III. RESULTS

Results of the characterization experiment are shown in
Fig. 3 and Fig. 4. The former depicts the SSVEPs for each
stimulation frequency of the first characterization analysis.
Graphs on the left show the average PSD of all trials, channels
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Fig. 3. SSVEPs for different stimulation frequencies. Graphs on the left show the grand average of the PSD for all trials, channels and participants. Topographic
plots on the right show the normalized peak value of the PSD at the stimulation frequency averaged for all trials and participants.
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Fig. 4. Temporal and spectral representation of the ERPs in overt, covert, control and non-control modes for participant SO1. The upper part of the figure
shows the averaged epochs (i.e., 1000 ms after stimuli) in channel Cz. The shaded area represents the 95% confidence interval. The bottom part of the figure
shows the averaged PSD in channel Cz. The stimulation frequency in overt and control modes was 5.71 Hz.

and participants. Topographic plots on the right show the
normalized power of the SSVEPs per channel (i.e., peak value
of the PSD at the stimulation frequency) averaged for all trials
and participants. Fig. 4 presents the differences in the EEG
signal among the 4 different settings of the second analysis
(i.e., overt, covert, control, non-control) for participant SO1 in
channel Cz. The upper part of the figure shows the averaged
epochs of 1000 ms from the stimulus onset. The bottom part
of the figure shows the average PSD.

Results of the offline experiments for control state detection
are presented in Table II. Test accuracies achieved by OSRD
in the two performed analysis are shown for 1, 5, 10 and
15 sequences. The SOA was set to 175 ms (fy = 5.71Hz).
This value was chosen to maintain a balance between speed
of selection and the SSVEP power (see Fig. 3).

Results of the online experiments are summarized in Ta-
ble III. The first column details the number of sequences

(Ns) used during the session. The results of the control
state detection stage and the overall system are broken down.
The results for control state detection include the accuracy
(ACC)), positive predictive value (PPV), negative predictive
value (NPV), true positive rate (TPR) and true negative rate
(TNR) achieved by OSRD method during the online sessions.
In this analysis, control state has been considered as the
positive class and the non-control state as the negative class.
Results of the overall system include the control state detection
and command detection stages. Hence, control trials were
considered correct whether the control state and the command
were correctly determined at the same time. For the overall
system, accuracy (ACC,) and information transfer rate (ITR)
are given. ITR measures the amount of information conveyed
by a BCI system per unit of time [1]. ITR is valid in
memoryless systems, where all possible selections are equally
probable [24]. Our system meets both assumptions and thus,
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TABLE II
OFFLINE TEST ACCURACIES

No. Sequences

1 5 10 15
R S R S R S R S
uo1 55.0 542 842 85.0 98.3 983 99.2 99.2
uo02 60.8 59.2 88.3 89.2 95.8 95.8 915 975
U3 633 642 942 95.0 97.5 975 100 100
uo4 642 64.2 833 842 96.7 95.8 99.2 99.2
uos 61.7 60.8 875 875 96.7 96.7 97.5 983
U6 65.8 64.2 95.8 95.0 96.7 96.7 98.3 983
uo7 56.7 58.3 750 758 79.2 76.7 87.5 86.7
Uo8 633 625 975 975 100 100 100 100
uo9 61.7 60.0 89.2 88.3 91.7 925 95.0 975
U10 50.8 50.0 80.8 80.0 88.3 89.2 88.3 883
U111 65.0 658 91.7 91.7 100 100 100 100
U12 60.0 61.7 79.2 80.0 86.7 85.8 925 925
U13 65.0 65.0 79.2 783 90.0 90.0 95.0 95.0
U14 60.0 56.7 942 95.0 99.2 983 100 100
U15 733 725 96.7 96.7 99.2  99.2 100 100
Mean 61.8 61.3 87.8 879 944 94.2 96.7 96.8
+SD 50 52 70 69 58 6.2 4.1 42

Accuracies given in percentage (%), R: training and testing with real non-
control observations, S: training with synthetic non-control observations but
testing with real non-control observations.

TABLE III
ONLINE EXPERIMENT RESULTS

N Control State Detection Overall

s ACC; PPV NPV TPR TNR ACC; ITR
Uo1 10 100 100 100 100 100 91.7 124
uo02 10 95.8 100 923 91.7 100 91.7 124
uo3 8 100 100 100 100 100 95.8 16.8
uo4 10 91.7 100 857 83.3 100 91.7 124
uos 12 91.7 100 857 83.3 100 833 8.7
uo6 10 95.8 100 923 91.7 100 91.7 124
uo7 15 95.8 923 100 100 91.7 958 9
uos 8 95.8 923 100 100 91.7 95.8 16.8
U9 12 95.8 923 100 100 91.7 95.8 11.2
U10 15 91.7 91.7 91.7 91.7 91.7 91.7 8.2
Ul1 10 95.8 100 923 91.7 100 95.8 134
U12 10 91.7 91.7 91.7 91.7 91.7 91.7 124
U13 8 100 100 100 100 100 100 185
U14 12 95.8 100 923 91.7 100 91.7 10.3
Ul15 10 95.8 923 100 100 91.7 833 10.5
Mean 10.7 95.5 968 949 945 96.7 92.5 124
+SD 2.1 28 39 52 58 41 44 29

N;: number of sequences, Control State Detection: results of control state
detection stage using OSRD method, ACCj : accuracy (%) of the control state
detection stage, PPV: positive predictive value (%), NPV: negative predictive
value (%), TPR: true positive rate (%), TNR: true negative rate (%), Overall:
results of the overall system including control state detection and command
selection, ACCa: accuracy of the overall system, ITR: information transfer
rate (bits/min).

ITR is applicable. As in the offline sessions, the stimulation
frequency was set to 5.71 Hz.

IV. DISCUSSION

In this study, we investigated the SSVEPs elicited by the
RCP in order to detect the control state in ERP-based spellers.
To characterize this phenomenon, two different analysis were
performed. The first analysis assessed how the variation of
the stimulation frequency affected the SSVEPs. As can be
noticed in Fig. 3, lower stimulation rates trigger SSEVPs of
higher power, being maximum at 2.67 Hz and considerably
lower at 6.66 Hz and 8.00 Hz. In addition, harmonics are
noticeable in the grand average for 2.10 Hz, 2.67 Hz and

3.54 Hz. Despite the fact that higher SSVEP powers could
increase the accuracy of OSRD method, low stimulation rates
would decrease the ITR of the system. Accordingly, a value
of 5.71 Hz was chosen for the offline and online experiments.
Regarding the spatial distribution of the SSVEPs, we can
point out several insightful implications. SSVEPs reach higher
amplitudes in the midline electrodes of the frontal, central and
parietal areas of the brain (i.e., Fz, Cz, CPz, Pz) for lower
fequencies (i.e., 2.10 Hz, 2.67 Hz, 3.64 Hz, 5.71 Hz). However,
as the stimulation frequency increases, SSVEPs reach a higher
power in the electrodes closer to the visual cortex, located in
the occipital lobe (i.e., POz, PO7, PO8, Oz). These results are
in accordance with previous studies [18], [25], and suggest
that the spatial distribution of the electrodes to detect this
waveform in ERP-based spellers should take into account
the stimulation frequency. Regarding the second analysis, the
presence of the SSVEP in overt mode (see Fig. 4) implies
that the cause of this waveforms are the peripheral stimuli
of the visual odd-ball paradigm. Covert mode only triggers
transient ERPs, including the P300 potential. Moreover, the
linear superposition of these two waveforms explains the shape
of the EEG signal in control mode. The main implication of
this finding is that SSVEPs and ERPs elicited by the RCP
are originated by different mechanisms. Thus, OSRD method
could be considered independent of the command detection
stage, reducing the inter-session variability.

Regarding the offline experiments, no significant differ-
ences have been found between OSRD trained with real
and synthetic non-control observations regardless the number
of sequences (Wilcoxon signed-rank test, p-value > 0.05).
Thus, synthetic non-control observations may be considered
similar to real non-control observations. Furthermore, the use
of synthetic non-control observations reduces the duration of
calibration sessions by half because the acquisition of non-
control trials is no longer needed. As could be expected, the
greater the number of sequences considered, the higher the
precision of the algorithm. It should be noted that 13 out of
15 participants reached an accuracy higher than 90%. Addi-
tionally, the proposed method only uses two features, which
assures a similar performance with less training observations.
These characteristics represent a great advantage in real-life
BCI applications.

Table III presents the results of the online session. OSRD
method achieved an average accuracy of 95.5% for control
state detection. PPV, NPV, TPR and TNR values show that
OSRD is more reliable when it comes to detecting the non-
control state. This is useful in tasks where avoiding false
positives is a critical issue. Additionally, Table III also includes
the ITR and the accuracy of the overall system. These results
show that participants were able to control the ERP-based
speller asynchronously without compromising the overall sys-
tem performance. In fact, 13 out of 15 participants reached
an overall accuracy greater than 90%, achieving an average
accuracy of 92.5%. Furthermore, this session demonstrated the
ability of OSRD to work in real time.

Table IV shows a comparative between previous approaches
of asynchronous ERP-based spellers and our system. It should
be noted that it is difficult to make a direct comparison of these
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TABLE IV
COMPARATIVE OF PREVIOUS ASYNCHRONOUS ERP-BASED SPELLERS.
Study Paradigm Method Subjects Performance
. s . ITR 15 bits/min
Zhang et al. 2008 [8] Single cell Probabilistic analysis of SVM scores 4 CS FPRT  0.71 events/min
. . . ITR  11.19 bits/min
Aloise et al. 2011 [9] RCP ROC thresholding using LDA scores 11 CS FPRT  0.26 cvents/min
P . . . 5 CS ACC* 95.75%
Martinez-Cagigal et al. 2017 [10] RCP ROC thresholding using LDA scores 16 MDS ACC*  84.14%
Tang et al. 2018 [26] RCP Thresholding using SWLDA scores 4 CS ACC* 90.3%
. . . ITR  43.15 bits/min
Aydin et al. 2018 [6] RBP Thresholding using LDA output 10 CS ACC* 93.27%
P . . . . 5 CS ACC* 92.30%
Martinez-Cagigal et al. 2019 [12] RCP ROC thresholding using LDA scores 16 MDS ACC* 80.6%
. . Spectral features using SAM ACCT 79.5%
Pinegger et al. 2016 [17] RCP Hybrid features using HAM 21 e ACCT 95.5%
ACCt 955%
. ACC* 92.5%
Present study RCP Detection of SSVEPs provoked by RCP 15 CS ITR  12.4 bits/min
FPR  0.14 events/min

RCP: row-column paradigm, RBP: region based paradigm, SVM: support vector machine, LDA: Tinear discriminant analysis, SWLDA: step-wise LDA, SAM:
spectral analysis method, HAM: hybrid analysis method, CS: control subjects, MDS: motor disabled subjects, FPR: false positive rate, ACC: accuracy, ITR:

information transfer rate, *Overall system, TControl state detection

studies due to differences in stimulation paradigms, signal
processing and experimental settings. As a first approach,
Zhang et al. proposed a system based on a single cell paradigm
that assessed the statistical differences between the output of
a SVM fed with target and non-target epochs [8]. This study
achieved an ITR = 15 bits/min and a FPR = 0.71 events/min
with 4 control subjects (CS). Despite the suitable ITR, their
FPR suggests that the asynchrony management could be
improved. In fact, OSRD achieved a FPR = (.14 events/min
in the online session, showing the reliability of our approach.
Aloise et al. improved the accuracy of the asynchronous
detection, reaching a FPR = (.26 events/min [9]. However, our
approach still improves this value. Martinez-Cagigal et al. [10],
[12] used the same asynchronous framework, obtaining with
CS overall system accuracies of 95.75% and 92.30% respec-
tively. Among the previous studies, Aydin et al. [6] reached the
highest performance with an ITR = 43.15 bits/min. However,
it should be taken into account that they used a different
stimulation setting: the region based paradigm (RBP). This
paradigm uses regions of commands far from each other and
selections are performed in two levels to maximize speed,
which makes it difficult to compare their results with the rest
of the studies [6]. All previous studies rely on a threshold
based on different parameters calculated with the output of
the ERP classification stage to determine the control state (i.e.,
area under the ROC, probability analysis, etc). Despite their
usefulness, these approaches present a number of limitations.
Their performance is affected by high inter-session variability
due to changes in the latency and amplitude of the ERPs [2],
[5]. Moreover, in our own experience in [10], [12], a slight
decrease in the ERP classification performance overrides the
threshold, causing a drastic decrease in the detection accuracy
of the control state. In addition, a high number of false
negatives implies that correctly spelled trials could be lost.
Independent methods of the ERP classification stage would
help to overcome these limitations. As stated before, OSRD

is included within these kind of approaches. Pinegger et al.
[17] explored this strategy. In this study, SSVEPs elicited by
the RCP were also used to determine the user’s control state.
They proposed the spectral analysis method (SAM), based on
a threshold on the FFT values of averaged epochs of 1000
ms (256 samples). Despite the novelty of this method, its
performance (TPR = 88.3%,TNR = 73.7%, ACC = 79.5%,
15 sequences) suggests that the control state detection could be
improved. SAM method is the only one in this comparative
that allows a direct comparison with OSRD, since it relies
on the same phenomenon to determine the control state. In
this regard, OSRD method outperforms SAM in all the given
metrics (TPR = 94.5%, TNR = 96.7%, ACC = 95.5%, 10.7
sequences). In order to improve their results, Pinegger et al.
combined SAM with the ERP classifier scores in the hybrid
analysis method (HAM). This method achieved a similar per-
formance to OSRD (TPR = 99.0%,TNR = 93.2%, ACC =
95.5%, 15 sequences). However, HAM still depends on the
ERP classification stage, having the same drawbacks that
previous approaches. Unlike OSRD, all asynchrony methods
included in this comparative need non-control trials to be
calibrated, which doubles the duration of training sessions.
Furthermore, given their dependence on the ERP classifier,
they should be often recalibrated due to the high inter-session
variability of the latency and shape of the ERPs [11]. Thus,
this procedure would ultimately take a great amount of time
from users, reducing the applicability of these methods in a
real context. OSRD addresses this issue by creating synthetic
non-control observations from control trials, increasing the
usability of the system. Finally, it is worthy to mention that we
did not include hybrid BCIs in the comparative, since the use
of different control signals does not allow a direct comparison.
In addition, hybrid BCIs require the user to manage with
two or more control signals, increasing the complexity of the
systems and compromising its usability. In fact, these BCIs are
more demanding, and might be challenging for certain users
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who cannot maintain high levels of concentration [6], [16].

Despite the positive results achieved in this study, we can
point out several limitations. This study failed to test OSRD
method with motor disabled people, who would be the target
users. In this regard, BCI systems generally present lower per-
formance with motor disabled subjects. Nevertheless, SSVEPs
could be less affected than ERPs in this population [27]. OSRD
calculates two features focused on detecting the SSVEPs
provoked by the RCP. However, complementary metrics based
on statistical analysis could improve the performance and
should be explored in the future [22], [28]. Finally, in order to
validate the efficacy of OSRD, a training set of 60 trials was
used, even though smaller sets are more suitable in real-life
applications.

V. CONCLUSION

This study presents a novel method to determine the user’s
control state by means of the detection of SSVEPs elicited by
the RCP in ERP-based spellers. We demonstrated that these
waveforms, whose shape and spatial distribution depend on
the stimulation frequency, are provoked by peripheral stimuli
of the RCP. The proposed method has been validated in offline
and online experiments, achieving an average accuracy of
95.5% for control state detection and outperforming other
related state of the art methods. Additionally, our approach
presents two main advantages: it is independent of the ERP
classification stage, reducing the inter-session variability; and
it is the first asynchrony method that does not need to
register non-control trials, drastically reducing the duration of
calibration sessions. These features make OSRD a suitable
method to implement asynchronous ERP-based spellers in a
real context.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain Computer Interfaces for communication and control,”
Clinical neurophysiology, vol. 4, no. 113, pp. 767-791, 2002.

[2] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a
review,” Sensors, vol. 12, no. 2, pp. 1211-1279, 2012.

[3] S.J.Luck, An introduction to the event-related potential technique. MIT
press, 2014.

[4] L. A. Farwell and E. Donchin, “Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials,”
Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6,
pp. 510-523, 1988.

[5]1 F. Schettini, F. Aloise, P. Arico, S. Salinari, D. Mattia, and F. Cin-
cotti, “Self-calibration algorithm in an asynchronous P300-based brain-
computer interface,” Journal of Neural Engineering, vol. 11, no. 3, 2014.

[6] E. A. Aydin, O. F. Bay, and I. Guler, “P300-Based Asynchronous Brain
Computer Interface for Environmental Control System,” IEEE Journal
of Biomedical and Health Informatics, vol. 22, no. 3, pp. 653 — 663,
2018.

[71 A. Rezeika, M. Benda, P. Stawicki, F. Gembler, A. Saboor, and
I. Volosyak, “Brain—computer interface spellers: A review,” Brain Sci-
ences, vol. 8, no. 4, 2018.

[8] H. Zhang, C. Guan, and C. Wang, “Asynchronous P300-based brain-
computer interfaces: a computational approach with statistical models.”
IEEE transactions on bio-medical engineering, vol. 55, no. 6, pp. 1754—
63, 2008.

[9]1 F. Aloise, F. Schettini, P. Arico, F. Leotta, S. Salinari, D. Mattia,
F. Babiloni, and F. Cincotti, “P300-based brain-computer interface for
environmental control: An asynchronous approach,” Journal of Neural
Engineering, vol. 8, no. 2, 2011.

[10] V. Martinez-Cagigal, J. Gomez-Pilar, D. Alvarez, and R. Hornero, “An
Asynchronous P300-Based Brain-Computer Interface Web Browser for
Severely Disabled People,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 8, pp. 1332-1342, 2017.

[11] S. He, R. Zhang, Q. Wang, Y. Chen, T. Yang, Z. Feng, Y. Zhang,
M. Shao, and Y. Li, “A P300-Based Threshold-Free Brain Switch and
Its Application in Wheelchair Control,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 6, pp. 715-725,
2017.

[12] V. Martinez-Cagigal, E. Santamarfa-Vézquez, J. Gomez-Pilar, and
R. Hornero, “Towards an accessible use of smartphone-based social
networks through brain-computer interfaces,” Expert Systems with Ap-
plications, vol. 120, pp. 155-166, 2019.

[13] R. C. Panicker, S. Puthusserypady, A. P. Pryana, and Y. Sun, “Asyn-
chronous P300 BCI: SSVEP-based control state detection,” European
Signal Processing Conference, vol. 58, no. 6, pp. 934-938, 2010.

[14] Y. Li, J. Pan, F. Wang, and Z. Yu, “A hybrid BCI system combining
P300 and SSVEP and its application to wheelchair control,” [EEE
Transactions on Biomedical Engineering, vol. 60, no. 11, pp. 3156—
3166, 2013.

[15] Y. Yu, Z. Zhou, Y. Liu, J. Jiang, E. Yin, N. Zhang, Z. Wang, Y. Liu,
X. Wu, and D. Hu, “Self-paced operation of a wheelchair based on
a hybrid brain-computer interface combining motor imagery and P300
potential,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 25, no. 12, pp. 2516-2526, 2017.

[16] S. Amiri, R. Fazel-Rezai, and V. Asadpour, “A Review of Hybrid Brain-
Computer Interface Systems,” Advances in Human-Computer Interac-
tion, vol. 2013, pp. 1-8, 2013.

[17] A. Pinegger, J. Faller, S. Halder, S. C. Wriessnegger, and G. R.
Miiller-Putz, “Control or non-control state: that is the question! An
asynchronous visual P300-based BCI approach,” Journal of Neural
Engineering, vol. 12, no. 1, p. 014001, 2015.

[18] F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, “Steady-state
visually evoked potentials: Focus on essential paradigms and future
perspectives,” Progress in Neurobiology, vol. 90, no. 4, pp. 418-438,
2010.

[19] E. Santamarfa-Vazquez, V. Martinez-Cagigal, and R. Hornero,
“MEDUSA: Una nueva herramienta para el desarrollo de sistemas Brain-
Computer Interface basada en Python,” Cognitive Area Networks, vol. 5,
no. 1, pp. 87-92, 2018.

[20] W. Krzanowski, Principles of multivariate analysis. OUP Oxford, 2000.

[21] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency Recognition Based
on Canonical Correlation Analysis for SSVEP-Based BCIs,” [EEE
Transactions on Biomedical Engineering, vol. 53, no. 12, pp. 2610-
2614, 2006.

[22] G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, “An online multi-channel
SSVEP-based brain-computer interface using a canonical correlation
analysis method,” Journal of Neural Engineering, vol. 6, no. 4, 2009.

[23] K. Fukunaga, Introduction to statistical pattern recognition. Academic
press, 2013.

[24] W. Speier, C. Arnold, and N. Pouratian, “Evaluating True BCI Commu-
nication Rate through Mutual Information and Language Models,” PLoS
ONE, vol. 8, no. 10, 2013.

[25] R. Srinivasan, F. A. Bibi, and P. L. Nunez, “Steady-state visual evoked
potentials: Distributed local sources and wave-like dynamics are sensi-
tive to flicker frequency,” Brain Topography, vol. 18, no. 3, pp. 167-187,
2006.

[26] J. Tang, Y. Liu, J. Jiang, Y. Yu, D. Hu, and Z. Zhou, “Toward Brain-
Actuated Mobile Platform,” International Journal of Human-Computer
Interaction, vol. 00, no. 00, pp. 1-12, 2018.

[27] A. Combaz, C. Chatelle, A. Robben, G. Vanhoof, A. Goeleven, V. Thijs,
M. M. Van Hulle, and S. Laureys, “A Comparison of Two Spelling
Brain-Computer Interfaces Based on Visual P3 and SSVEP in Locked-
In Syndrome,” PLoS ONE, vol. 8, no. 9, 2013.

[28] V. Martinez-Cagigal, E. Santamaria-Vazquez, and R. Hornero, “Asyn-
chronous Control of P300-Based Brain—-Computer Interfaces Using
Sample Entropy,” Entropy, vol. 21, no. 3, p. 230, 2019.



